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Introduction

I Lattice gauge theories→ strongly correlated systems.

I Most non-perturbative computations done in Euclidean space with
Wilson formulation.

I Ultra-cold atoms toolbox→ quantum dynamics of gauge theories.

I Questions of real-time evolution and finite baryon density.

I Alternate formulation of gauge theories (Horn,1981; Orland, Rohrlich, 1990;
Chandrasekharan, Wiese, 1997 ) and QCD with domain wall fermions
(Brower, Chandrasekharan, Wiese, 1999) are particularly relevant.

I These realize continuous gauge symmetries using discrete
quantum link variables, having finite dimensional Hilbert space
→ extension of Wilson formulation of gauge theories.

I Excellent candidate models to be implemented in cold-atom systems.

I Qualitatively new phases can be observed in these systems to be
studied by Monte-Carlo + Quantum Simulators.
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Hamiltonian U(1) LGT: Quantum Links
I U(1) gauge invariant Hamiltonian:

H =
g2

2

∑
x,i

E2
x,i −

1
2g2

∑
�

(U� + U†�)

I U = S1 + iS2 = S+; U† = S1 − iS2 = S−

⇒ are operators in the Hamiltonian formulation, operating in a
finite dimensional Hilbert space on a single link

I Electric field operator describes the kinematics of U:

E = S3, [E ,U] = U, [E ,U†] = −U†; [U,U†] = 2E

I U(1) gauge transformations generated by Gauss Law:

Gx =
∑

i

(Ex,i − Ex−î,i); [Gx ,H] = 0

V =
∏

x

exp(iαxGx); U ′xy = VUxy V † = exp(iαx)Uxy exp(−iαy )



The (2+1)-d U(1) Quantum Link model
I Simplest Abelian pure gauge model: with spin S = 1/2

H = −J
∑
�

(
U� + U†

�

)
+λ
∑
�

(
U� + U†

�

)2

I Link states: 2-dim Hilbert space per link

E | ↑〉 =
1
2
| ↑〉; E | ↓〉 = −

1
2
| ↓〉; U| ↑〉 = 0; U| ↓〉 = | ↑〉; U†| ↑〉 = | ↓〉; U†| ↓〉 = 0

E2 contributes a constant for S = 1/2.

HJ

HJ

λHλ

Hλ

-J

I Plaquettes are flipped only if they have flux in the right order; second
term (= Hλ) counts the number of flippable plaquettes

H 16Hλ



Gauss Law and Charge Sectors

To define the path integral Z = Tr (exp(−βH)PG),
the Gauss Law must be implemented :∑

i

(
Ex,i − Ex−î,i

)
= Qx

There is zero charge everywhere (charge-0 sector) unless external
static charges are placed at vertices.

Q=0

Q=1

Q=2

A staggered charge background Q = ±1 with the Hamiltonian H is
called the Quantum Dimer model.



Symmetry breaking and phase transitions
I Discrete: Rotation by π/2, Reflection, Charge Conjugation (C),

Translation(T = (Tx ,Ty ))

I Symmetry breaking patterns can be deduced very well from exact
diagonalizations.

I 2-component order parameter (MA,MB) to analyze the symmetry
breaking patterns

A B

Figure: Order parameter(OP) distribution at λ = −1 (left) and at λ = 0 (right); Effect
of symmetry operations on the OP (middle).
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Figure: Order parameter(OP) distribution at λ ∼ λc for L = 24 (left) and at L = 48
(right); Effect of symmetry operations on the OP (middle).



Phase diagram
Explored with exact diagonalization and a newly developed cluster
algorithm using dualization techniques.
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description in terms of a low-energy effective theory suggests a weak
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Crystalline confinement
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Ice and Spin-Ice
Gauge theories play a fundamental role in condensed matter systems
as well −→ Ice.

Ice rules can be encoded by the ground states of the Hamiltonian

H1 = J
∑
i,j

Sz
i Sz

j = J
∑
α

 4∑
iα=1

Sz
iα

2

; J > 0

Constraints can select the sector of the theory by using an external magnetic field

H2 = J
∑
α

 4∑
iα=1

Sz
iα

2

−
∑
iα

hSz
iα = J

∑
α

 4∑
iα=1

Sz
iα − h/2

2



QDM and the U(1) link model

Rule: Ex ,i = (−1)x+y [nx ,i − 1
2 ]

Ex ,i : Electric flux at site x in dir i
nx ,i : Dimer number on the bond connecting sites x and x+̂i
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QDM and the U(1) link model

Rule: Ex ,i = (−1)x+y [nx ,i − 1
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QDM and the U(1) link model

Rule: Ex ,i = (−1)x+y [nx ,i − 1
2 ]

Ex ,i : Electric flux at site x in dir i
nx ,i : Dimer number on the bond connecting sites x and x+̂i
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Candidate Phases and Phase Diagrams
a)

b)

c)
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columnar plaquette staggered

0.6

1.
columnar staggered

λ

(a) Columnar (b) Plaquette (c) Staggered



Interfaces between columnar phases
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Interfaces with charges
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Conclusion
I Interesting non-trivial physics, exotic phasess, interesting continuum

limits.

I Extensively studied in condensed matter physics with reference to
high-Tc phenomena.

I Interface physics: fractionalized flux.

I Broader applicability of the dualization techniques. Playground for
ideas for extending the construction to other theories, particularly
QCD.

I “Observing” this physics in engineered cold-atom systems.
Glätzle et. al., PRX (2014); D. Marcos et. al., Ann. Phys. (2014)

I Wilson-type gauge theories can be constructed by self-adjoint
extensions which show similar ground states (under study).

Thank You for your attention!



Mimicking QLM physics in Wilson-type theories

H = HE +HB =
e2

2

∑
x,i

(
−i∂φx,i

)2 − 1
4e2

∑
x,i>j

[
ux,iux+i,ju∗x+j,iu

∗
x,j + h.c.

]
[
ex,i ,uy,j

]
= δx,yδi,jux,i [ex,i ,u

†
y,j ] = −δx,yδi,ju

†
x,i

µ

ν

x

u∗x+ν̂,µ

ux+µ̂,ν
u∗x,ν

ux,µ

I ux ,i = exp(iφx ,i)

I flux-basis: mx ,i ∈ Z
I “ground state” when all mx ,i = 0
I very different from the QLM
I However, one parameter of

self-adjoint extension possible
I ex ,i = −i∂φx,i +

θx,i
2π

I Motivation: quantum rotor



Quantum Rotor: Particle on a ring

I H = L2

2I , L = −i∂φ
I ψm = A exp(imφ), Em = m2

2I , mx ,i ∈ Z
I ψ need not be single-valued: twisted boundary condition
ψ(φ+ 2π) = eiθψφ

I Equivalently, demand ψ(φ+ 2π) = ψ(φ), but introduce θ in the
Hamiltonian

I H̃ = L̃2

2I , L̃ = −i∂φ + θ
2π

I Energies shifted: Em = 1
2I (m − θ

2π )
2

I θ : Vector potential of a magnetic field penetrating the “ring”
I Key idea: Use a similar construction to change the spectrum of

the Wilson type theory.
I Flux can be made half-integral. In particular, the ground state

has the same amount of flux as the QLM



Height Model

I DOF: hx where x = (x1, x2, x3) (dual lattice)
I odd and even lattice sites: (−1)(x+y)

I Partition function of a classical spin model:

Z =
∏

x even

∑
hx∈Z

∏
x odd

∑
hx+

1
2∈Z

exp(−S[h]); S[h] =
e2

2

∑
x,µ

(h(x+µ̂) − hx)
2

I Integer shift symmetry: h′x = hx + l ; l ∈ Z
Dual to the gauge symmetry

I Charge conjugation: Chx = −hx

I Spatial Translation: T hx = hx+î +
1
2



Height Model: Order Parameters

I Any OP must be invariant under shift symmetries
I OC,T [h] =

∑
x even hx −

∑
x odd hx

I Sensitive to both C and T symmetry breaking

OC,T [h′] = OC,T [h], OC,T [
Ch] = −OC,T [h], OC,T [

T h] = −OC,T [h]

I OT [h] =
∑

x even(hx − h)2 −∑x odd(hx − h)2; h = 1
V
∑

x hx
I Sensitive to T only

OT [h′] = OT [h], OT [
Ch] = OT [h], OT [

T h] = −OT [h]

I Sign problem associated with θ gone
I Can be simulated with a variety of algorithms: Metropolis,

Over-relaxation, Cluster



Histograms: Distribution of OT, OCT
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unbroken. λ = 0 phase in QLM.
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