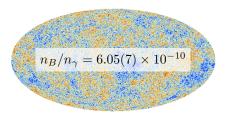

Leptogenesis from Oscillations of Heavy Neutrinos with Large Mixing Angles

Juraj Klarić (TU München) based on 1606.6690 and 1609.xxx with Marco Drewes, Björn Garbrecht and Dario Gueter

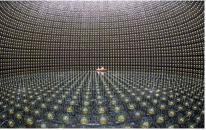
DESY 2016, 28. September

from the BSM to-do list:

Baryon asymmetry of the universe WMAP, Planck and Big bang nucleosynthesis:

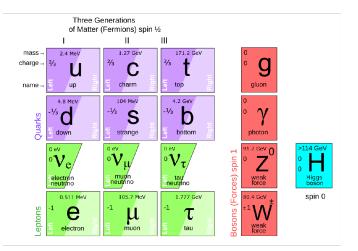


Neutrino masses Nobel prize 2015 Kajita, McDonald



from the BSM to-do list:

Baryon asymmetry of the universe WMAP, Planck and Big bang nucleosynthesis:



Neutrino masses Nobel prize 2015 Kajita, McDonald

Is there a way to explain both?

Standard Model

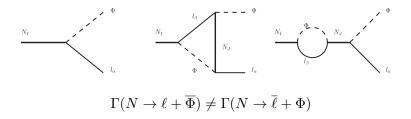
Neutrino Masses \rightarrow Seesaw Mechanism

Dirac Mass
$$m_D = vY^{\dagger}$$

Right handed neutrino (RHN) Majorana mass M_M

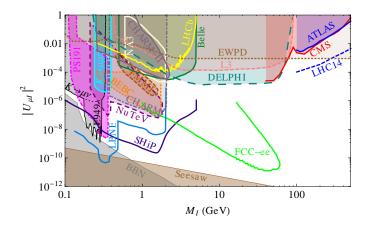
$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} \\ \overline{N_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L & N_R \end{pmatrix}$$

Active neutrino masses


Mixing with RHN

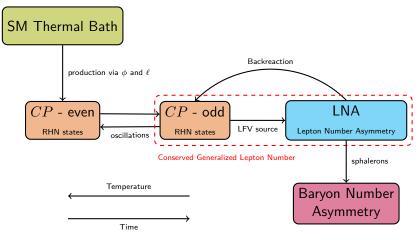
$$m_{\nu} = -v^2 Y^{\dagger} M_M^{-1} Y^*$$

$$|U_{ai}|^2 = \left| \left(vY^{\dagger}M_M^{-1} \right)_{ai} \right|^2$$


Baryon Asymmetry \rightarrow Leptogenesis

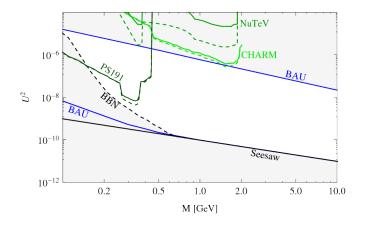
Majorana RHN allow for CP and lepton number violation:

Juraj Klarić (TUM)


GeV mass and large mixing angles

[Plot from arXiv:1504.04855]

Juraj Klarić (TUM)


Leptogenesis via Neutrino Oscillations

[Akhmedov/Rubakov/Smirnov PhysRevLett.81.1359]

Juraj Klarić (TUM)	
DESY theory workshop 2016	7

Leptogenesis with two RHN

[Canetti/Drewes/Fossard/Shaposhnikov 1208.4607]

Juraj Klarić (TUM)

Goals of the present work:

- derive the density matrix equations from first principles
- include the more recent calculations of rates [Anisimov/Besak/Bödeker 1012.3784]
 [Garbrecht/Glowna/Schwaller 1303.5498]
- include spectator effects
 [Barbieri/Creminelli/Strumia/Tetradis hep-ph/9911315]
 [Garbrecht/Schwaller 1404.2915]
- resolve seemingly contradicting results from other groups [Hernandez/Kekic/Lopez-Pavon/Racker/Ruis 1508.03676]
 [Abada/Arcadi/Domcke/Lucente 1507.06215]
- improve the analytical understanding of *oscillatory* and *overdamped* production regimes

Evolution Equations

RHN density matrix

$$\frac{\mathrm{d}n}{\mathrm{d}z} = -\frac{\mathrm{i}}{2} \left[\boldsymbol{H}, \boldsymbol{n} \right] - \frac{1}{2} \left\{ \boldsymbol{\Gamma}, \boldsymbol{n} - \boldsymbol{n}^{\mathrm{eq}} \right\} - \tilde{\Gamma} q_{\ell}$$

Active lepton equations

$$\frac{\mathrm{d}q_{\ell}}{\mathrm{d}z} = \frac{S_{\ell}(n)}{T} - Wq_{\ell} + \tilde{W}q_{N}$$

- Density matrix of the RHN $n = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}$
- Effective Hamiltonian H of the RHN $\sim M^2$
- Production rate $\label{eq:gamma} \frac{\Gamma}{\Gamma} \sim Y^2$
- Source term *S*_ℓ of the active neutrinos
- Washout term W

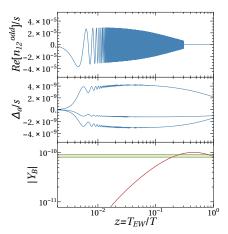
Evolution Equations

RHN density matrix

$$\frac{\mathrm{d}n}{\mathrm{d}z} = -\frac{\mathrm{i}}{2} \left[\boldsymbol{H}, \boldsymbol{n} \right] - \frac{1}{2} \left\{ \boldsymbol{\Gamma}, \boldsymbol{n} - \boldsymbol{n}^{\mathrm{eq}} \right\} - \tilde{\Gamma} q_{\ell}$$

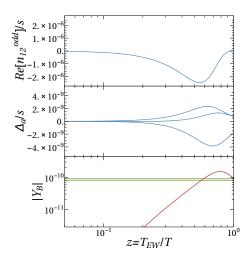
Active lepton equations

$$\frac{\mathrm{d}q_{\ell}}{\mathrm{d}z} = \frac{S_{\ell}(n)}{T} - Wq_{\ell} + \tilde{W}q_N$$

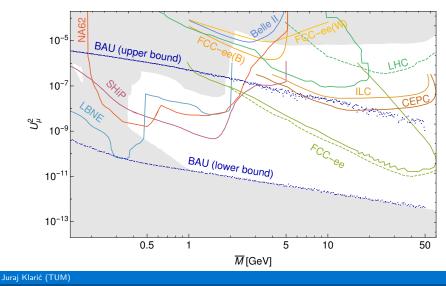

Temperature (time) scales

$$T_{\text{osc}} = \sqrt[3]{T_{\text{com}} \left(M_{11}^2 - M_{22}^2\right)}$$
$$T_{\text{eq}} = T_{\text{com}} \gamma_{\text{av}} \text{Tr} \left(YY^{\dagger}\right)$$

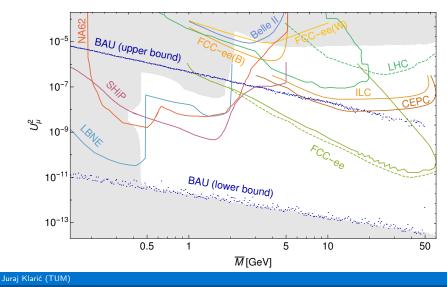
- Possible to solve numerically
- Approximations needed for parameter scans


Oscillatory regime: $T_{\rm osc} \gg T_{\rm eq}$

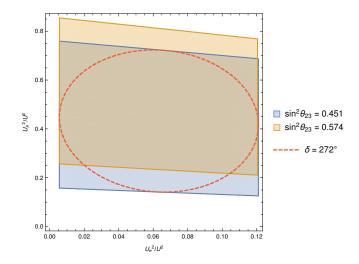
- typical for small mixing angles
- oscillations begin long before relaxation to equillibrium
- almost all lepton flavour asymmetry produced during first few oscillations
- lepton number asymmetry produced through flavour asymmetric washout

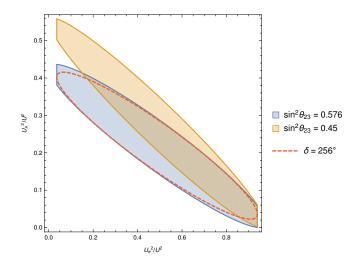


Overdamped regime: $T_{\rm osc} \ll T_{\rm eq}$

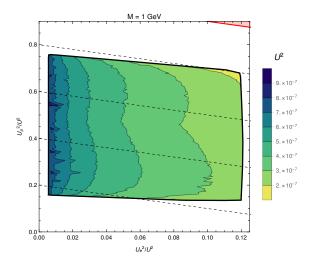

- typical scenario for large mixing angles
- naively for T_{osc} < T_{eq}, already in equilibrium no leptogenesis
- known neutrino data constrain the parameters so that $T_{\rm eq} \gg T_{\rm osc}$ is only valid for one RHN!

Results: Normal Hierarchy

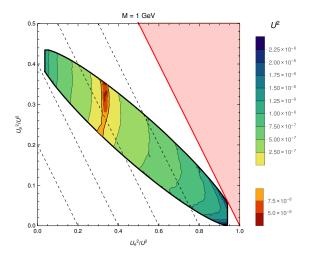

Results: Inverse Hierarchy


What can leptogenesis tell us about the RHN?

- the requirement of explaining the seesaw mechanism imposes constraints on the flavour patterns of the RHN
- large mixing angles require a flavour asymmetric washout, which corresponds to a flavour asymmetric mixing
- together this imposes constraints on the mixing patterns for large mixing angles
- if heavy neutral leptons are found at a future experiment we can assess if they can be the common origin of both the neutrino mass and the baryon asymmetry of the universe


Flavour patterns from the seesaw: Normal Hierarchy

Flavour patterns from the seesaw: Inverse Hierarchy



Flavour patterns from leptogenesis: Normal Hierarchy

Juraj Klarić (TUM) DESY theory worksho<u>p 2016</u>

Flavour patterns from leptogenesis: Inverted Hierarchy

Juraj Klarić (TUM) DESY theory worksho<u>p 2016</u>

Conclusions

- adding GeV-scale RHNs to the standard model can explain both the observed neutrino masses and the Baryon Asymmetry of the Universe
- working leptogenesis in reach of future experiments (SHiP, FCC-ee, NA62)
- found analytic approximations for oscillatory and overdamped regimes
- eliminated several uncertainties from previous calculations
- found that the baryon asymmetry of the Universe can be explained with larger mixing angles than previous studies have shown
- found constraints on the flavour patterns of the RHN with large mixing angles