Prospects for Supersymmetry after current LHC results

Emanuele A. Bagnaschi (DESY Hamburg)

DESY Hamburg 29 September 2016 Hamburg, Germany

The Minimal Supersymmetric Standard Model

Chiral supermultiplets					
Name	Symbol	spin 0	spin 1/2	$(SU(3)_C, SU(2)_L, U(1)_Y)$	
squarks,quarks	Q	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)	$\left(3,2,\frac{1}{6}\right)$	
(×3 families)	$\frac{u}{d}$	$egin{aligned} \widetilde{u}_R^* \ \widetilde{d}_R^* \end{aligned}$	$u_R^\dagger \ d_R^\dagger$	$(3,1,-\frac{2}{3})$ $(\bar{3},1,\frac{1}{3})$	
sleptons,leptons (×3 families)	L ē	$ \begin{array}{c} (\tilde{v},\tilde{e}_L) \\ \tilde{e}_R^* \end{array} $	$(v,e_L)\\e_R^\dagger$	$(1,2,-\frac{1}{2})$ $(1,1,1)$	
Higgses, Higgsinos	H_u H_d	$(H_u^+, H_u^0) $ (H_d^0, H_d^-)	$\begin{array}{c} (\widetilde{H}_{u}^{+},\widetilde{H}_{u}^{0}) \\ (\widetilde{H}_{d}^{0},\widetilde{H}_{d}^{-}) \end{array}$	$(1,2,\frac{1}{2})$ $(1,2,-\frac{1}{2})$	

Gauge supermultiplets

Name	spin 1/2	spin 1	$(SU(3)_C, SU(2)_L, U(1)_Y)$
gluino,gluon	ĝ	g	(8,1,0)
winos, W bosons	$\widetilde{W}^{\pm^{\circ}}\widetilde{W}^{0}$	$W^{\pm}W^{0}$	(1,3,0)
bino, B boson	$\widetilde{B}^{ extsf{O}}$	B^{O}	(1, 1, 0)

Physical motivations

Global fits

- ▶ In the unconstrained MSSM 105 new free parameters (masses, mixing angles and phases). Impossible/uninteresting to probe.
- Define a simplified model based on reasonable assumptions and a minor number of free parameters.
- Use of the available collider data, electro-weak precision observables and DM constraint to fit the best value and the likelihood profile of the model parameters.
- Effectively implement interplay between different searches (e.g. collider vs direct detection for DM).

The scenarios

GUT Models

CMSSM

 $m_0, m_{1/2}, A_0, \tan \beta$

NUHM1

 $m_0, m_{1/2}, A_0, \tan \beta, m_H$

NUHM2

$$m_0, m_{1/2}, A_0, \tan \beta, m_{H_u}, m_{H_d}$$

- Based on unification assumptions for the soft-SUSY breaking mass terms.
- Introduce correlation between the colored and uncolored sectors.

[1312.5250,1408.4060]

pMSSM10

$$\begin{array}{c} M_1, M_2, M_3 \\ m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{t}} \\ A \\ M_A, \tan\beta, \mu \end{array}$$

- Phenomenological model with 10 low-energy input parameters.
- We assume all left and right soft-SUSY mass breaking terms to be equal.
- We assume that the first two generations of squarks have the same soft-SUSY breaking term.
- All the trilinear coupling are the same.

[1504.03260]

The framework

- ► Frequentist fitting framework written in Python/Cython and C++.
- We use SLHA standard as an interface between the external codes that are used to compute the spectrum and the observables.
- The Multinest algorithm is used to sample the parameter space.

Parameter	Range	Number of
		segments
M_1	(-1, 1) TeV	2
M_2	(0,4)TeV	2
M_3	(-4, 4) TeV	4
$m_{\widetilde{q}}$	(0,4)TeV	2
$m_{ ilde{q}_3}^{'}$	(0,4)TeV	2
$m_{\tilde{i}}^{13}$	(0,2)TeV	1
M_A^{\prime}	(0,4)TeV	2
A	(-5, 5) TeV	1
μ	(-5 , 5) TeV	1
aneta	(1,60)	1
Total number of boxes		128

Codes

Spectrum generation SoftSUSY

Higgs sector and $(g-2)_{\mu}$ FeynHiggs, HiggsSignals, HiggsBounds

> B-Physics SuFla, SuperISO

EW precision observables FeynWZ

Dark matter
MicrOMEGAs, SSARD

The constraints

Indirect measurements

- $(g-2)_{\mu}$. 3.4 σ discrepancy may be explained with $\mathcal{O}(100)$ GeV smuons.
- $ightharpoonup M_W, M_7, M_h$ and EWPO.
- ► Flavor observables $(B_s \to \mu \mu, b \to s \gamma)$.

Dark matter

Relic density and direct detection.

Collider - GUT models

- Limits are independent of A_0 , $\tan \beta$, $m_{H_u}^2$ and $m_{H_d}^2$.
- Due to unification, limits on squarks and gluinos are relevant also for sleptons and electroweakinos.

The constraints – collider pMSSM10

Three classes of constraints

Colored sparticle production

We have combined the following CMS searches:

- ightharpoonup 0-lepton M_{T2}
- ▶ 1-lepton M_{T2}^W
- ▶ 2-lepton OS/SS
- \geq 3 leptons.

Compressed stop scenarios

This scenario is separately in a way similar to the EWK SMS. The stop cross-section is set to zero.

Electroweakinos production

- ► Simplified ModelS (SMS) approach. Limited mass hierarchies.
- Slepton production.
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ via sleptons.
- $\hat{\chi}_1^{\pm} \hat{\chi}_2^{0}$ via WZ.

pMSSM10 best fit point

Parameter	Best-fit
M_1	170 GeV
M_2	170 GeV
M_3	2600 GeV
$m_{ ilde{q}}$	2880 GeV
$m_{ ilde{q}_3}^{'}$	4360 GeV
$m_{\widetilde{j}}^{23}$	440 GeV
M_A^{ι}	2070 GeV
Ä	790 GeV
μ	550 GeV
aneta	37.6

- ► Heavy Higgses, squarks, gluinos are relatively unconstrained.
- Left-handed fermion decay chains evolve via $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$.
- ► Sleptons are at less than 1 TeV.

pMSSM10 mass spectrum

- Poor determination of the mass of colored sparticles (only lower bound from LHC searches).
- Larger freedom allow to fulfill the $(g-2)_{\mu}$ constraint without being in tension with the LHC searches.
- ▶ Improved fit with respect to the GUT models.

The $(g-2)_{\mu}$ constraint

Model	χ^2/n_{dof}	χ^2 probability
CMSSM	32.8/24	11 %
NUHM1	31.1/23	12 %
NUHM2	30.3/22	11 %
pMSSM10	20.5/18	31 %

- ▶ 3.5 σ discrepancy between the SM $(g-2)_{\mu}$ value and the measured one.
- ► In CMSSM,NUHM1 and NUHM2 there is a tension between the $(g-2)_{\mu}$ and LHC constraints from direct searches, due the universality relations.
- In the pMSSM10 we are able to fit perfectly the $(g-2)_{tt}$.
- ► Impact of LHC8_{EWK} constraint limited.

Higgs physics

- pMSSM10 likelihood is very similar to the experimental value smeared by the theoretical uncertainty as given by FeynHiggs.
- Lower value of $\tan \beta$ are disfavored at the 68% CL by LHC8 $_{EWK}$, $(g-2)_{\mu}$ and DM constraints
- ► The constraints interplay with the choice of a single soft SUSY-breaking mass-parameter for the sleptons.

Physical mass planes for the colored sparticles

Perspectives for discovery at LHC run 2

CMSSM

We have several different mechanism at play.

- Leading mechanism when the mass difference between the τ
 and the χ₁⁰ is of the order of a few GeV.
- \triangleright $\hat{\chi}_1^0$ is Bino-like.
- Also $\tilde{\tau} \tilde{\tau}$ annihilation important in this scenario.

CMSSM

We have several different mechanism at play.

2. H/A-funnel.

- $\sim \tilde{\chi}_1^0$ is Bino-like.
- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_A/M_H$.

Results GUT Models

CMSSM

We have several different mechanism at play.

3. Focus point.

- Region where RGEs have focusing properties.
- We have that $\mu \approx M_1$, sizable Higgsino component of the $\tilde{\chi}_1^0$.

NUHM1

In the NUHM1, we have

- $m_{H_{ij}}^2 = m_{H_{ij}}^2 \neq m_0^2$.
- $\mu < M_1 \rightarrow \text{Higgsino}$ $\hat{\chi}_1^0/\hat{\chi}_1^{\pm}/\hat{\chi}_2^0$.

mechanism comes into play. Chargino coannihilation.

 χ_1^0

- Dominant when $\hat{\chi}_1^{\pm}$ and $\hat{\chi}_2^{0}$ are nearly degenerate with $\hat{\chi}_1^0$.
- \triangleright $\tilde{\chi}_1^0$ is Bino-like or, if Higgsino-like, it must be that $m_{\tilde{\chi}_{i}^{0}}$, otherwise the DM annihilation mechanism is too efficient.

NUHM2

In the NUHM2, we have

- $m_{H_u}^2 = m_{H_d}^2 \neq m_0^2$.
- $\mu < M_1 \to \text{Higgsino}$ $\tilde{\chi}_1^0 / \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0.$

In this model we see also

5 Stop coannihilation.

As τ̃ coannihilation but degeneracy still leading even if the mass degeneracy condition is satisfied up to O(50) GeV.

pMSSM10

In the pMSSM10 we have

M₁ \cong M₂, so that Bino $\tilde{\chi}_1^0$, Wino $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$.

New annihilation channels appear to be part of the relevant mechanism for the pMSSM10.

- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_h$.
- ► Allowed only in the pMSSM10, excluded by gluino searches in the GUT models.

pMSSM10

In the pMSSM10 we have

M₁ \simeq M₂, so that Bino $\tilde{\chi}_1^0$, Wino $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$.

New annihilation channels appear to be part of the relevant mechanism for the pMSSM10.

- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_7$.
- ► Allowed only in the pMSSM10, excluded by gluino searches in the GUT models.

Interplay between collider and direct detection

Conclusions

- We performed what was at the time the first global likelihood analysis of the pMSSM using a frequentist approach including LHC8 constraints.
- Some model parameter, like the squark or the gluino mass, are poorly constrained by the fit.
- Others, like the $\tilde{\chi}_1^0$ and the slepton masses are effectively constrained, mainly defined by the $(g-2)_{\mu}$ and DM constraints.
- LHC13 searches have a good prospect of exploring the preferred regions of m_{q̃} and m_{g̃}, as well as light t̃₁, ẽ and μ̃.
- We are finalizing our analyses of new MSSM scenarios, including the 13 TeV constraints presented at ICHEP.

Uncertainty in the Higgs mass prediction

- Different region of applicability for the two approaches (low SUSY vs large SUSY masses).
- Uncertainty estimation in the intermediate, phenomenologically interesting region, not trivial.

[SusyHD 1504.05200] [FlexibleSUSY Bagnaschi, Weiglein, Voigt 16xx.yyyyy] [FeynHiggs 1312.4937]

W boson mass

- ▶ Perfect fit of M_W around it's measured values.
- ► Another example where it is relevant to have accurate theoretical predictions.

Backup slides Other efforts

Other efforts

- ► ATLAS pMSSM19 scan vs 7/8 TeV searches.
- Flat-prior random-sampling. Upper and lower bound chosen to maximize coverage of the parameter space accessible to the LHC [1508.06608].

➤ SUSY-AI: use results from the ATLAS scan to implement the constraints from the available searches using machine-learning method [1605.02797].

Backup slides Other efforts

Other efforts

- Exclusion power of the 13 TeV data from Barr et al [1605.09502].
- Use the models previously found to be allowed by the ATLAS study.
- Exclude a further 15.7% model points from the set that survived from Run 1 searches.

- ► Fittino: last paper on the CMSSM [1508.05951]. They find it excluded at the 90% C.L..
- ➤ SuperBayesS: Bertone at al [1507.07008], global analysis of the pMSSM, including constraints coming from indirect detection (Fermi GeV excess).
- ► GAMBIT: new collaboration, no publication available yet.