

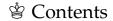
<u>Daniel Dercks</u>, Nishita Desai, Manuel Drees, Herbi Dreiner, Jong Soo Kim, Krzysztof Rolbiecki, <u>Daniel Schmeier</u>, Jamie Tattersall

with contributions from

Sebastian Belkner, Anke Biekoetter, Tim Keller, Frederic Ponzca, Jan Schutte-Engel, Torsten Weber

Theory Workshop 2016, DESY, September 29, 2016

CheckMATE: Confronting your Favourite New Physics Model with LHC Data


Drees, Dreiner, Kim, DS, Tattersall arXiv:1312.2591, Comput.Phys.Commun. 187 (2014) 227-265

A framework to create customised LHC analyses within CheckMATE

Kim, DS, Tattersall, Rolbiecki arXiv:1503.01123, Comput.Phys.Commun. 196 (2015) 535-562

CheckMATE 2: (not) harder (but) better, faster, stronger

DD, Desai, Drees, Dreiner, Kim, Rolbiecki, Tattersall arXiv:16xx.xxxxx

Check Models at Terascale Energies

- How to use it now!
- 2 Why using it?
- 3 How to use it soon!

This talk is based on the *beta*-version of the code which can be found under http://checkmate.hepforge.org

"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model is excluded by the LHC or not."

"Sounds great! Let's do it!"

CHECKMATE

Minimal Running Example

Minimal Running Example

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,

[Parameters]

SLHAFile: /scratch/benchmark1.slha

[squ_asq]

Pythia8Process: p p > sq sq~ MaxEvents: 1000

Minimal Running Example

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,
- Step 2: Run ./CheckMATE param.dat

[Parameters]

SLHAFile: /scratch/benchmark1.slha

[squ_asq]

Pythia8Process: p p > sq sq~ MaxEvents: 1000

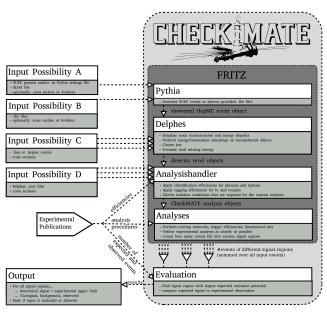
Minimal Running Example

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,
- Step 2: Run ./CheckMATE param.dat
- Wait.

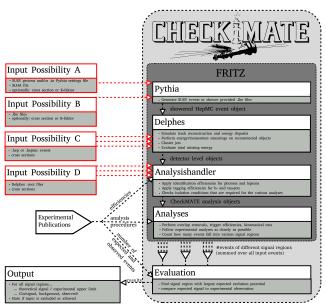
```
SLHAFile: /scratch/benchmark1.slha
[squ_asq]
Pythia8Process: p p > sq sq~
MaxEvents: 1000
```

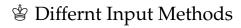
[Parameters]

```
Result: Allowed
Result for r: r_max = 0.74
SR: atlas conf 2013 047 - ET
```


Result: Excluded or Result for $r: r_max = 1.33$ SR: atlas conf 2013 047 - A

You quickly know if your model has been excluded by current LHC results without knowing anything about collider phenomenology!


Overview: Data Flow



 ${\tt checkmate_input_parameter.dat}$

[Parameters]
SLHAFile: /scratch/point.slha

[squ_asq]

Pythia8Process: p p > sq sq~ MaxEvents: 1000

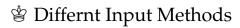
[squ_squ]

Pythia8Card: /scratch/pythiasqusqu.in

[glu_glu]

Events: /scratch/glu_glu.lhe

[glu_sq]


Events: /scratch/glu_squ_1.hepmc,

/scratch/glu_squ_2.hepmc

XSect: 0.75 fb

Possibilities

■ Let Pythia8 do the event generation and parton showering completely internally (*Limited to certain BSM models*)

 ${\tt checkmate_input_parameter.dat}$

[Parameters]
SLHAFile: /scratch/point.slha

[squ_asq]

Pythia8Process: p p > sq sq~ MaxEvents: 1000

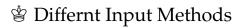
[squ_squ]

Pythia8Card: /scratch/pythiasqusqu.in

[glu_glu]

Events: /scratch/glu_glu.lhe

[glu_sq]


Events: /scratch/glu_squ_1.hepmc,

/scratch/glu_squ_2.hepmc

XSect: 0.75 fb

Possibilities

- Let Pythia8 do the event generation and parton showering completely internally (*Limited to certain* BSM models)
- Provide parton events externally and let Pythia8 only do the parton showering internally (Works for 'any' BSM model)

checkmate_input_parameter.dat

[Parameters]
SLHAFile: /scratch/point.slha

[squ_asq]

Pythia8Process: p p > sq sq~ MaxEvents: 1000

[squ_squ]

Pythia8Card: /scratch/pythiasqusqu.in

[glu_glu]

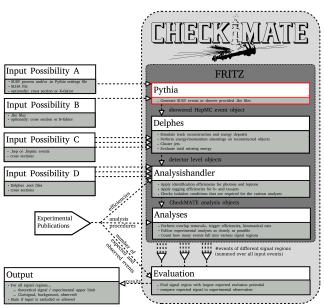
Events: /scratch/glu_glu.lhe

[glu_sq]

Events: /scratch/glu_squ_1.hepmc,

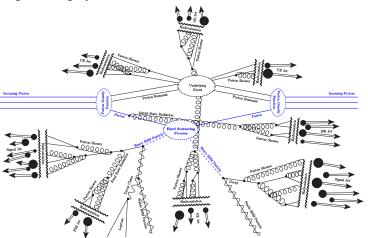
/scratch/glu_squ_2.hepmc

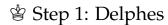
XSect: 0.75 fb

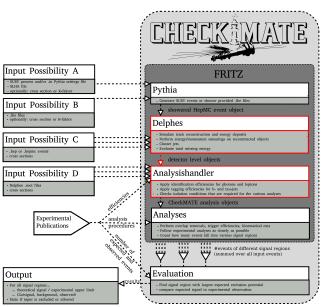

Possibilities

BSM models)

- Let Pythia8 do the event generation and parton showering completely internally (*Limited to certain*
- 2 Provide parton events externally and let Pythia8 only do the parton showering internally (Works for 'any' BSM model)
- Provide parton showered events and don't use Pythia8 (Works for 'any' BSM model)






■ Simulates the result of a proton-proton collision, assuming a certain particle physics model

■ Can use parton events from other programs and do the rest

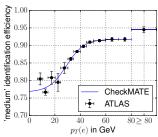
Detector Simulation

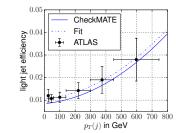
Delphes 3.0.10 Standard

- A Simulates tracking and energy deposition
- Applies efficiencies for photons and leptons
- Clusters jets
- Performs energy/momentum smearings of all reconstructed objects
- Evaluates total missing energy
- Checks isolation conditions for photons and leptons
- Applies b-/ tau-tag on jets

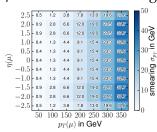
CheckMATE improvements / post

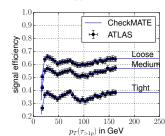
- Added identification and isolation flags
- Tuned to better represent ATLAS detector

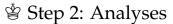

Daniel Dercks CHECKMATE



* Detector Tunings — Examples

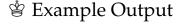

e reconstruction eff.




b-jet eff.

μ momentum smearing

 τ -jet eff.



A CheckMATE analysis does the following

- A Choose the objects of interest (leptons, jets,...)
- & Filter objects (efficiency and isolation flags, kinematical cuts, overlap removals, ...)
- & Check event vetoes (Too many/few objects, trigger efficiencies, ...)
- \triangle Check various signal region criteria (total \not E_T, # and energy of objects, ...)
- △ Count number of input events that fall into each signal region

Daniel Dercks Checkmate


```
# ATLAS-CONF-2013-047
```

0 leptons, 2-6 jets, etmiss

sqrt(s) = 8 TeV

 $# int(L) = 20.3 fb^-1$

/hdd/results/cMSSM/delphes/000_delphes.root Inputfile:

1.24892

8.88313

XSect: 4.35 fb Error: 1.22086 fb

MCEvents: 5000 SumOfWeights: 5000

SumOfWeights2: 5000 NormEvents: 87.9518

505

MΑ 71

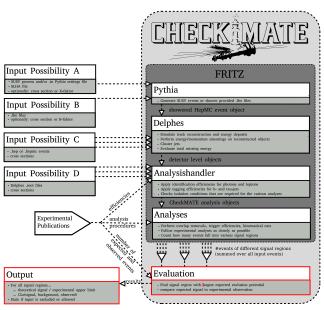
CM 505

SR Sum W Sum W2 Acc N Norm ΑL 1315 1315 0.263 23.1313 71

0.0196 1.72385 BM 98 98 BT 0.0004 0.0351807

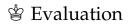
0.0142

0.101


CT 9 0.0018 0.158313 D 184 184 0.0368 3.23663

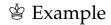
EL. 613 613 0.1226 10.7829 398 398 0.0796 7,00096 EM

ΕT 149 149 0.0298 2.62096



Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- A Checkmate has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S_{max}^{95}


Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- **&** CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S_{max}^{95}

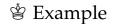
User can choose

- \triangle Directly compare S to S_{max}^{95}
- \triangle If $r^c = \frac{S 2\Delta S}{S_{obs}^{0.5}} > 1$: Excluded!
- A Quick and easy for limit setting

- \triangle Evaluate $CL_s(O, B, \Delta B, S, \Delta S)$
- \triangle If $CL_s < 0.05$: Excluded!
- A Slower, but limits can be set to different confidence levels

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S obs S exp	1341.2 1135.0 ^{+332.7} _{-291.5}	51.3 42.7 ^{+15.5} _{-11.4}	14.9 17.0 ^{+6.6} _{-4.6}	6.7 5.8 ^{+2.9} _{-1.8}


ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S obs S exp	1341.2 1135.0 ^{+332.7} -291.5	51.3 42.7 ^{+15.5} _{-11.4}	14.9 17.0 ^{+6.6} _{-4.6}	6.7 5.8 ^{+2.9} _{-1.8}

atlas_conf_2013_047_r_limits

SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ET	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

Daniel Dercks CHECKMATE

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S obs S 95	1341.2	51.3	14.9	6.7
S 95 exp	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$

Result

Result: Allowed
Result for r: r_max = 0.74

SR: atlas_conf_2013_047 - ET

atlas_conf_2013_047_r_limits

SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ET	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

Daniel Dercks CHECKMATE

Idea

XSectErr: 0.00089 PB

■ Light \tilde{g} , \tilde{t} , \tilde{b} , $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ and many poss. decays [arXiv:1510.04871]

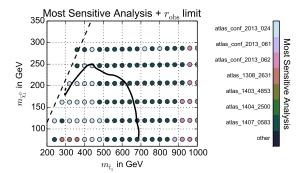
```
[Parameters]
Name: NMSSM lambdaL 1000 800 500 250
Analyses: atlas
[gluinopair]
XSect: 0.239E-01 PR
XSectErr: 0.00575 PB
Events: /scratch/11428609[184].pbs.baf.lan/herwig/gluinopair.hepmc
[stop1pair]
XSect: 0.794E-02 PB
XSectErr: 0.00149 PR
Events: /scratch/11428609[184].pbs.baf.lan/herwig/stop1pair.hepmc
[stop2pair]
XSect: 0.122E-02 PB
XSectErr: 0.00024 PB
Events: /scratch/11428609[184].pbs.baf.lan/herwig/stop2pair.hepmc
[sbottom1pair]
XSect: 0.620E-02 PB
XSectErr: 0.00119 PR
Events: /scratch/11428609[184].pbs.baf.lan/herwig/sbottom1pair.hepmc
[sbottom2pair]
XSect: 0.419E-02 PR
```

Events: /scratch/11428609[184].pbs.baf.lan/herwig/sbottom2pair.hepmc Daniel Dercks CHECKMATE

~: ./CheckMATE NMSSM_setupfile.txt

Example Output: Nat. NMSSM

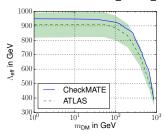

```
~: ./CheckMATE NMSSM_setupfile.txt
 | | | '_ \ / _ \/ __| |/ / |\/| | / _ \ | | |
[... roughly 2 minutes per 5k events later ... ]
        EVALUATION
  **********
Test: Calculation of r = signal/(95\%CL \ limit \ on \ signal)
Result: Excluded
Result for r: r \max = 3.45937
SR: atlas_conf_2013_061 - SR1L6JB
```

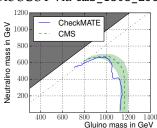


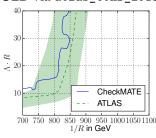
😩 Example Output: Nat. NMSSM

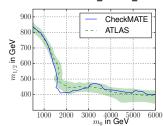
Scan Parameter Region

- Gen. events for each param. point (*Trivial*, once the setup is ready)
- Run CheckMATE on these events (*Trivial*, just change event-URL)
- Draw line between Excluded and Allowed (*Trivial with Matplotlib*)



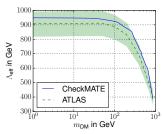

Performance Test via Models

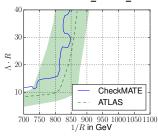

Effective DM via atlas_1502_01518


Simple SUSY via cms_1303_2985

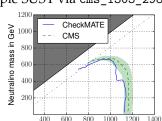
UED via atlas_conf_2013_089

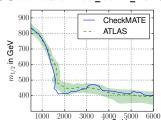
MSUGRA via atlas conf 2013 047

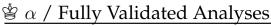



Performance Test via Models

Theoretical Physics Universitätbonn


Effective DM via atlas_1502_01518


UED via atlas_conf_2013_089


Simple SUSY via cms_1303_2985

MSUGRA via atlas conf 2013 047

CheckMATE is a model-independent tool!

Name	Search designed for	\sqrt{s}	L	N _{SR}
atlas_1308_1841	new phenomena in final states with large jet multiplicities and $\not\!\!E_T$	8	20.3	19
atlas_1308_2631	third-generation squark pair production with ∉ _T and two b-jets	8	20.1	6
atlas_1402_7029	charginos and neutralinos in events with 3 leptons and ∉ _T	8	20.3	24
atlas_1403_4853	top-squark pair production in final states with two leptons	8	20.3	12
atlas_1404_2500	SUSY with jets and two same-sign leptons or three leptons	8	20.3	5
atlas_1403_5222	top squark pair production in events with a Z boson, b-jets and ∉ _T	8	20.3	5
atlas_1405_7875	squarks and gluinos in final states with jets and ∉ _T	8	20.3	15
atlas_1407_0583	stop pair production in final states with one isolated lepton, jets, and $\not\!\!E_T$	8	20.3	27
atlas_1407_0608	pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios	8	20.3	3
atlas_1502_01518	new phenomena in final states with an energetic jet and large ∉ _T	8	20.3	9
atlas_1503_03290	Supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large \not E _T	8	20.3	1
atlas_1506_08616	pair production of third-generation squarks	8	20.3	11
atlas_conf_2012_104	Supersymmetry in final states with jets, $\not\!E_T$ and one isolated lepton	8	5.8	2
atlas_conf_2012_147	new phenomena in monojet plus ∉ _T final states	8	10	4
atlas_conf_2013_024	production of the top squark in the all-hadronic $t\bar{t}$ and $\not\!\!E_T$ final state	8	20.5	3
atlas_conf_2013_049	direct-slepton and direct-chargino production in final states with two opposite-sign leptons, \not E _T and no jets	8	20.3	9
atlas_conf_2013_061	strong production of supersymmetric particles in final states with $\not E_T$ and at least three b -jets	8	20.1	9
atlas_conf_2013_089	strongly produced supersymmetric particles in decays with two leptons	8	20.3	12
atlas_conf_2015_004	invisibly decaying Higgs boson produced via vector boson fusion	8	20.3	1
cms_1303_2985	supersymmetry in hadronic final states with missing transverse energy using the variables α_T and b -quark multiplicity	8	11.7	59
cms_1408_3583	dark matter, extra dimensions, and unparticles in monojet events	8	19.7	7
cms_1502_06031	BSM physics in events with two Leptons, jets, and $\not E_T$	8	19.4	6
cms_1504_03198	production of dark matter in association with top-quark pairs in the single-lepton final state	8	19.7	1
cms_sus_13_016	new physics in events with same-sign dileptons and jets	8	19.5	1

β	/ Partially	Validated	Analyses

Name	Search designed for	\sqrt{s}	L	$N_{\rm SF}$
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and $\not \! E_T$	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with \not E _T and at least 3 <i>b</i> -jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and $\not\!\!E_T$	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \to WW^{(*)} \to e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and $\not\!\! E_T$	8	20.1	19
atlas_conf_2014_014	$\tilde{t}\tilde{t}^*$ decaying to a b, a τ and weakly interacting particles	8	20.3	1
atlas_conf_2014_033	WW production	8	20.3	3
atlas_conf_2014_056	spin correlation in top–antitop $t\bar{t}$ events and search for $\tilde{t}\tilde{t}^*$	8	20.3	1
cms_1301_4698_WW	WW production	8	3.5	1
cms_1306_1126_WW	WW production	7	4.92	1
cms_1405_7570	$\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$, $\tilde{\ell}$ to leptons and ℓ , W, Z, and Higgs bosons	8	19.5	57
cms_smp_12_006	WZ production into 3ℓ	8	19.6	4
cms_sus_12_019	New physics with two OSSF ℓ , jets, and $\not\equiv_T$	8	19.4	4
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4
atlas_1604_07773	New physics with monojets	13	3.2	13
atlas_1604_01306	New physics with monophotonrs	13	3.2	1
tlas_1605_03814	squarks and gluinos in final states with jets and $\not\!\!E_T$	13	3.2	7
tlas_1605_04285	gluinos in events with an isolated lepton, jets and ∉ ⊤	13	3.3	7
atlas_1605_09318	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and $\not\!\!E_T$	13	3.3	8
atlas_1606_03903	stops in events with an isolated lepton, jets and ∉ T	13	3.2	3
atlas_conf_2015_082	leptonic Z + jets + \not E _T	13	3.2	1
atlas_conf_2016_013	vector like quarks	13	3.2	10
atlas_conf_2016_050	stops in events with an isolated lepton, jets and ∉ _T	13	13.3	5
atlas_conf_2016_076	SUSY with 2 leptons + jets + \not E _T	13	13.3	6
cms_pas_sus_15_011	SUSY with 2 leptons + jets + $\not\!\!E_T$	13	2.2	47
	some 14 TeV Highlumi analyses	14	300/3000	

Daniel Dercks CHECKMATE 15

p / I altially validated Alialyses	β / Partially Validated Analyse
------------------------------------	---------------------------------------

Bethe Center for Theoretical Physics	universität
--------------------------------------	-------------

Name	Search designed for	\sqrt{s}	L	$N_{\rm SR}$
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and $\not\!\!E_T$	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with \not E _T and at least 3 <i>b</i> -jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and $\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \to WW^{(*)} \to e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and $\not\!\!E_T$	8	20.1	19

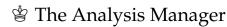
What do I need to add a new analysis on my own?

cms_sus_12_019	New physics with two OSSF ℓ , jets, and $\not\models_T$	8	19.4	4
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4
atlas_1604_07773	New physics with monojets	13	3.2	13
atlas_1604_01306	New physics with monophotonrs	13	3.2	1
atlas_1605_03814	squarks and gluinos in final states with jets and $\not\!\!E_T$	13	3.2	7
atlas_1605_04285	gluinos in events with an isolated lepton, jets and ∉ _T	13	3.3	7
atlas_1605_09318	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and $\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	13	3.3	8
atlas_1606_03903	stops in events with an isolated lepton, jets and ∉ _T	13	3.2	3
atlas_conf_2015_082	leptonic Z + jets + \not E _T	13	3.2	1
atlas_conf_2016_013	vector like quarks	13	3.2	10
atlas_conf_2016_050	stops in events with an isolated lepton, jets and ∉ _T	13	13.3	5
atlas_conf_2016_076	SUSY with 2 leptons + jets + \not E _T	13	13.3	6
cms_pas_sus_15_011	SUSY with 2 leptons + jets + \not E _T	13	2.2	47
	some 14 TeV Highlumi analyses	14	300/3000	

Daniel Dercks Checkmate 15

D / Partially Validated Analyses Theoretical Physics L	β / Partially Validated Analyses	Bethe Center for Theoretical Physics
--	--	--------------------------------------

Name	Search designed for	\sqrt{s}	L	$N_{\rm SR}$
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and $\not \! E_T$	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with \not E _T and at least 3 <i>b</i> -jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and $\not\equiv_T$	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \to WW^{(*)} \to e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and $\not\! E_T$	8	20.1	19
atlas_coni_2013_062	squarks and gluinos in events with isolated leptons, jets and £7	- 8	20.1	19


What do I need to add a new analysis on my own?

Ability to answer questions

Some understanding of C++

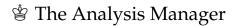
cms_sus_12_019	New physics with two OSSF ℓ , jets, and $\not\equiv_T$	8	19.4	4
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4
atlas_1604_07773	New physics with monojets	13	3.2	13
atlas_1604_01306	New physics with monophotonrs	13	3.2	1
atlas_1605_03814	squarks and gluinos in final states with jets and $\not\!\!E_T$	13	3.2	7
atlas_1605_04285	gluinos in events with an isolated lepton, jets and ∉ _T	13	3.3	7
atlas_1605_09318	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and $\not\!\!E_T$	13	3.3	8
atlas_1606_03903	stops in events with an isolated lepton, jets and ∉ _T	13	3.2	3
atlas_conf_2015_082	leptonic Z + jets + \not E _T	13	3.2	1
atlas_conf_2016_013	vector like quarks	13	3.2	10
atlas_conf_2016_050	stops in events with an isolated lepton, jets and ∉ _T	13	13.3	5
atlas_conf_2016_076	SUSY with 2 leptons + jets + $\not\!\!E_T$	13	13.3	6
cms_pas_sus_15_011	SUSY with 2 leptons + jets + \not E _T	13	2.2	47
	some 14 TeV Highlumi analyses	14	300/3000	

Daniel Dercks Checkmate 19

Running the Analysis Manager

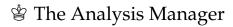
A Run make AnalysisManager; /bin/AnalysisManager

What do you want?


- -(1)ist all analyses,
- -(a)dd a new analysis to CheckMATE,
- -(r)emove an analysis from CheckMATE]

The Analysis Manager


```
This will collect all necessary information to create a full analysis and
Takes care for the creation and implementation of the source files into the code.
Please answer the following questions.
Attention: Your input is NOT saved before you finish this questionnaire.
1. General Information to build analysis
Analysis Name:
       ATLAS 1234 5678
Description (short, one line):
       ATLAS: many leptons, few jets
Description (long, multiple lines, finish with ';;' on a new line):
       ATLAS
       many leptons, few jets
       sart(s) = 9 TeV
       int(L) = 42 fb^-1
Luminosity (in fb^-1):
Do you plan to implement control regions to that analysis? [(y)es, (n)o)
```




```
2. Information on Signal Regions
List all signal regions (one per line, finish with ';;' on a new line):
11
21
[...]
Is the SM expectation B known? [(y)es, (n)o]?
```

```
You now have to add the
numbers for each of the
given signal regions.
11
obs:
bkg:
 90
bkg_err:
21
obs:
bkg:
 180
bkg_err:
30
[...]
```

```
n
Signal regions are registered but without any numbers associated to them.
IMPORTANT: The analysis will be created and can then be used like any other analysis.
CheckMATE will skip the model exclusion tests as long as the expectation is not known. You can e.g. use CheckMATE on background samples to estimate B and dB. As soon as you know these numbers, run the AnalysisManager again and use the (e)dit feature to add them.
```


18

Adding an analysis

```
2. Information on Signal Regions
List all signal regions (one per line, finish with ';;' on a new line):
11
21
[...]
Is the SM expectation B known? [(y)es, (n)o]?
```

```
You now have to add the numbers for each of the given signal regions.

11 obs:
```

Signal regions are registered but without any numbers associated to them.

IMPORTANT: The analysis will be created and can then be used like any other analysis.

CheckMATE will skip the model exclusion tests as long as the expectation is not

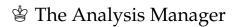
Add a published analysis

- A Provide results straight away
 - A Typical mode for 8 and 13 TeV

Add a new analysis

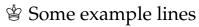
- A run on SM backgrounds first
- A add these results to CM
- A Typical mode to project to 13 and 14 TeV and to invent new cutflows

😩 The Analysis Manager


```
3. Settings for Detector Simulation
3.1: Miscellaneous
To which experiment does the analysis correspond? (A)TLAS, (C)MS
3.2: Electron Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
Isolation 1:
Which objects should be considered for isolation? [(t)racks, (c)alo objects?
What is the minimum pt of a surrounding object to be used for isolation? [in GeV]
What is the dR used for isolation?
 0.4
Is there an absolute or a relative upper limit for the surrounding pt? [(a)bsolute, (r)elative]
What is the maximum surrounding pt used for isolation [in GeV]?
Do you need more isolation criteria? [(y)es, (n)o]
3.3: Muon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
3.4: Photon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
```


The Analysis Manager


```
3.5: Jets
Which dR cone radius do you want to use for the FastJet algorithm?
0.4
What is the minimum pt of a jet? [in GeV]
Do you need a separate, extra type of jet? [(y)es, (n)o]
n
Do you want to use b-tagging? [(y)es, (n)o]
 V
b-Tagging 1:
What is the signal efficiency to tag a b-jet? [in %]
70
Do you need more b tags? [(y)es, (n)o]
V
b-Tagging 2:
What is the signal efficiency to tag a b-jet? [in %]
Do you need more b tags? [(y)es, (n)o]
n
Do you want to use tau-tagging? [(y)es, (n)o]
```



Adding an analysis

- Variable values saved in /hdd/sandbox/managertest/data/atlas conf 2013 047X var.i
- Created source file /hdd/sandbox/managertest/tools/analysis/src/atlas_conf_2013_047X.cc
- /hdd/sandbox/managertest/tools/analysis/include/atlas_conf_2013_047X.h - Created header file
- Updated Makefile
- Updated main source main.cc
- Reference file created
- List of analyses updated

Analysis atlas_conf_2013_047% has been added successfully! Run 'make' from the main CheckMATE folder to compile it!


```
void Atlas_conf_2013_047::analyze() {
 missingET->addMuons (muonsCombined);
  electronsLoose = filterPhaseSpace(electronsLoose, 10., -2.47, 2.47
 muonsCombined = filterPhaseSpace(muonsCombined, 10., -2.4, 2.4);
  jets = filterPhaseSpace(jets, 20., -2.8, 2.8);
  [...]
  jets = overlapRemoval(jets, electronsLoose, 0.2);
  electronsLoose = overlapRemoval(electronsLoose, jets, 0.4);
  if(!electronsLoose.emptv())
 return;
  [...]
  double HT = 0.;
  for(int j = 0; j < jets.size(); j++)</pre>
 HT += jets[j]->PT;
 double mEffInc = missingET->P4().Et() + HT;
  [...]
 mEffA = missingET->P4().Et() + jets[0]->PT + jets[1]->PT;
  if (missingET->P4().Et()/mEffA > 0.2) {
    countCutflowEvent("AL1");
    if (mEffInc > 1000.)
    countSignalEvent("AL");
  [...]
```

Daniel Dercks CHECKMATE 2

* Why automated recasting?

Daniel Dercks CHECKMATE

Why automated recasting?

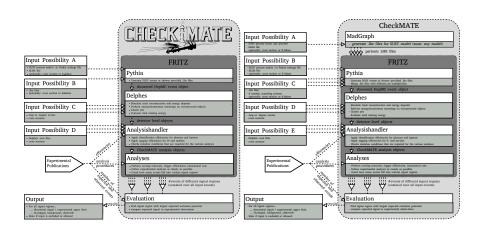
■ Avoids experience with computational details

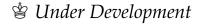
★ Why automated recasting?

1 Avoids experience with computational details

2 Can be extended easily and arbitrarily

Why automated recasting?


1 Avoids experience with computational details


2 Can be extended easily and arbitrarily

3 Works as an inofficial long-term LHC analysis database

Input 4: Link to MG5 aMC@NLO

Name: InertHiggsDoubletTest Analyses: atlas & 8TeV MG5Model: InertDoublet

SLHAFile: /scratch/my_inert_spectrum.slha

[a_h]

MG5Process: p p > A H > mu+ mu- H H

MaxEvents: 10000

- This mode is already working and soon goes into the beta/public version
- CheckMATE still simple to use via ./CheckMATE input.txt

Input 4: Link to MG5 aMC@NLO

Name: InertHiggsDoubletTest Analyses: atlas & 8TeV MG5Model: InertDoublet

SLHAFile: /scratch/my_inert_spectrum.slha

[a h]

MG5Process: p p > A H > mu+ mu- H H

MaxEvents: 10000

- This mode is already working and soon goes into the beta/public version
- CheckMATE still simple to use via ./CheckMATE input.txt

Input 5: Shower and Merge Multiple LHE

Name: Zplusiets Analyses: atlas 1403 5222

[Ziets]

Merging: ckkwl

Scale: 30

MaxJets: 2

Events: test_events/zRes_0jet_1k.lhe, test_events/zRes_1jet_1k.lhe, test_events/zRes_2jet_1k.lhe

Go ahead and have a look!

http://checkmate.hepforge.org/