Large Charge Perturbation Theory

Orestis Loukas

Institute for Theoretical Physics and Albert Einstein Center for Fundamental Physics, Bern

based on

ongoing project

together with

Luis Álvarez-Gaumé (CERN, Stony Brook) Domenico Orlando (Bern) Susanne Reffert (Bern)

Large Charge Perturbation Theory

Overview

- Motivation for LCPT
- Fixing the charge
- Large-charge vacuum
- Quantum fluctuations

Summary and Outlook

Motivation

- Analytic insight to a theory with no intrinsically small parameter
 - For (D=2), conformal bootstrap $(D \ge 3)$
 - what about more general setups?

Motivation

- Analytic insight to a theory with no intrinsically small parameter
 - For (D=2), conformal bootstrap $(D \ge 3)$
 - what about more general setups?
- O(2) model in D = 3 flows in the IR to a conformal fixed point [Wilson,Fischer'72] [Hellerman,Orlando,Reffert,Watanabe'2015]
 - \blacktriangleright U(1)-charge Q_0 is large —> compute physical quantities

Motivation

- Analytic insight to a theory with no intrinsically small parameter
 - For (D=2), conformal bootstrap $(D \ge 3)$
 - what about more general setups?
- O(2) model in D = 3 flows in the IR to a conformal fixed point [Wilson,Fischer'72]

[Hellerman, Orlando, Reffert, Watanabe'2015]

 \blacktriangleright U(1)-charge Q_0 is large —> compute physical quantities

- Assumptions
 - original theory has a global symmetry
 - $-\!\!\!>$ classically conserved charge Q

- Assumptions
 - original theory has a *global* symmetry
 - —> classically conserved charge ${\cal Q}$
 - original coupling λ is *finite* (or large)
 - \blacktriangleright mass m is unconstrained (also zero)

- Assumptions
 - original theory has a global symmetry
 - $-\!\!\!>$ classically conserved charge Q
 - original coupling λ is *finite* (or large)
 - mass m is unconstrained (also zero)

• Idea

Fix the charge
$$\ Q = Q_0 = rac{
ho_0}{V}$$

- Assumptions
 - original theory has a global symmetry
 - $-\!\!\!>$ classically conserved charge Q
 - original coupling λ is *finite* (or large)
 - \blacktriangleright mass m is unconstrained (also zero)

• Idea

Fix the charge
$$Q = Q_0 = \frac{\rho_0}{V}$$
 take $Q_0 \gg 1$

- Assumptions
 - original theory has a global symmetry
 - —> classically conserved charge $\,Q\,$
 - original coupling λ is *finite* (or large)
 - mass m is unconstrained (also zero)

• Idea

Fix the charge
$$~Q=Q_0=rac{
ho_0}{V}$$

-) take $Q_0 \gg 1$

vacuum $|Q_0\rangle$ + Goldstone + Q_0 - suppressed corrections

• Generically consider partition function or thermal sum at $T = \frac{1}{\beta}$

$$Z(\beta) = \operatorname{Tr} \mathrm{e}^{-\beta \hat{H}}$$

• Generically consider partition function or thermal sum at $T = \frac{1}{\beta}$

$$Z(\beta) = \operatorname{Tr} \mathrm{e}^{-\beta \hat{H}}$$

Insert delta function constraint to fix the charge

$$\delta\left(\hat{Q}-Q_0\right) = \frac{1}{2\pi}\int \mathrm{d}\theta \,\mathrm{e}^{i\theta\left(\hat{Q}-Q_0\right)}$$

• Generically consider partition function or thermal sum at $T = \frac{1}{\beta}$

$$Z(\beta) = \operatorname{Tr} \mathrm{e}^{-\beta \hat{H}}$$

Insert delta function constraint to fix the charge

$$\delta\left(\hat{Q}-Q_0\right) = \frac{1}{2\pi} \int \mathrm{d}\theta \,\mathrm{e}^{i\theta\left(\hat{Q}-Q_0\right)}$$

• Fixed charge partition sum

$$Z_{Q_0}(\beta) \equiv \operatorname{Tr}\left\{\delta\left(\hat{Q}-Q_0\right) \,\mathrm{e}^{-\beta\hat{H}}\right\} = \int \frac{\mathrm{d}\theta}{2\pi} \,\mathrm{e}^{-i\theta Q_0} \,\operatorname{Tr}\left\{\mathrm{e}^{i\theta\hat{Q}} \,\mathrm{e}^{-\beta\hat{H}}\right\}$$

• Generically consider partition function or thermal sum at $T = \frac{1}{\beta}$

$$Z(\beta) = \operatorname{Tr} \mathrm{e}^{-\beta \hat{H}}$$

Insert delta function constraint to fix the charge

$$\delta\left(\hat{Q}-Q_0\right) = \frac{1}{2\pi} \int \mathrm{d}\theta \,\mathrm{e}^{i\theta\left(\hat{Q}-Q_0\right)}$$

Fixed charge partition sum

$$Z_{Q_0}(\beta) \equiv \operatorname{Tr}\left\{\delta\left(\hat{Q}-Q_0\right) e^{-\beta\hat{H}}\right\} = \int \frac{\mathrm{d}\theta}{2\pi} e^{-i\theta Q_0} \operatorname{Tr}\left\{e^{i\theta\hat{Q}} e^{-\beta\hat{H}}\right\}$$

• Generically consider partition function or thermal sum at $T = \frac{1}{\beta}$

$$Z(\beta) = \operatorname{Tr} \mathrm{e}^{-\beta \hat{H}}$$

Insert delta function constraint to fix the charge

$$\delta\left(\hat{Q}-Q_0\right) = \frac{1}{2\pi} \int \mathrm{d}\theta \,\mathrm{e}^{i\theta\left(\hat{Q}-Q_0\right)}$$

• Fixed charge partition sum

$$Z_{Q_0}(\beta) \equiv \operatorname{Tr} \left\{ \delta \left(\hat{Q} - Q_0 \right) e^{-\beta \hat{H}} \right\} = \int \frac{\mathrm{d}\theta}{2\pi} e^{-i\theta Q_0} \operatorname{Tr} \left\{ e^{i\theta \hat{Q}} e^{-\beta \hat{H}} \right\}$$
Grand-canonical ensemble

ا معنا معنا م

• Concrete class of models

$$\mathcal{L}\left[\phi,\phi^*\right] = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2|\phi|^2 - \frac{2^N}{2N}\lambda\,|\phi|^{2N}$$

 \blacktriangleright complex scalar with self interaction in D=d+1

$$\phi\,:\,\mathcal{M}^{d,1}\,\rightarrow\,\mathbb{C}$$

Concrete class of models

$$\mathcal{L}\left[\phi,\phi^*\right] = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2|\phi|^2 - \frac{2^N}{2N}\lambda\,|\phi|^{2N}$$

 \blacktriangleright complex scalar with self interaction in $\,D=d+1\,$

$$\phi\,:\,\mathcal{M}^{d,1}\,\rightarrow\,\mathbb{C}$$

b global U(1) symmetry: $\phi'(x) = e^{i\alpha} \phi(x)$

-> conserved charge: $Q = \int d^{D-1}x (\phi^* \partial_0 \phi - \phi \partial_0 \phi^*)$

Hamburg

Concrete class of models

$$\mathcal{L}\left[\phi,\phi^*\right] = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2|\phi|^2 - \frac{2^N}{2N}\lambda\,|\phi|^{2N}$$

- \blacktriangleright complex scalar with self interaction in $\,D=d+1\,$ $\phi\,:\,\mathcal{M}^{d,1}\,\rightarrow\,\mathbb{C}\,$
- *global* U(1) symmetry: $\phi'(x) = e^{i\alpha} \phi(x)$ $-> \text{ conserved charge:} \quad Q = \int d^{D-1}x \, (\phi^* \partial_0 \phi \phi \partial_0 \phi^*)$
- in natural units $(c = \hbar = 1)$

$$[m] = -1$$
, $[\lambda] = D - 4$, $[Q] = 0$

Concrete class of models

$$\mathcal{L}\left[\phi,\phi^*\right] = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2|\phi|^2 - \frac{2^N}{2N}\lambda\,|\phi|^{2N}$$

- \blacktriangleright complex scalar with self interaction in $\,D=d+1\,$ $\phi\,:\,\mathcal{M}^{d,1}\,\rightarrow\,\mathbb{C}\,$
- *global* U(1) symmetry: $\phi'(x) = e^{i\alpha} \phi(x)$ $-> \text{ conserved charge:} \quad Q = \int d^{D-1}x \, (\phi^* \partial_0 \phi \phi \partial_0 \phi^*)$
- in natural units $(c = \hbar = 1)$

$$[m] = -1$$
, $[\lambda] = D - 4$, $[Q] = 0$

• Ground state physics: radial symmetry $\phi(x) = \frac{1}{\sqrt{2}} r(x) e^{i\chi(x)}$ • U(1) charge density $\rho(x) = r^2(x) \dot{\chi}(x)$

- Ground state physics: radial symmetry $\phi(x) = \frac{1}{\sqrt{2}} r(x) e^{i\chi(x)}$ U(1) charge density $\rho(x) = r^2(x) \dot{\chi}(x)$
- Vacuum state $|Q_0
 angle$
 - constructed as su(1,1) coherent state

- Ground state physics: radial symmetry $\phi(x) = \frac{1}{\sqrt{2}} r(x) e^{i\chi(x)}$ U(1) charge density $\rho(x) = r^2(x) \dot{\chi}(x)$
- Vacuum state $|Q_0\rangle$
 - constructed as su(1,1) coherent state
 - classical charge conservation

$$\beta \to \infty : \hat{\rho} |Q_0\rangle = \rho_0 |Q_0\rangle$$

- Ground state physics: radial symmetry $\phi(x) = \frac{1}{\sqrt{2}} r(x) e^{i\chi(x)}$ U(1) charge density $\rho(x) = r^2(x) \dot{\chi}(x)$
- Vacuum state $|Q_0\rangle$
 - constructed as su(1,1) coherent state

classical charge conservation

$$\beta \to \infty : \hat{\rho} |Q_0\rangle = \rho_0 |Q_0\rangle$$

 \triangleright condensate of ϕ (symmetry breaking!)

$$\langle r(x) \rangle = v$$
 , $\langle \dot{\chi}(x) \rangle = \left\langle \frac{\hat{\rho}}{\hat{r}^2} \right\rangle = \frac{\rho_0}{v^2} \neq 0$

- Ground state physics: radial symmetry $\phi(x) = \frac{1}{\sqrt{2}}r(x)e^{i\chi(x)}$ U(1) charge density $\rho(x) = r^2(x)\dot{\chi}(x)$
- Vacuum state $|Q_0
 angle$
 - constructed as su(1,1) coherent state

classical charge conservation

$$\beta \to \infty : \hat{\rho} |Q_0\rangle = \rho_0 |Q_0\rangle$$

 \blacktriangleright condensate of ϕ (symmetry breaking!)

$$\langle r(x) \rangle = v$$
 , $\langle \dot{\chi}(x) \rangle = \left\langle \frac{\hat{\rho}}{\hat{r}^2} \right\rangle = \frac{\rho_0}{v^2} \neq 0$

- Ground state physics: radial symmetry $\phi(x) = \frac{1}{\sqrt{2}}r(x) e^{i\chi(x)}$ U(1) charge density $\rho(x) = r^2(x) \dot{\chi}(x)$
- Vacuum state $|Q_0
 angle$
 - constructed as su(1,1) coherent state
 - classical charge conservation

$$\beta \to \infty$$
 : $\hat{\rho} |Q_0\rangle = \rho_0 |Q_0\rangle$

 \blacktriangleright condensate of ϕ (symmetry breaking!)

$$\langle r(x) \rangle = v$$
 , $\langle \dot{\chi}(x) \rangle = \left\langle \frac{\hat{\rho}}{\hat{r}^2} \right\rangle = \frac{\rho_0}{v^2} \neq 0$

 $\langle \chi \rangle = \langle \dot{\chi} \rangle t$ exhibits *non-constant* VEV

- At $\beta \to \infty$ VEVs behave like their classical counterparts

isotropic oscillator in 2D	VEVs of $O(2)$ at fixed Q_0
radius $x^2 + y^2$	$v = \langle r \rangle$
polar angle $\tan^{-1} \frac{y}{x}$	$\langle \chi angle$
angular momentum $xp_y - yp_x$	charge density $\rho_0 = \frac{Q_0}{V} = v^2 \langle \dot{\chi} \rangle$

• At $\beta \to \infty$ VEVs behave like their classical counterparts

isotropic oscillator in 2D	VEVs of $O(2)$ at fixed Q_0
radius $x^2 + y^2$	$v = \langle r \rangle$
polar angle $\tan^{-1} \frac{y}{x}$	$\langle \chi angle$
angular momentum $xp_y - yp_x$	charge density $\rho_0 = \frac{Q_0}{V} = v^2 \langle \dot{\chi} \rangle$

• At $\beta \to \infty$ VEVs behave like their classical counterparts

isotropic oscillator in 2D	VEVs of $O(2)$ at fixed Q_0
radius $x^2 + y^2$	$v = \langle r \rangle$
polar angle $\tan^{-1} \frac{y}{x}$	$\langle \chi angle$
angular momentum $xp_y - yp_x$	charge density $\rho_0 = \frac{Q_0}{V} = v^2 \langle \dot{\chi} \rangle$

- At $\,\beta \to \infty\,$ VEVs behave like their classical counterparts

isotropic oscillator in 2D	VEVs of $O(2)$ at fixed Q_0
radius $x^2 + y^2$	$v = \langle r \rangle$
polar angle $\tan^{-1} \frac{y}{x}$	$\langle \chi angle$
angular momentum $xp_y - yp_x$	charge density $\rho_0 = \frac{Q_0}{V} = v^2 \langle \dot{\chi} \rangle$

▶ Jacobian in path integral J = v

• At $\beta \to \infty$ VEVs behave like their classical counterparts

isotropic oscillator in 2D	VEVs of $O(2)$ at fixed Q_0
radius $x^2 + y^2$	$v = \langle r \rangle$
polar angle $\tan^{-1} \frac{y}{x}$	$\langle \chi angle$
angular momentum $xp_y - yp_x$	charge density $\rho_0 = \frac{Q_0}{V} = v^2 \langle \dot{\chi} \rangle$

- ▶ Jacobian in path integral J = v
- For the potential in particular is a second sec

$$\mathcal{R}_{Q_0}(\beta) \left[v, \rho_0 \right] := \rho_0 \langle \dot{\chi} \rangle + \mathcal{V}_{Q_0}(\beta) \left[v, \langle \dot{\chi} \rangle \right] = \frac{\rho_0^2}{2v^2} + \frac{m^2}{2} v^2 + \frac{\lambda}{2N} v^{2N}$$

• At $\beta \to \infty$ VEVs behave like their classical counterparts

isotropic oscillator in 2D	VEVs of $O(2)$ at fixed Q_0
radius $x^2 + y^2$	$v = \langle r \rangle$
polar angle $\tan^{-1} \frac{y}{x}$	$\langle \chi angle$
angular momentum $xp_y - yp_x$	charge density $\rho_0 = \frac{Q_0}{V} = v^2 \langle \dot{\chi} \rangle$

- \blacktriangleright Jacobian in path integral J = v
- effective potential $\mathcal{V}_{Q_0}(\beta) \left[v, \langle \dot{\chi} \rangle \right] := -\frac{1}{\beta V} \log Z_{Q_0} \left[v, \langle \dot{\chi} \rangle \right]$

implies classical Routhian

$$\mathcal{R}_{Q_0}(\beta)\left[v,\rho_0\right] := \rho_0\langle \dot{\chi}\rangle + \mathcal{V}_{Q_0}(\beta)\left[v,\langle \dot{\chi}\rangle\right] =$$

$$\frac{\omega_0^2}{w^2} + \frac{m^2}{2}v^2 + \frac{\lambda}{2N}v^{2N}$$

centrifugal potential

 $\frac{1}{2}$

$$\frac{\rho_0^2}{2v^2} + \frac{m^2}{2}v^2 + \frac{\lambda}{2N}v^{2N}$$
centrifugal potential

Orestis Loukas (ITP, AEC)

LCPT

Hamburg

• For sufficiently large ho_0 , there is minimum to expand, whatever the form of original potential

Orestis Loukas (ITP, AEC)

Hamburg

Orestis Loukas (ITP, AEC)

Hamburg

• Minimize centrifugal potential

$$0 \stackrel{!}{=} \frac{\partial}{\partial v} \quad \left| \frac{\rho_0^2}{2v^2} + \frac{m^2}{2} v^2 + \frac{\lambda}{2N} v^{2N} \right|$$

centrifugal potential

Orestis Loukas (ITP, AEC)

LCPT

Hamburg

large condensates (m = 0)

LCPT

Hamburg

•
$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + \alpha(x) \right) e^{i \langle \dot{\chi} \rangle t + i \psi(x) / v}$$

•
$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + \alpha(x) \right) e^{i \langle \dot{\chi} \rangle t + i \psi(x) / v}$$

massless field $\psi(x)$	<i>Goldstone</i> with higher derivative terms
massive field α	$m_{\alpha}^2 \sim (N-1) \left(\lambda \rho_0^{N-1}\right)^{\frac{2}{N+1}} + \dots$

•
$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + \alpha(x) \right) \mathrm{e}^{i\langle \dot{\chi} \rangle t + i \psi(x)/v}$$

massless field $\psi(x)$	Goldstone with higher derivative terms
massive field α	$m_{\alpha}^2 \sim (N-1) \left(\lambda \rho_0^{N-1}\right)^{\frac{2}{N+1}} + \dots$

•
$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + \alpha(x) \right) e^{i \langle \dot{\chi} \rangle t + i \psi(x) / v}$$

massless field $\psi(x)$	Goldstone with higher derivative terms
massive field α	$m_{\alpha}^2 \sim (N-1) \left(\lambda \rho_0^{N-1}\right)^{\frac{2}{N+1}} + \dots$

•
$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + \alpha(x) \right) e^{i \langle \dot{\chi} \rangle t + i \psi(x) / v}$$

massless field $\psi(x)$	Goldstone with higher derivative terms
massive field α	$m_{\alpha}^2 \sim (N-1) \left(\lambda \rho_0^{N-1}\right)^{\frac{2}{N+1}} + \dots$

- Integrate-out massive mode to obtain infrared physics around $|Q_0
 angle$
 - i.e. an effective action for the Goldstone

 $S \, [\psi]_{Q_0} \, = \beta V \, \frac{N-1}{2N} \, \left(\lambda \, \rho_0^{\, 2N}\right)^{\frac{1}{N+1}}$

$$\begin{split} &+ \int \mathsf{d}\tau \int \mathsf{d}^{d}\mathbf{x} \, \left\{ \begin{array}{l} \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \right. \\ &+ \left(\frac{1}{\rho_{0}} \right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} \left(\partial_{0}\psi \right)^{3} - \frac{1}{N-1} \left(\partial_{0}\psi \right) \left(\nabla\psi \right)^{2} \right] \\ &- \frac{g(d)}{2\sqrt{2(N-1)}} \frac{|\mathbf{A}|^{d}}{\rho_{0}} \left[\frac{4N^{2} - 9N + 4}{N-1} \left(\partial_{0}\psi \right)^{2} + \left(\nabla\psi \right)^{2} \right] + \int_{X,Y} j_{\partial\psi}(x) D_{0}(x-y)_{a} j_{\partial\psi}(y) \end{split}$$

$$+ \ f(d) \ \frac{N}{(N-1)^2} \ \left(\frac{\sqrt{\lambda}}{\rho_0^{N+2}} \right)^{\frac{1}{N+1}} \ |\mathbf{\Lambda}|^{\frac{3D-4}{2}} \ \times$$

$$\times \int \mathsf{d}^{D} y \, \left(\partial_{0} \psi(y)\right) \int \mathsf{d}^{D} z \, \frac{1}{|\mathsf{y}+\mathsf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} \left(\partial_{0} \psi(z)\right)^{2} + \left(\nabla \psi(z)\right)^{2}\right]$$

$$+\frac{1}{N-1}\left(\frac{1}{\lambda^{\frac{3}{2}}\rho_0^{N-2}}\right)^{\frac{1}{N+1}}\,\partial_\mu\partial^\mu\partial_0\psi(z)\Big]\,+\,\ldots\,+$$

$$+\frac{1}{2(N-1)^2}\left(\frac{1}{\lambda^2\rho_0^{2N-2}}\right)^{\frac{1}{N+1}}\partial_{\mu}(\partial_0\psi)\partial^{\mu}(\partial_0\psi) + \mathcal{O}\left(\frac{|\mathbf{\Lambda}|^{2d}}{\frac{N+2}{\rho_0^{N+1}}}\right)\right\}$$

Orestis Loukas (ITP, AEC)

Hamburg

 $S \, [\psi]_{Q_0} \, = \beta V \, \frac{N-1}{2N} \, \left(\lambda \, \rho_0^{\, 2N}\right)^{\frac{1}{N+1}}$

condensate

$$+ \int \mathbf{d}\tau \int \mathbf{d}^{d}\mathbf{x} \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \right. \\ + \left(\frac{1}{\rho_{0}} \right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} (\partial_{0}\psi)^{3} - \frac{1}{N-1} (\partial_{0}\psi) (\nabla\psi)^{2} \right]$$

$$-\frac{g(d)}{2\sqrt{2(N-1)}} \frac{|\mathbf{\Lambda}|^{a}}{\rho_{0}} \left[\frac{4N^{2} - 9N + 4}{N-1} \left(\partial_{0}\psi\right)^{2} + \left(\nabla\psi\right)^{2} \right] + \int_{X,Y} j_{\partial\psi}(x) D_{0}(x-y)_{a} j_{\partial\psi}(y)$$

$$+ \; f(d) \; \frac{N}{(N-1)^2} \; \left(\frac{\sqrt{\lambda}}{\rho_0^{N+2}} \right)^{\frac{1}{N+1}} \; |\mathbf{\Lambda}|^{\frac{3D-4}{2}} \; \times \\$$

$$\times \int \mathsf{d}^{D} y \, \left(\partial_{0} \psi(y)\right) \int \mathsf{d}^{D} z \, \frac{1}{|\mathsf{y}+\mathsf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} \left(\partial_{0} \psi(z)\right)^{2} + \left(\nabla \psi(z)\right)^{2}\right]$$

$$+ \frac{1}{N-1} \left(\frac{1}{\lambda^{\frac{3}{2}} \rho_0^{N-2}} \right)^{\frac{1}{N+1}} \partial_\mu \partial^\mu \partial_0 \psi(z) \Big] + \ \dots +$$

$$+\frac{1}{2(N-1)^2}\left(\frac{1}{\lambda^2\rho_0^{2N-2}}\right)^{\frac{1}{N+1}}\partial_{\mu}(\partial_0\psi)\partial^{\mu}(\partial_0\psi) + \mathcal{O}\left(\frac{|\mathbf{\Lambda}|^{2d}}{\frac{N+2}{\rho_0^{N+1}}}\right)\right\}$$

Orestis Loukas (ITP, AEC)

Hamburg

 $S[\psi]_{Q_0} = \beta V \frac{N-1}{2N} \left(\lambda \rho_0^{2N}\right)^{\frac{1}{N+1}}$ CO

condensate

+
$$\int d\tau \int d^d x \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_0 \psi)^2 - (\nabla \psi)^2 \right] \right\}$$
 Goldstone

 $+ \left(\frac{1}{\rho_0}\right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda}\right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^2} \left(\partial_0\psi\right)^3 - \frac{1}{N-1} \left(\partial_0\psi\right) \left(\nabla\psi\right)^2\right]$

$$-\frac{g(d)}{2\sqrt{2(N-1)}} \frac{|\mathbf{\Lambda}|^d}{\rho_0} \left[\frac{4N^2 - 9N + 4}{N-1} \left(\partial_0\psi\right)^2 + \left(\nabla\psi\right)^2\right] + \int_{X,Y} j_{\partial\psi}(x) D_0(x-y)_a j_{\partial\psi}(y)$$

$$+ \; f(d) \; \frac{N}{(N-1)^2} \; \left(\frac{\sqrt{\lambda}}{\rho_0^{N+2}} \right)^{\frac{1}{N+1}} \; |\mathbf{\Lambda}|^{\frac{3D-4}{2}} \; \; \times \\$$

$$\times \int \mathrm{d}^{D} y \, \left(\partial_{0} \psi(y)\right) \int \mathrm{d}^{D} z \, \frac{1}{|\mathbf{y} + \mathbf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} \left(\partial_{0} \psi(z)\right)^{2} + \left(\nabla \psi(z)\right)^{2}\right]$$

$$+\frac{1}{N-1}\left(\frac{1}{\lambda^{\frac{3}{2}}\rho_0^{N-2}}\right)^{\frac{1}{N+1}}\partial_{\mu}\partial^{\mu}\partial_{0}\psi(z)\right]+\ldots+$$

$$+ \frac{1}{2(N-1)^2} \left(\frac{1}{\lambda^2 \rho_0^{2N-2}} \right)^{\frac{1}{N+1}} \partial_\mu (\partial_0 \psi) \partial^\mu (\partial_0 \psi) + \mathcal{O}\left(\frac{|\mathbf{\Lambda}|^{2d}}{\frac{N+2}{N+1}} \right) \bigg\}$$

Orestis Loukas (ITP, AEC)

Hamburg

$$\begin{split} S[\psi]_{Q_{0}} &= \beta V \frac{N-1}{2N} \left(\lambda \rho_{0}^{2N}\right)^{\frac{1}{N+1}} \quad \text{condensate} \\ &+ \int d\tau \int d^{d}x \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \quad \text{Goldstone} \right. \\ &+ \left(\frac{1}{\rho_{0}} \right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} (\partial_{0}\psi)^{3} - \frac{1}{N-1} (\partial_{0}\psi) (\nabla\psi)^{2} \right] \\ &- \frac{g(d)}{2\sqrt{2(N-1)}} \frac{|\Lambda|^{d}}{\rho_{0}} \left[\frac{4N^{2} - 9N + 4}{N-1} (\partial_{0}\psi)^{2} + (\nabla\psi)^{2} \right] + \int_{X,Y} j_{\partial\psi}(x) D_{0}(x-y)_{a} j_{\partial\psi}(y) \\ &+ f(d) \frac{N}{(N-1)^{2}} \left(\frac{\sqrt{\lambda}}{\rho_{0}^{N+2}} \right)^{\frac{N}{N+1}} |\Lambda|^{\frac{3D-4}{2}} \times \\ &\times \int d^{D}y (\partial_{0}\psi(y)) \int d^{D}z \frac{1}{|\mathbf{y}+\mathbf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} (\partial_{0}\psi(z))^{2} + (\nabla\psi(z))^{2} \\ &+ \frac{1}{N-1} \left(\frac{1}{\lambda^{2}\rho_{0}^{N-2}} \right)^{\frac{N}{N+1}} \partial_{\mu}\partial^{\mu}\partial_{0}\psi(z) \right] + \ldots + \\ &+ \frac{1}{2(N-1)^{2}} \left(\frac{1}{\lambda^{2}\rho_{0}^{2N-2}} \right)^{\frac{N}{N+1}} \partial_{\mu}(\partial_{0}\psi)\partial^{\mu}(\partial_{0}\psi) + \mathcal{O}\left(\frac{|\Lambda|^{2d}}{\rho_{0}^{\frac{N+2}}} \right) \Big\} \end{split}$$

Orestis Loukas (ITP, AEC)

Hamburg

$$S[\psi]_{Q_{0}} = \beta V \frac{N-1}{2N} \left(\lambda \rho_{0}^{2N}\right)^{\frac{1}{N+1}} \text{ condensate} + \int d\tau \int d^{4}x \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \text{ Goldstone} + \left(\frac{1}{\rho_{0}} \right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} (\partial_{0}\psi)^{3} - \frac{1}{N-1} (\partial_{0}\psi) (\nabla\psi)^{2} \right] - \frac{g(d)}{2\sqrt{2(N-1)}} \frac{|A|^{d}}{\rho_{0}} \left[\frac{4N^{2} - 9N + 4}{N-1} (\partial_{0}\psi)^{2} + (\nabla\psi)^{2} \right] + \int_{X,Y} j_{\partial}\psi(x) D_{0}(x-y)_{a} j_{\partial}\psi(y) + f(d) \frac{N}{(N-1)^{2}} \left(\frac{\sqrt{\lambda}}{\rho_{0}^{N+2}} \right)^{\frac{1}{N+1}} |A|^{\frac{3D-4}{2}} \times \text{ fixing the charge} \\ \times \int d^{D}y (\partial_{0}\psi(y)) \int d^{D}z \frac{1}{|y+z|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} (\partial_{0}\psi(z))^{2} + (\nabla\psi(z))^{2} + \frac{1}{N-1} \left(\frac{1}{\lambda^{2}\rho_{0}^{N-2}} \right)^{\frac{1}{N+1}} \partial_{\mu}\partial^{\mu}\partial_{0}\psi(z) \right] + \dots + \frac{1}{2(N-1)^{2}} \left(\frac{1}{\lambda^{2}\rho_{0}^{2N-2}} \right)^{\frac{1}{N+1}} \partial_{\mu}(\partial_{0}\psi)\partial^{\mu}(\partial_{0}\psi) + \mathcal{O}\left(\frac{|A|^{2d}}{\frac{N+2}{\rho_{0}^{N+1}}} \right) \right\}$$

Orestis Loukas (ITP, AEC)

LCPT

Hamburg

$$\begin{split} S\left[\psi\right]_{Q_{0}} &= \beta V \frac{N-1}{2N} \left(\lambda \rho_{0}^{2N}\right)^{\frac{1}{N+1}} \\ &+ \int d\tau \int d^{d}x \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \\ &+ \left(\frac{1}{\rho_{0}} \right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} (\partial_{0}\psi)^{3} - \frac{1}{N-1} (\partial_{0}\psi) (\nabla\psi)^{2} \right] \\ &- \frac{g(d)}{2\sqrt{2(N-1)}} \left(\frac{|\Lambda|^{d}}{\rho_{0}} \right) \left[\frac{4N^{2} - 9N + 4}{N-1} (\partial_{0}\psi)^{2} + (\nabla\psi)^{2} \right] + \int_{X,Y'} j_{\partial\psi}(x) D_{0}(x-y)_{a} j_{\partial\psi}(y) \\ &+ f(d) \frac{N}{(N-1)^{2}} \left(\frac{\sqrt{\lambda}}{\rho_{0}^{N+2}} \right)^{\frac{1}{N+1}} |\Lambda|^{\frac{3D-4}{2}} \times \\ &\times \int d^{D}y (\partial_{0}\psi(y)) \int d^{D}z \frac{1}{|\mathbf{y}+\mathbf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} (\partial_{0}\psi(z))^{2} + (\nabla\psi(z))^{2} \\ &+ \frac{1}{N-1} \left(\frac{1}{\lambda^{2}\rho_{0}^{N-2}} \right)^{\frac{1}{N+1}} \partial_{\mu}\partial^{\mu}\partial_{0}\psi(z) \right] + \ldots + \\ &+ \frac{1}{2(N-1)^{2}} \left(\frac{1}{\lambda^{2}\rho_{0}^{2N-2}} \right)^{\frac{1}{N+1}} \partial_{\mu}(\partial_{0}\psi)\partial^{\mu}(\partial_{0}\psi) + \mathcal{O} \left(\frac{|\Lambda|^{2d}}{N+1} \right) \right\} \end{split}$$
 20retis Loukas (ITP, AEC)

$$\begin{split} S\left[\psi\right]_{Q_{0}} &= \beta V \frac{N-1}{2N} \left(\lambda \rho_{0}^{2N}\right)^{\frac{1}{N+1}} \\ &+ \int \mathrm{d}\tau \int \mathrm{d}^{d} \mathbf{x} \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \\ &+ \left(\frac{1}{\rho_{0}} \right)^{\frac{N}{N+1}} \left(\frac{1}{\lambda} \right)^{\frac{2N+2}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} (\partial_{0}\psi)^{3} - \frac{1}{N-1} (\partial_{0}\psi) (\nabla\psi)^{2} \right] \\ &- \frac{g(d)}{2\sqrt{2(N-1)}} \left(\frac{1}{\rho_{0}} \right)^{\frac{1}{2N+2}} \left[\frac{N+1}{3(N-1)^{2}} (\partial_{0}\psi)^{2} + (\nabla\psi)^{2} \right] + \int_{X,Y} j_{\partial\psi}(x) D_{0}(x-y)_{a} j_{\partial\psi}(y) \\ &+ f(d) \frac{N}{(N-1)^{2}} \left(\frac{\sqrt{\lambda}}{\rho_{0}^{N+2}} \right)^{\frac{1}{N+1}} |\mathbf{A}|^{\frac{3D-4}{2}} \times \\ &\times \int \mathrm{d}^{D} y \left(\partial_{0}\psi(y) \right) \int \mathrm{d}^{D} z \frac{1}{|\mathbf{y}+\mathbf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} \left(\partial_{0}\psi(z) \right)^{2} + (\nabla\psi(z))^{2} \\ &+ \frac{1}{N-1} \left(\frac{1}{\lambda^{\frac{3}{2}} \rho_{0}^{N-2}} \right)^{\frac{1}{N+1}} \partial_{\mu} \partial^{\mu} \partial_{0}\psi(z) \right] + \ldots + \\ &+ \frac{1}{2(N-1)^{2}} \left(\frac{1}{\lambda^{2} \rho_{0}^{2N-2}} \right)^{\frac{1}{N+1}} \partial_{\mu} (\partial_{0}\psi) \partial^{\mu} (\partial_{0}\psi) + \mathcal{O} \left(\frac{|\mathbf{A}|^{2d}}{N+1} \right) \right\} \end{split}$$
Orestis Lockas (ITP, AEC)
LPT
Part Hat Back

$$\begin{split} S\left[\psi\right]_{Q_{0}} &= \beta V \frac{N-1}{2N} \left(\lambda \rho_{0}^{2N}\right)^{\frac{1}{N+1}} \\ &+ \int d\tau \int d^{d}x \left\{ \frac{1}{2} \left[\left(\frac{N+1}{N-1}\right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right] \right]^{\frac{1}{N+1}} \left(\frac{1}{2} \left[\left(\frac{N+1}{N-1}\right) (\partial_{0}\psi)^{2} - (\nabla\psi)^{2} \right]^{\frac{1}{N+1}} \left(\frac{1}{2} \left(\frac{1}{N-1}\right)^{\frac{N+1}{2N+2}} \left[\frac{N+1}{2(N-1)^{2}} (\partial_{0}\psi)^{3} - \frac{1}{N-1} (\partial_{0}\psi) (\nabla\psi)^{2} \right] \right. \\ &- \frac{g(d)}{2\sqrt{2(N-1)}} \left(\frac{1}{\rho_{0}}\right)^{\frac{1}{2N+2}} \left[\frac{N+1}{2(N-1)^{2}} (\partial_{0}\psi)^{2} + (\nabla\psi)^{2} \right] + \int_{X,Y} j_{\partial\psi}(x) D_{0}(x-y)_{a} j_{\partial\psi}(y) \right. \\ &+ f(d) \frac{N}{(N-1)^{2}} \left(\frac{\sqrt{\lambda}}{\rho_{0}^{N+2}}\right)^{\frac{1}{N+1}} |\Lambda|^{\frac{3D-4}{2}} \times \\ &\times \int d^{D}y \left(\partial_{0}\psi(y)\right) \int d^{D}z \frac{1}{|\mathbf{y}+\mathbf{z}|^{\frac{D}{2}}} \left[\frac{N-2}{N-1} \left(\partial_{0}\psi(z)\right)^{2} + (\nabla\psi(z))^{2} \right. \\ &+ \frac{1}{N-1} \left(\frac{1}{\lambda^{\frac{3}{2}} \rho_{0}^{N-2}}\right)^{\frac{1}{N+1}} \partial_{\mu}\partial_{0}\psi(z) \right] + \ldots + \\ &+ \frac{1}{2(N-1)^{2}} \left(\frac{1}{2\rho_{0}^{2N-2}}\right)^{\frac{1}{N+1}} \partial_{\mu}(\partial_{0}\psi) \partial^{\mu}(\partial_{0}\psi) + \mathcal{O}\left(\frac{|\Lambda|^{2d}}{\frac{N+2}{N+1}}\right) \right\} \end{split}$$
Orest Locks (ITP, AEC)
Let Matrix Matrix and the set of the set of

 Already leading Goldstone dispersion relation manifestly non-Lorentz invariant

$$\mathcal{L}_{\psi} = \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) \left(\partial_0 \psi \right)^2 - \left(\nabla \psi \right)^2 \right] + \dots$$

 Already leading Goldstone dispersion relation manifestly non-Lorentz invariant

$$\mathcal{L}_{\psi} = \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) \left(\partial_0 \psi \right)^2 - \left(\nabla \psi \right)^2 \right] + \dots$$

 Already leading Goldstone dispersion relation manifestly non-Lorentz invariant

$$\mathcal{L}_{\psi} = \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) \left(\partial_0 \psi \right)^2 - \left(\nabla \psi \right)^2 \right] + \dots$$

• This breakdown of Lorentz-covariance is fundamental due to (rapidly) rotating angular VEV $\chi = \langle \dot{\chi} \rangle t + \dots$ assigned in temporal direction

 Already leading Goldstone dispersion relation manifestly non-Lorentz invariant

$$\mathcal{L}_{\psi} = \frac{1}{2} \left[\left(\frac{N+1}{N-1} \right) \left(\partial_0 \psi \right)^2 - \left(\nabla \psi \right)^2 \right] + \dots$$

- This breakdown of Lorentz-covariance is fundamental due to (rapidly) rotating angular VEV $\chi = \langle \dot{\chi} \rangle t + \dots$ assigned in temporal direction
- Formally, $\langle \chi \rangle$ is *not* constant
 - generalised Goldstone's theorem is needed to prove existence of massless mode [Nicolis,Piazza'12]

vacuum $|Q_0\rangle$ + Goldstone + Q_0 - suppressed corrections

Outlook

- QM proof of the semi-classical treatment [work in progress]
 - canonical and path-integral quantization agree

Outlook

- QM proof of the semi-classical treatment [work in progress]
 - canonical and path-integral quantization agree
- Investigate broader class of models
 - under which conditions LCPT can be applied
 —> derive restrictions conditions
 - e.g. non-Abelian O(2n) [work in progress]

Outlook

- QM proof of the semi-classical treatment [work in progress]
 - canonical and path-integral quantization agree
- Investigate broader class of models
 - under which conditions LCPT can be applied
 —> derive restrictions conditions
 - e.g. non-Abelian O(2n) [work in progress]
- LCPT for fermions
 - fermions do not fundamentally condensate
 - composite particle (?)

Thank you

for your attention

Overview

Large Charge Perturbation Theory (LCPT)

- Motivation
- Fixing the charge
- Large-charge vacuum
- Quantum fluctuations

Summary and Outlook