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Direct Detection Experiments
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FElectron Recoil vs Nuclear Recoil
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[XENON100 results from 2011]
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FElectron Recoil vs Nuclear Recoil
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[XENON100 results from 2011]

In an attempt to use the discarded ER, one needs a signal that can
be discriminated from this background.
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The Process

This process is suppressed due
to the mixing angle between the
sterile and the active neutrinos:

|Use|? < 1. (1)
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The Process

This process is suppressed due
to the mixing angle between the
sterile and the active neutrinos:

|Use|? < 1. (1)

On the other hand if we as-
sume here that the sterile neu-
trinos constitute all Dark Mat-
ter the estimated local density of
0.3 GeV/cm? implies a high flux.
Also, as they are non-relativistic

EJ& fig. (2)
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The Analysis

To calculate the cross sections we used the Roothan-Hartree-Fock
method considering an effective mass for the bound electron as

m = E% — |pp|? where Eg = m, — €.

[Based on method developed in Phys. Lett. B 525, 63 (2002).]
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Introduction Method

Relevant quantities

We calculate the differential event rate as:

dEy,

measured in DRU’s = [kgxdayxkeV]~1.
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Relevant quantities

We calculate the differential event rate as:

(s, [Uso) = 2o [ 57 (s, [Us.P) f()udv. (3

dEj dEy

measured in DRU’s = [kgxdayxkeV]~1.
If T is the exposure time and M the mass of the detector we can
define the differential number of events as:

dNy dRy

i, ——(ms,|Use|>) =M - T - i —(ms, |Use|?) - (4)
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Detector input

Background Function

To take into account the
background, it is necessary
to consider the intrinsic S
decays of 222Rn and 3%Kr
present in xenon. From
calibration data it is possi-
ble to obtain a background T R .
model. " e

Extracted from [Phys. Rev. D 90, no. 6, 062009 (2014)]
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Detector input

We must also consider the conversion function Conv(E})) that
relates the measured PE with the recoil energy of the scattered elec-
trons Fj, and the acceptance of the detector for ER Acc(PE).
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Detector input

We must also consider the conversion function Conv(E})) that
relates the measured PE with the recoil energy of the scattered elec-
trons Fj, and the acceptance of the detector for ER Acc(PE).

The differential number of events is then

dNr

2
- (ms, |Usel?).

dNy
o AR A ZACC Conv(Ek))ntdE

where n; is the number of electrons in the ¢ state.
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Statistical Method

In the region in which
the signal is above
than the background
we can integrate and

define:
Eo gN
NE= ——dFEy,
Ery, AFg
Lo
N = FydE;..
Erh
(5)
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Statistical Method

In the region in which 30
the signal is above o0
than the background
g __ 200}
we can integrate and i =
define: £ 150 //"—
u_é‘ 100
FoRTI z
NS, o= —dFEg, =
Ery Ak
Eo ‘ dN / dEy
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Nb = deEk E‘rh tEo Ek [kev]
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(5) XENONIT differential number of events for
mg = 40 keV and |Uge|? =5 x 1074
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Statistical Method

From this simple block space analysis, we define the significance in
terms of a x? distribution, as a function of Ny and Np:

(Ns(ms, |Use|?) — Np(ms, |Use|*))?
Nb(mSa ’US€|2)

(6)

x*(ms, |Use|?) :=

Imposing that x? > 4.60 (13.82) for 90% (99.9%) C.L. we obtain
the region in terms of mg and |Use|? that can be excluded in the
different experiments.
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Detector characteristics: XENON100

Characteristics

Bckgr ~ 3 x 1073
[kgx day xkeV 1]

T = 224.6 live days.

M = 34 kg fiducial mass.

E7, = 2 keVe, threshold
energy.

From [Phys. Rev. Lett. 109, 181301 (2012)]
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Detector characteristics: XENON1T

Characteristics

e Bckgr ~ 1.8 x 10~*
[kgx day xkeV 1]

o T = 2x%365 live
days.

e M = 1000 kg
fiducial mass.

L4 ETh =1 ke\/er
threshold energy.

From [JCAP 1604, no. 04, 027 (2016)]
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Detector characteristics: DARWIN

Characteristics

e Bckgr ~ 2.05 x 1075
[kgxday xkeV 1]

e M -T = 200 yearxton

o Fpp =1 keVe, threshold
energy.

From [arXiv:1606.07001 [astro-ph.IM].]

14 of 16



Introduction Method Results

Results
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Thanks !
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Backup Shides: The mysterious 7.1 keV line

Using an electron beam ion trap
the research group from the Max-
Planck-Intitut  fiir = Kernphysik
demonstrated that bare Sulphur
ions (S'%%) can emit gamma lines
at around 3.47 keV from Hydrogen
atoms, an effect not considered
before and published in

[arXiv:1608.04751 [astro-ph.HE]] .

From [MPIK webpage]
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Backup Shides: Acceptance € Conversion Functions

Conversion Function
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Both extracted from [Phys. Rev. D 90, no. 6, 062009 (2014)]
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Backup Shides: Incoherent Scattering

If mg =~ O(10 — 50) keV, then Ag ~ O(10~% —107°) cm.

As Rx. ~ 1.1 x 1078 c¢m the electron-neutrino scattering is in-
coherent and all the bound electrons in the xenon atom must be
considered.

When considering just free electrons one would need masses higher
than ~ 20 keV to go beyond the minimum threshold of the detector
hence entering the incoherent regime.
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Backup Shides: Cross sections

For free electrons the cross section with a sterile neutrino is given

by
2m )

% :2%
dFEy, 7

ar g%(ES =4 (ES S

Me

mg
e

— g192(meEy + %m%)] :

where
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Backup Shides: Cross sections

For bound electrons in a state ¢ (t = 1s, 2s, 2p,...) the cross section
in the rest frame of the atom where (pg,0,¢) are the variables of
the bound electron is

doy _ fp%ded(COS 0)d¢ | R(p)|?
dEy, (2m)3 Am (8)

|M|? 1 du
AEsEg|B8 — pp/m| 8w Al/2(s,m%, m?) | dEy

Here R:(pp) are radial wave functions normalized such that

o0 1,2
| GpRmR =1, Q

The function A(a,b,c) := a® +b? + c? — 2ab — 2bc — 2ca is the Kiillén
function and s and u are the usual Mandelstam variables.
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Backup Shides: The Roothaan-Hartree—Fock method

The Hartree—Fock method estimates the wave function and the
energy of a quantum many-body system in a stationary state.

The Roothaan equations are a representation of the Hartree—Fock
equation in a non orthonormal basis set which can be of Gaussian-
type or Slater-type.
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