Galactic sources: update information from gamma-rays experiments and implications for IceCube

Viviana Niro

UAM and IFT UAM-CSIC

Hamburg, 28 September, 2016

based on F. Halzen, A. Kheirandish, VN, arXiv:1609.03072 [astro-ph.HE] M.C. Gonzalez-Garcia, F. Halzen, VN, arXiv:1310.7194 [astro-ph.HE]

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

DESY Hamburg 1 / 16

Outline

Introduction

- Cosmic-rays
- Milagro sources

- IceCube results
- Predictions for Milagro sources

3 Conclusions

э

< ∃ →

Cosmic-rays and neutrinos

- Cosmic-rays discovered in 1912 by Victor Hess
- Neutrinos are particles that rarely interact with matter and do not feel the magnetic field

 \Rightarrow they can carry information on the physics of accelation of particles and on the most energetic and distant phenomena in the Universe

• They can permit to discriminate unambigously between leptonic and hadronic scenarios

leptonic: inverse-Compton scattering of low energy photons to high energies by ultra-relativistic electrons

<u>hadronic</u>: protons and nuclei are accelerated in the source and interact with interstellar material

$$CR + \gamma(p) \rightarrow \pi + X$$
, $\pi^0 \rightarrow \gamma\gamma$, $\pi^- \rightarrow e + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$

 Neutrinos are "smoking gun" signature of cosmic-rays accelerators ⇒ identify the origin of cosmic rays

イロト 不得 とうせい かほとう ほ

Cosmic-rays spectrum

Icetop: 162 Cherenkov detector tanks on top of IceCube At high energies, protons lose energy interacting with $\gamma_{\rm CMB}$ (GZK effect) $\rightarrow \pi^{\pm}$ produce cosmogenic neutrinos

PDG, 2014

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources

The highest energy survey of the Galactic plane has been performed by Milagro \Rightarrow bright sources in the nearby Cygnus star-forming region and in the inner part the Galaxy

A. Abdo PhD thesis; Milagro ApJL: A. Abdo, arXiv:0705.0707, A. Abdo, arXiv:0904.1018; Milagro: A. Abdo, arXiv:1202.0846, A.J. Smith, arXiv:1001.3695;

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

Milagro sources

MGRO J1908+06, MGRO 2019+37, and MGRO J2031+41; MGRO J2043+36 (C1) and MGRO J2032+37 (C2): Candidate sources; MGRO J1852: below threshold;

A. Abdo PhD thesis; Milagro ApJL: A. Abdo, arXiv:0705.0707, A. Abdo, arXiv:0904.1018; Milagro: A. Abdo, arXiv:1202.0846, A.J. Smith, arXiv:1001.3695;

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

イロト イポト イヨト イヨト

Four years of IceCube data: astrophysical neutrinos

M.G.Aartsen, 1510.05223 [astro-ph.HE]

54 events: 39 cascades events, 14 track events, 1 event excluded in the analysis (bkg) Skymap of the test statistic value (*L*: maximized likelihood; L_0 : likelihood under the null hypothesis). Best-fit locations of individual events: vertical crosses (showers) and angled crosses (muon tracks).

MGRO J1908+096 plausible astronomical counterpart of event 33

P. Padovani and E. Resconi, 1406.0376 [astro-ph.HE]

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

IceCube point source searches

IC40+59+79+86-I:

- MGRO J2019+37 and MGRO J1908+06: î_S = 0 (best-fit number of signal events). No *p*-value reported.
- six Milagro sources: p-value: 2%

V. Niro (UAM and IFT UAM-CSIC)

HAWC results and neutrino flux

The HAWC experiment has confirmed only four of the six sources: MGRO J1908+06, MGRO J1852+01, MGRO J2031+41, and MGRO J2019+37

A.U. Abeysekara et al., arXiv:1509.05401 [astro-ph.HE]; A. Sandoval, talk at Gamma2016

Considering the following parametrization of the gamma-ray flux:

$$\frac{dN_{\gamma}(E_{\gamma})}{dE_{\gamma}} = k_{\gamma} \left(\frac{E_{\gamma}}{\text{TeV}}\right)^{-\alpha_{\gamma}} \exp\left(-\sqrt{\frac{E_{\gamma}}{E_{cut,\gamma}}}\right) \,,$$

the neutrino flux at the Earth after oscillations can be described by

$$\frac{dN_{\nu_{\mu}+\bar{\nu}_{\mu}}(E_{\nu})}{dE_{\nu}} = k_{\nu} \left(\frac{E_{\nu}}{\text{TeV}}\right)^{-\alpha_{\nu}} \exp\left(-\sqrt{\frac{E_{\nu}}{E_{cut,\nu}}}\right) \,,$$

with

$$k_{\nu} = (0.694 - 0.16\alpha_{\gamma})k_{\gamma}, \quad \alpha_{\nu} = \alpha_{\gamma}, \quad E_{cut,\nu} = 0.59E_{cut,\gamma}$$

S. Kelner, F.A. Aharonian, V. Bugayov, arXiv:astro-ph/0606058

A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Events

Number of events detected by IceCube from a source at zenith angle θ_Z :

$$N_{ev} = t \int_{E_{\nu}^{\mathrm{th}}} dE_{\nu} \ \frac{dN_{\nu}(E_{\nu})}{dE_{\nu}} \times A_{\nu}^{\mathrm{eff}}(E_{\nu}, \theta_Z),$$

Angular opening and normalization for the flux considered in the analysis:

Source	$\sigma_{\rm eff}$ (point-like; extended)	Flux
MGRO J1908+06	0.64°; 0.72°	HESS
MGRO J1852+01	$0.64^{\circ}; 1.63^{\circ}$	Milagro
MGRO J2031+41	$-;$ 1.91 $^{\circ}$	ARGO-YBJ (+Fermi-LAT)
MGRO J2019+37	$0.64^{\circ}; 0.73^{\circ}$	VERITAS

$$\begin{split} &\sigma_{\rm eff} \equiv \sqrt{\sigma_{\rm ext}^2 + \sigma_{\rm IC}^2}; \ \sigma_{\rm ext} \ \text{is the extension of the source, } \sigma_{\rm IC} \equiv 1.6 \ \Delta \xi_{\rm IC}, \ \text{with} \\ &\Delta \xi_{\rm IC} = 0.4^\circ, \ \text{is the lceCube angular resolution.} \\ & \text{Assuming gaussianity, } \simeq 72\% \ \text{of source flux is contained within this angular bin.} \\ & \text{D. Alexandreas et al., Nucl.Instrum.Meth. A328 (1993)} \end{split}$$

10 / 16

イロト 不得 とうせい かほとう ほ

Milagro sources at IceCube

DESY Hamburg 11 / 16

Milagro sources at IceCube

DESY Hamburg 12 / 16

Milagro sources at IceCube

DESY Hamburg 13 / 16

Confidence level limits

Future IceCube data can independently constrain values of α_{γ} and $E_{\text{cut},\gamma}$ and probe the presence of a low-energy cut-off.

DESY Hamburg 14 / 16

Conclusions

- If the gamma rays are hadronic in origin
 ⇒ observation of an accompanying neutrino flux is likely over the lifetime of IceCube
- We have used updated information from air-Cherenkov and air-shower array experiments;

Prospects for observing these sources: entangled with discrepancies in the detailed fluxes/morphologies measured by different experiments (difference in angular resolution; range of energies).

The uncertainty of the nature of these sources \Rightarrow difficult to understand the observed spectrum and the production mechanism; HAWC will help resolve these discrepancies

Thank you!

"Don't panic (and carry a towel)", The Hitchhiker's Guide to the Galaxy, Douglas Adams

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

DESY Hamburg 16 / 16

A 🕨

BACKUP SLIDES

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

There are different possible sources of cosmic rays, among which:

- Supernova remnant: considered the major source of galactic cosmic rays first suggested by Walter Baade and Fritz Zwicky in 1934 in 2013 the Fermi satellite has revealed γ s from π^0 decay for SNR IC443 and W44 \rightarrow evidence for SNR as sources of cosmic-rays *M. Ackermann et al.*, 1302.3307 [astro-ph.HE]
- Gamma ray bursts
- Active Galactic Nuclei

Calculation of neutrinos aspected at IceCube from specific galactic sources of high-energy neutrinos ⇒ Milagro sources M.C. Gonzalez-Garcia, F. Halzen, V. Niro, arXiv:1310.7194 [astro-ph.HE]; F. Halzen, A. Kheirandish, VN, arXiv:1609.03072 [astro-ph.HE]

 \Rightarrow Neutrinos from RX J1713.7-3946, Vela Junior, Milagro sources, Fermi Bubble

F. Vissani, F. Aharonian, arXiv: 1112.3911 [astro-ph.HE], F. Vissani, F. Aharonian, N. Sahakyan, arXiv: 1101.4842 [astro-ph.HE]

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Energy spectrum

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

DESY Hamburg 1

< ロ > < 同 > < 回 > < 回 >

19 / 16

Milagro sources at IceCube

DESY Hamburg 20 / 16

IceCube searches

All-Sky Scans for Extended Sources (one degree extension)

Aarsten, et. al, arXiv: 1406.6757 [astro-ph.HE]

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

DESY Hamburg 21 / 16

IceCube point source searches

IC40+59+79+86-I: When the six Milagro sources are considered together: $\hat{n}_S = 51.4$, $\hat{\gamma} = 3.95$, p-value: 2%. Constraint: $\Phi_{\nu_n + \bar{\nu}_n}^{90\%} = 1.98$ model flux considered.

Aarsten, et. al, arXiv: 1406.6757 [astro-ph.HE]

V. Niro (UAM and IFT UAM-CSIC)

Confidence level

Following standard techniques we define C.L. as

$$C.L. = rac{P_{(s+b)}}{1-P_b}$$

where $P_{(s+b)}$ and P_b are the p-values for the signal plus bkg and bkg only hypothesis of the data. The denominator avoid penalizing models to which one has little or no sensitivity. *T. Junk, arXiv:hep-ex/9902006* If $C.L. \leq \alpha$, a specific source is excluded with $(1 - \alpha)$ confidence level.

For the statistical significance of discovery, we use the total number of expected signal and bkg events and we compute the bkg-only p-value: *ATL-PHYS-PUB-2011-011*,

CMS-NOTE-2011-005

$$p_{\rm value} = \frac{1}{2} \left[1 - {\rm erf}\left(\sqrt{q_0^{obs}/2}\right) \right] \,, \label{eq:pvalue}$$

where q_0^{obs} is defined as

$$q_0^{obs} \equiv -2 \ln \mathcal{L}_{b,D} = 2 \left(Y_b - N_D + N_D \ln \left(rac{N_D}{Y_b}
ight)
ight) \, ,$$

with N_D is the estimated experimental data –generated as the median of a large sample of event numbers that are Poisson distributed around the expectation of signal plus bkg– and Y_b is the theoretical expectation for the bkg.

V. Niro (UAM and IFT UAM-CSIC)

Milagro sources at IceCube

DESY Hamburg 23 / 16

Source	Туре	$\sigma_{ m ext}$ (ACT)	$\sigma_{ m ext}$ (EAS)
$\begin{array}{l} MGRO\ J1908+06\\ \hookrightarrow ARGO-YBJ\\ \hookrightarrow HESS\ J1908+063\\ \hookrightarrow VERITAS \end{array}$	UNID	$\begin{array}{c} 0.34^\circ \ ^{+0.04}_{-0.03} \\ 0.44^\circ \pm 0.02^\circ \end{array}$	$0.49^\circ\pm0.22^\circ$
MGRO J1852+01	UNID		Milagro: $3^{\circ} \times 3^{\circ}$ search region
$\begin{array}{l} MGRO \ J2031{+}41 \\ \hookrightarrow ARGO \ J2031{+}4157 \end{array}$	UNID		$1.8^\circ\pm 0.5^\circ$
$\begin{array}{l} MGRO J2019+37 \\ \hookrightarrow VER J2019+368 \end{array}$	PWN	$\sim 0.35^{\circ}$	Milagro: 0.7°

Source	$E_{\gamma}^{\mathrm{norm}}$; $dN_{\gamma}^{12}/dE_{\gamma}$ at $E_{\gamma}^{\mathrm{norm}}$; $lpha_{\gamma}$ (ACT or EAS)	
MGRO J1908+06		
\hookrightarrow HESS J1908+063	1 TeV; $4.14 \pm 0.32_{stat} \pm 0.83_{sys}$; $2.10 \pm 0.07_{stat} \pm 0.2_{sys}$	
$\hookrightarrow VERITAS$	1 TeV; $4.23 \pm 0.41_{stat} \pm 0.85_{sys}$; $2.20 \pm 0.10_{stat} \pm 0.20_{sys}$	
MGRO J1852+01		
\hookrightarrow Milagro	12 TeV; $(5.7 \pm 1.5_{stat} \pm 1.9_{sys}) \times 10^{-2}$; 2.6	
MGRO J2031+41		
\hookrightarrow ARGO J2031+4157	w/o Fermi-LAT:	
	1 TeV; $(2.5\pm0.4) imes10;$ 2.6 ± 0.3	
	w Fermi-LAT:	
	0.1 TeV; $(3.5\pm0.3) imes10^3$; 2.16 ± 0.04	
MGRO J2019+37		
\hookrightarrow VER J2019+368	5 TeV; $(8.1 \pm 0.7_{stat} \pm 1.6_{sys}) \times 10^{-2}$; $1.75 \pm 0.08_{stat} \pm 0.2_{sys}$	

Confidence level limits

DESY Hamburg

A ►

26 / 16