SUSY parameters from higgsino measurements in high-energy electron-positron collisions

<u>Suvi-Leena Lehtinen</u>, M. Berggren, J. List (DESY) H. Baer (Oklahoma), K. Fujii, J. Yan (KEK), T.Tanabe (Tokyo)

DESY theory workshop 2016

PIER Helmholtz A Graduate Education Program of Universität Hamburg in Cosperation with DESY School

Motivation

Benchmarks

Measurements at the International Linear Collider

Parameter fitting at weak scale

Testing gaugino mass unification

Summary

Why study light higgsinos

Naturalness and small fine tuning require µ parameter at the EW scale:

$$m_Z^2 = 2rac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2eta}{\tan^2eta - 1} - 2\mu^2$$

$$ightarrow \mu$$
 small \implies light higgsinos

Typical mass difference 10 - 20 GeV
 ⇒ challenging for LHC if other sparticles are heavy

Benchmarks studied

> $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ observable, $\tilde{\chi}_3^0$ accessible with a small cross section > Other sparticles heavy

 \blacktriangleright Mass gaps $\sim 10-20~\text{GeV} \implies$ higgsinos decay via a virtual Z/W

Two specific benchmarks					
mass	ILC1	ILC2			
$\widetilde{\chi}_1^0$	103 GeV	148 GeV			
$\widetilde{\chi}_1^{\pm}$	117 GeV	157.8 GeV			
$\widetilde{\chi}_2^0$	124 GeV	158.3 GeV			
$\widetilde{\chi}_{3}^{0}$	267 GeV	539 GeV			
ĝ	1560 GeV	2830 GeV			

Cross sections for production in e^+e^- at $\sqrt{s} = 500$ GeV several hundred fb

What is the International Linear Collider (ILC)

- > Electron-positron collider at $\sqrt{s} = 250 500$ GeV (1TeV)
- Polarisation of electrons 80%, positrons 30%
- Well-defined initial state: 4-momentum and spin config.
- Clean and completely reconstructable final state
- Construction under political consideration in Japan

Typical 20yr running scenario

Higgs mass and BR measurements are important

- ILC will measure m_h to 25 MeV (15 MeV) precision in initial (full) run
- Precision higgs measurements important for SUSY parameter determination

Suvi-Leena Lehtinen | DESY theory WS | 29.9.2016 | 6

Detailed simulation study: 500 GeV, 500 fb^{-1}

 $e^+e^-
ightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^-
ightarrow \widetilde{\chi}_1^0 q \bar{q}' \widetilde{\chi}_1^0 e \nu_e$ in the International Large Detector

Soft tracks - no problem for ILC

 Event generation Whizard 1.95, hadronisation
 Pythia 6.422

- Detailed ILD-specific software for simulation and reconstruction (Mokka & Marlin)
- Beam spectrum and ISR included

- > Neutralino signal: $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 e^+ e^- (\mu^+\mu^-)$
- Characterised by large missing energy and two fermions in the final state
- Main background 4-fermion processes vvll

Neutralino signal

Background example

Kinematics: Maximum invariant mass gives the mass splitting. Then maximum of di-electron energy gives the absolute the masses since initial state known

Kinematics: Maximum invariant mass gives the mass splitting. Then maximum of di-electron energy gives the absolute the

masses since initia

- > Chargino signal: $e^+e^- \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 q \bar{q}' \tilde{\chi}_1^0 e \nu_e(\mu \nu_\mu)$
- Characterised by large missing energy, two jets from one W* and a lepton from the other W*

- > Chargino signal: $e^+e^- \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 q \bar{q}' \tilde{\chi}_1^0 e \nu_e(\mu \nu_\mu)$
- Characterised by large missing energy, two jets from one W* and a lepton from the other W*

- Measure with different polarisation combinations
- Polarisation dependence reveals higgsino nature

Measure with different polarisation combinations

- Polarisation dependence reveals higgsino nature
- Strategy: Fit overall shape to count events

- Measure with different polarisation combinations
- Polarisation dependence reveals higgsino nature
- Strategy: Fit overall shape to count events

- What can we say about SUSY parameters based on these observables?
- > Which parameters are determined and how accurately?
- Can we test the SUSY model type?
- Can we make predictions about the unobserved part of the spectrum?

Fitting parameters to observables with Fittino

Definition: NUHM2 model
 6 free parameters
 M₀, M_{1/2}, μ, m_A, tan β, A₀

parameter	scale	ILC1		
μ	weak	115		
$M_{1/2}$	GUT	568.3		
aneta	weak	10		
M_0	GUT	7025		
A_0	GUT	-10426.6		
m _A	weak	1000		

parameter	ILC1-pMSSM			
μ	115			
M_1	250			
M_2	463			
M_3	1270			
aneta	10			
$M_{\tilde{t}_{l}}$	4820			
$M_{\tilde{t}_R}$	1670			
Mother sfermions	7150			
$A_{t=b=\tau}$	-4400			
m_A	1000			

5 parameter fit with SUSY and Higgs

- Input: higgsino masses with 0.2% uncertainty, cross sections with 0.5%-2% uncertainty, 250, 350 and 500 GeV measurements
- Input: Higgs precisions from ILC 20yr running
- Input: gluino mass from HL-LHC with 10% uncertainty

Fit of 5 parameters relevant for gauginos

Suvi-Leena Lehtinen | DESY theory WS | 29.9.2016 | 16

Fit of 5 parameters relevant for gauginos

Suvi-Leena Lehtinen | DESY theory WS | 29.9.2016 | 16

```
NUHM2 type scenario (ILC1)
initial stage ILC result
```


NUHM2 type scenario (ILC1) initial stage ILC result

Mirage mediation scenario similar precision expected

Summary

- Light higgsinos motivated by naturalness
- ▶ ILC would probe higgsinos complementary to LHC reach
 - ▶ either exclude masses up to $\sqrt{s}/2 = 500$ GeV for 1 TeV upgrade \rightarrow wide coverage of natural SUSY scenarios
 - or discover regardless of mass scale of heavier states
- ILC would measure properties of higgsinos to percent-level precision, with full ILC run / threshold scans to sub-% precision
- Precise measurements allow for extracting some weak scale parameters and predicting mass scales of unobserved sparticles
- > Can have sensitivity to GUT unification hypotheses

BACKUP

ILC1 unpolarised cross sections

ILC1: $m_0 = 7025$ GeV, $m_{1/2} = 568.3$ GeV, $A_0 = -11426.6$ GeV, $\tan \beta = 10$, $\mu = 115$ GeV, $m_A = 1000$ GeV

Fit observables

▶ mass
$$\widetilde{\chi}_1^0$$
, $\widetilde{\chi}_2^0$, $\widetilde{\chi}_1^\pm$

► xsxbr of
$$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow q \bar{q}' l \nu_l$$
 (l=e, mu)
for $\mathcal{P}(e^- = \mp 80\%, e^+ = \pm 30\%)$

► xsxbr of
$$\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 II$$
 (l=e, mu)
for $\mathcal{P}(e^- = \mp 80\%, e^+ = \pm 30\%)$

- Higgs mass
- ► Higgs BRs $h \rightarrow bb, h \rightarrow cc, h \rightarrow \tau\tau, h \rightarrow gg, h \rightarrow \gamma\gamma, h \rightarrow ZZ^*, h \rightarrow WW^*$

ILC1

Cross sections (pure beam polarizations) Vs=500 GeV with TDR beam parameters

(Pe-, Pe+)	(-1.0,+1.0)	(+1.0,-1.0)		
σ(χ ₁ ⁺ χ ₁ ⁻) [fb]	1800	335		
σ(χ ₁ ⁰ χ ₂ ⁰) [fb]	491	379		
σ(χ ₂ ⁰ χ ₃ ⁰) [fb]	11.0	8.42		
σ(χ ₁ ⁰ χ ₁ ⁰) [fb]	2.03	1.56		
σ(χ ₂ ⁰ χ ₂ ⁰) [fb]	0.53	0.41		
σ(χ ₁ ⁰ χ ₃ ⁰) [fb]	0.28	0.20		

Branching ratios

$BR(\chi_1^+ \rightarrow \chi_1^0 qq')$	67%		
$BR(\chi_1^+ \rightarrow \chi_1^0 lv) (l=e,\mu)$	22%		
$BR(\chi_2^0 \rightarrow \chi_1^0 qq')$	58%		
$BR(\underline{\chi_2}^{0} \underline{\chi_1}^{0} II) \ (I=e,\mu)$	7.4%		

Major Residual bkg

in region of higher kinematic edge of Miny and Edl 4f leptonic processes involving missing energy

- μμ: 4f ZZWWMix I, 4f singleZnunu I
- ee : 4f_singleZeorsingleW_l

4f_szeorsw_leptonic

 W^+

 $e^{-}(32)$

 $e^{+}(16)$ 1 $\bar{\nu}_e$ (8)

4f leptonic BG drop to 1/10 for right pol

 $e^{+}(4)$

 $\nu_e(1)$

(2)

These are not all the diagrams

 $e^{-}(32)$

 $e^{+}(16)$

43

20

Cuts for N1N2

- lepton type (µµ or ee) : the two leptonic channels of N1N2 analysis
- nTrack = 2 : number of charged tracks
- no hit in BeamCal : veto yy2f BG
- Pt_lep1,2 > 6 GeV and |cosθlep1,2| < 0.95:
- Coplanarity < 1.0 rad : angle between leptons in x-y plane
- Evis Eγmax < 40 GeV : visible energy (very small for signal)
- Emis > 300 GeV : missing energy (very large for signal)
- |cosθmissing| < 0.98 : θ of missing energy events
- |cosθZ| < 0.98 : Z* production angle
- Pt_dl < 80 GeV : transverse momentum of dilepton
- Minv<50 GeV : dilepton invariant mass: determines ΔM

last of all observe distributions of Minv and dilepton energy (E_dl) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for C1C1

- lepton type (μ or e tag) and # of lepton =1
- Pt_mis > 10 GeV
- Jet Coplanarity < 1.0 rad
- |cosθjet1,2| < 0.95:
- nTrack(in jet) >1 :
- no hit in BeamCal :
- cosθjet1-lep < 0.2, cosθjet2-lep < 0 angle between jets and leptons
- Evis Eγmax < 60 GeV :
- Emis > 400 GeV :
- |cosθmissing| < 0.98 :
- |cosθZ| < 0.98 :
- Pt_jj < 50 GeV :
- Minv<30 GeV :

last of all observe distributions of Minv and dijet energy (Ejj) Kinematic edge is a function of Higgsino mass and ΔM

Top-Level Parameters for TDR Baseline

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5	5	5	5
Positron production mode			10 Hz	10 Hz	10 Hz	nom.	nom.
Estimated AC power	P_{AC}	MW	114	119	122	121	163
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches			1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP		nm	35	35	35	35	35
Horizontal beta function at IP		mm	16	14	13	16	11
Vertical beta function at IP		mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_x^*	nm	904	789	729	684	474
RMS vertical beam size at IP	σ_y^*	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L	$ imes 10^{34} m cm^{-2} m s^{-1}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E _{CM}	L0.01	%	91	89	87	77	58
Electron polarisation	P_	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30
Electron relative energy spread at IP		%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP		%	0.19	0.17	0.15	0.10	0.07

ILC Timeline - where are we now?

