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The role of neutrinos 

The Effect of Thermal Neutrino Motion on the Matter Power Spectrum 5

Figure 2. Images of the CDM and neutrino density distributions in a slice of the
simulation volume. The images span 512 h−1 Mpc on a side and has a depth of
10 h−1 Mpc. To produce the images we have interpolated the masses of the N-body
particles to a regular grid with the adaptive smoothing kernel of [25]. The images show
the densities for the CDM component (left), neutrinos with

∑

mν = 0.6 eV (middle),
and neutrinos with

∑

mν = 0.3 eV (right). The top row is at zi = 4 and the bottom
row at z = 0. To enhance the dynamic range of the CDM structures the square root
has been taken of the CDM density field in the z = 0 image. The

∑

mν = 0.3 eV
neutrino image at z = 0 displays artificial small-scale structures in the voids caused by
neutrino N -body particle shot-noise. All the images are made from simulations with
5123 neutrino N -body particles.

the initial position displacements. This procedure involves using several numerically

determined fitting factors, and therefore breaks down when two species with different

TFs are present since then the growth factor is both species and mode dependent.
Instead, we get the velocities by generating two displacement fields centered around our

starting redshift and then take the time difference. We have tested that these velocities

do not depend on the distance in redshift between the two extra displacement fields in

a suitable range around our starting redshift.

2LPT involves a relation between the first- and second-order growth factors. But

since the perturbed energy density even at zi = 4 (zi designates the N -body starting
redshift) is vastly dominated by CDM, we can neglect the neutrino contribution to the

driving term for the CDM growth factor since this would give a small correction to a

Brandbyge et al. (2008) 
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Matter power spectrum in the presence of ν 
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Figure 1. Linear theory results in massive neutrino cosmologies. Left panel: Ratio of the total matter power
spectrum to the CDM power spectrum at redshifts z = 0 (continuous curves) and z = 2 (dashed curves) for
two di↵erent values of the sum of neutrino masses, ⌃m⌫= 0.3 eV in red and ⌃m⌫= 0.53 eV in green. Dotted
lines denote the asymptotic value at small scales of (1� f⌫)

2. Right panel: ratio at z = 0 of the total matter
power spectrum (continuous curves) and CDM power spectrum (dashed curves) for the same two cosmologies
to the ⇤CDM prediction.

while from Eq. (2.8) and Eq. (2.5), it follows that the suppression for the CDM power spectrum, Pcc,
is given by a factor ⇠ (1� 6f⌫). The di↵erence in the suppression between the two power spectra is
shown in the right panel of Figure 1.

3 Simulations

The DEMNUni simulations have been conceived for the testing of di↵erent probes, including galaxy
surveys, CMB lensing, and their cross-correlations, in the presence of massive neutrinos. To this
aim, this set of simulations is characterised by a volume big enough to include the very large-scale
perturbation modes, and, at the same time, by a good mass resolution to investigate small-scales
nonlinearity and neutrino free streaming. Moreover, for the accurate reconstruction of the light-cone
back to the starting redshift of the simulations, it has been used an output-time spacing small enough
that possible systematic errors, due to the interpolation between neighbouring redshifts along the line
of sight, result to be negligible.

The simulations have been performed using the tree particle mesh-smoothed particle hydrody-
namics (TreePM-SPH) code gadget-3, an improved version of the code described in [37], specifically
modified in [38] to account for the presence of massive neutrinos. This version of gadget-3 follows
the evolution of CDM and neutrino particles, treating them as two distinct sets of collisionless parti-
cles. For the specific case of the DEMNUni simulations, a gadget-3 version, modified for OpenMP
parallelism and for memory e�ciency, has been used to smoothly run on the BG/Q Fermi cluster.

Given the relatively high velocity dispersion, neutrinos have a characteristic clustering scale larger
than the CDM one. This allows to save computational time by neglecting the calculation of the short-
range tree-force induced by the neutrino component. This results in a di↵erent scale resolution for the
two components, which for neutrinos is fixed by the PM grid (chosen with a number of cells eight times
larger than the number of particles), while for CDM particles is larger and given by the tree-force (for
more details see [38] ). This choice does not a↵ect the scales we are interested in; in fact, the tree-force
acts below the PM-grid scale, which, for the DEMNUni simulations is ⇠ 0.5h/Mpc (PMGRID=4096
and Lbox = 2h�1 Gpc), and, as discussed also in [39], this corresponds to wavenumbers which are at
least two orders of magnitude smaller than the zero-redshift free-streaming lengths for the neutrino
masses considered in our runs. This means that for z > 0, neutrino overdensities are completely

– 4 –

Castorina et al. (2015) 

vth ≡
p
m

≈
3Tν
m

≈150(1+ z) 1eV
m

#

$
%

&

'
(km s−1

λFS (t) ≡ 2π
2
3

vth
H (t)

≈ 7.7 1+ z
ΩΛ +Ωm (1+ z)

3

1eV
m

%

&
'

(

)
*Mpc h−1

Linear  
perturbation 
theory 

δ <1



Neutrino perturbations in the linear regime 
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The moment hierarchy truncation 

 
 
In the absence of any gravitational source term, or for very high l 
 
 

                                                        l = 2    

                                                                                     

 
 

!Ψ l = k
q

(2l +1)ε
(lΨ l−1 − (l +1)Ψ l+1), l ≥ 3

Ψ l (kτ )∝ jl (kτ )

Ψ l+1 =
2l +1
kτ

Ψ l −Ψ l−1

Ψ3 ≈
5ε
kτ

Ψ2 −Ψ1

!Ψ2 = k
q
5ε
(2Ψ1 −3Ψ3)−

1
15
!h+ 2
5
!η

#

$
%

&

'
(
d ln f0
d lnq

a
0.0001 0.001 0.01 0.1 1

0.0001

0.01

1

100

mν = 0.05 eV
k = 0.01Mpc−1

qCLASS = 1

Ψ1

Ψ2

Ψ3,exact

Ψ3,trunc

Archidiacono & Hannestad, arXiv:1510.02907 



A new moment hierarchy truncation 

In a non-expanding Universe and in the absence of gravity, the Boltzmann hierarchy: 

with solutions 

 

 

Ansatz:                                                                                                                           
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which implies that

�3 ⇠
↵⌧

7
�2. (2.18)

We show a simple example of this in Fig. 3 for the case where ↵ = 1 and where the
driving term is such that

�̇
l

=
↵

2l + 1
[l�

l�1 � (l + 1)�
l+1] + 0.1 (�

l0 + �

l2)⌧, (2.19)

and the initial condition is given by �0(0) = 1, �
l 6=0 = 0.

In the same figure we also show the approximate solutions given in Eqs. (2.16) and
(2.18). In the specific case shown the transition between the two asymptotic solutions occurs
at ↵⌧ ⇠ few.
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Figure 3. The solution to �
3

from the toy model in Eq. (2.19) (black line). We also show the
asymptotic solutions from Eq. (2.18) (green dash-dot line) and Eq. (2.16) (red dashed line).

Based on the solutions to the toy model hierarchy we might now guess at a solution to
the true hierarchy of the form
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0

@
x

7
�

x

+
q

5
7
x

�

�

x

+ x

�

1

A  2, (2.20)

with x ⌘ kq⌧/✏, and where � is a numerical constant controlling the point of transition
between the two asymptotic solutions.

Numerically we find that this approximation works extremely well with � = 1, and that
if a small k-dependent correction is included it works even better
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Comparison: perturbations 
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Figure 1. | 
1,Sync| (black solid lines), | 

2

| (blue solid lines), | 
3

| (orange solid lines), and the
approximation from Eq. 2.12 ( 

3,trunc, yellow dashed lines) and from Eq. 2.21 ( 
3,new, red dash-dot

lines) for m⌫ = 0.5 eV, k = 0.01Mpc�1 (top left panel), m⌫ = 0.5 eV, k = 1Mpc�1 (top right panel),
m⌫ = 0.05 eV, k = 0.01Mpc�1 (bottom left panel), m⌫ = 0.05 eV, k = 1Mpc�1 (bottom right panel).
The momentum bin is q

CLASS

= 0.1.

Instead we can let ourselves be guided by the same figure towards a much better ap-
proximation for  3 by noting that for most values of k and m

⌫

the relation  3 ⇠  2 seems
to hold remarkably well.

This is easy to understand from the following analytic considerations. In the absence
of gravity and in a non-expanding universe the Boltzmann equation hierarchy can be simply
written as

 ̇
l

=
↵

2l + 1
[l 

l�1 � (l + 1) 
l+1]. (2.13)

The solution to this system of equations is  
l

/ j

l

(↵⌧), i.e. a set of functions oscillating with
the period 1/↵ and damped as 1/(↵⌧) at large ⌧ . From this we get that the envelope of  3

is identical to that of  2, i.e. at large ⌧ they di↵er only by a phase in the absence of gravity.
When the gravitational source terms are important the solutions are still quite similar

in nature, and in order to better appreciate the nature of the solutions we study a very simple
toy model before returning to the real system of equations.
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Comparison: perturbations 
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Figure 2. Same as in Fig. 1 but for a di↵erent momentum bin: q
CLASS

= 1, i.e. q ⇠ T⌫ .

More specifically we look at the system of equations given by

�̇
l

=
↵

2l + 1
[l�

l�1 � (l + 1)�
l+1] + (�

l0 + �

l2)f(⌧), (2.14)

where f(⌧) is an l-independent function. This resembles (but is not equal to) the true
Boltzmann hierarchy. We will also assume that ↵ is time-independent which is not generally
true for the true Boltzmann hierarchy. Therefore solutions to this system of equations can at
most be used as a guide line to constructing approximations to the true Boltzmann hierarchy.

At late times (↵⌧ � 1) the solution to the toy model Boltzmann hierarchy for l > 1 is

�
l

/ g(⌧)/
p
2l + 1, (2.15)

where g(⌧) is a common l-independent function. Since we are aiming at an expression for
�3 in terms of lower moments the important point to take away from Eq. (2.15) is that for
(↵⌧ � 1)

�3 ⇠
r

5

7
�2. (2.16)

Conversely, when the argument is small (↵⌧ <⇠ 1) the solution to Eq. (2.14) is such that

�
l

⇠ ↵⌧

2l + 1
�
l�1, (2.17)
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Comparison: observables 
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Figure 1. The ratio (P⌫,approx � P⌫,exact)/P⌫,exact (upper panels) and the ratio (P
tot,approx �

P
tot,exact)/Ptot,exact (middle panels) and the ratio (C`,approx � C`,exact)/C`,exact (lower panels) us-

ing CLASS fluid approximation (left panels), truncating the hierarchy at ` = 2 with the CLASS

version of  

3

(middle panels) and with Eq. ?? (right panels). In all the cases the switch of the

approximation/truncation is at k⌧ > 30. The ratios are given for various neutrino masses m⌫ = 0.5
eV (black lines), 0.1 eV (blue lines), and 0.05 eV (red lines) and at di↵erent redshifts z = 10 (dotted

lines) and z = 0 (full lines).
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The non-linear regime 
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Figure 1. Linear theory results in massive neutrino cosmologies. Left panel: Ratio of the total matter power
spectrum to the CDM power spectrum at redshifts z = 0 (continuous curves) and z = 2 (dashed curves) for
two di↵erent values of the sum of neutrino masses, ⌃m⌫= 0.3 eV in red and ⌃m⌫= 0.53 eV in green. Dotted
lines denote the asymptotic value at small scales of (1� f⌫)

2. Right panel: ratio at z = 0 of the total matter
power spectrum (continuous curves) and CDM power spectrum (dashed curves) for the same two cosmologies
to the ⇤CDM prediction.

while from Eq. (2.8) and Eq. (2.5), it follows that the suppression for the CDM power spectrum, Pcc,
is given by a factor ⇠ (1� 6f⌫). The di↵erence in the suppression between the two power spectra is
shown in the right panel of Figure 1.

3 Simulations

The DEMNUni simulations have been conceived for the testing of di↵erent probes, including galaxy
surveys, CMB lensing, and their cross-correlations, in the presence of massive neutrinos. To this
aim, this set of simulations is characterised by a volume big enough to include the very large-scale
perturbation modes, and, at the same time, by a good mass resolution to investigate small-scales
nonlinearity and neutrino free streaming. Moreover, for the accurate reconstruction of the light-cone
back to the starting redshift of the simulations, it has been used an output-time spacing small enough
that possible systematic errors, due to the interpolation between neighbouring redshifts along the line
of sight, result to be negligible.

The simulations have been performed using the tree particle mesh-smoothed particle hydrody-
namics (TreePM-SPH) code gadget-3, an improved version of the code described in [37], specifically
modified in [38] to account for the presence of massive neutrinos. This version of gadget-3 follows
the evolution of CDM and neutrino particles, treating them as two distinct sets of collisionless parti-
cles. For the specific case of the DEMNUni simulations, a gadget-3 version, modified for OpenMP
parallelism and for memory e�ciency, has been used to smoothly run on the BG/Q Fermi cluster.

Given the relatively high velocity dispersion, neutrinos have a characteristic clustering scale larger
than the CDM one. This allows to save computational time by neglecting the calculation of the short-
range tree-force induced by the neutrino component. This results in a di↵erent scale resolution for the
two components, which for neutrinos is fixed by the PM grid (chosen with a number of cells eight times
larger than the number of particles), while for CDM particles is larger and given by the tree-force (for
more details see [38] ). This choice does not a↵ect the scales we are interested in; in fact, the tree-force
acts below the PM-grid scale, which, for the DEMNUni simulations is ⇠ 0.5h/Mpc (PMGRID=4096
and Lbox = 2h�1 Gpc), and, as discussed also in [39], this corresponds to wavenumbers which are at
least two orders of magnitude smaller than the zero-redshift free-streaming lengths for the neutrino
masses considered in our runs. This means that for z > 0, neutrino overdensities are completely
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Non-linear methods 

�  Beyond linear order perturbation theory 
Ø  Fuhrer & Wong (2014) 
Ø  Blas, Garny, Konstandin, Lesgourgues (2014) 
Ø  Dupuy & Bernardeau (2014) 
 
�  N-body simulations 
Ø  Hybrid methods: Brandbyge & Hannestad (2009 & 2010) 
Ø  Semi-linear methods: Ali-Haimoud & Bird (2012) 
 
�  Our approach: using HALOFIT, we account for the non-linear growth of cold dark 

matter overdensities and gravitational potential, then we evolve linear neutrino 
perturbations in the “non-linear” gravitational potential. The entire computation is in 
Fourier k space. 

 



Free-streaming scale vs non-linear scale 
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Neutrino power spectrum NOT FOR DISTRIBUTION JCAP_062P_1015 v2
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Figure 8. Neutrino component of the matter power spectrum. Solid lines represent the linear
predictions, dashed lines show the results of semi-linear approximation.
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Consistent with 
results from  
N-body simulations 



Conclusions 

�  We have demonstrated that the neutrino evolution hierarchy can be solved very 
accurately even if truncated at l = 2. Our approximation for the l = 3 term 
allowed us to reliably calculate the neutrino power spectrum to better than 
∼5% precision for masses up to 1.5 eV. The matter power spectrum has a 
precision of better than 0.5% because of the relatively small direct contribution 
of neutrinos to this quantity. The new approximation to Ψ3 is significantly 
more precise than previously used once. 

 
�  We showed how the neutrino power spectrum can be calculated using the full 

non-linear gravitational potential, but keeping the entire computation in k-
space. The results obtained using this technique are completely consistent with 
those from N-body simulations implementing neutrinos in Fourier-space. 
However, in our case the neutrino power spectrum can be obtained in a few 
seconds whereas the N-body technique requires far bigger computational 
resources.  


