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Introduction

» Lattice gauge theories — strongly correlated systems.

» Most non-perturbative computations done in Euclidean space with
Wilson formulation.

» Ultra-cold atoms toolbox — quantum dynamics of gauge theories.
» Questions of real-time evolution and finite baryon density.

» Alternate formulation of gauge theories (Horn,1981; Orland, Rohrlich, 1990;
Chandrasekharan, Wiese, 1997 ) and QCD with domain wall fermions
(Brower, Chandrasekharan, Wiese, 1999) are particularly relevant.

» These realize continuous gauge symmetries using discrete
quantum link variables, having finite dimensional Hilbert space
— extension of Wilson formulation of gauge theories.

» Excellent candidate models to be implemented in cold-atom systems.

» Qualitatively new phases can be observed in these systems to be
studied by Monte-Carlo + Quantum Simulators.
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Hamiltonian U(1) LGT: Quantum Links

» U(1) gauge invariant Hamiltonian:
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» U=S"+is?=8+;, U =8"-is?=5"
= are operators in the Hamiltonian formulation, operating in a
finite dimensional Hilbert space on a single link

» Electric field operator describes the kinematics of U:
E=8% [E,Ul=U, [E,U=-U'; [UU]|=2E

» U(1) gauge transformations generated by Gauss Law:
G« = Y (Exi—E. ;)i [GuH]=0

V. = J[exp(iaxGy); Uy, = VUy VT = exp(iox) Uy, exp(—iay)
X



The (2+1)-d U(1) Quantum Link model

» Simplest Abelian pure gauge model: with spin S = 1/2
H=-JY_ (UD + UE) A (UD + Ug)2
O O
» Link states: 2-dim Hilbert space per link
1 1

Efny=3I1: ElN)=—514: U =0 U= Uty =4y U =0

E? contributes a constant for S = 1/2.
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» Plaquettes are flipped only if they have flux in the right order; second
term (= H,) counts the number of flippable plaquettes
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Gauss Law and Charge Sectors

To define the path integral Z = Tr (exp(—SH)Pg),
the Gauss Law must be implemented :

Z (EXJ a Ex—?,i) =

I

There is zero charge everywhere (charge-0 sector) unless external
static charges are placed at vertices.
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A staggered charge background Q = +1 with the Hamiltonian H is
called the Quantum Dimer model.



Symmetry breaking and phase transitions
» Discrete: Rotation by 7 /2, Reflection, Charge Conjugation (C),
Translation(T = (T, T)))

» Symmetry breaking patterns can be deduced very well from exact
diagonalizations.

» 2-component order parameter (My, Mg) to analyze the symmetry
breaking patterns

MA

Figure: Order parameter(OP) distribution at A = —1 (left) and at A = 0 (right); Effect
of symmetry operations on the OP (middle).



Symmetry breaking and phase transitions
» Discrete: Rotation by /2, Reflection, Charge Conjugation (C),
Translation(T = (T, T,))

» Symmetry breaking patterns can be deduced very well from exact
diagonalizations.

» 2-component order parameter (My, Mg) to analyze the symmetry
breaking patterns
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Figure: Order parameter(OP) distribution at A ~ ¢ for L = 24 (left) and at L = 48
(right); Effect of symmetry operations on the OP (middle).



Phase diagram
Explored with exact diagonalization and a newly developed cluster
algorithm using dualization techniques.
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An approximate global SO(2) symmetry is emergent at \¢. A
description in terms of a low-energy effective theory suggests a weak
1st order transition.



Crystalline confinement
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Energy density (H,) of two charges Q = =+ 2 placed along the axis on L = 72 lattice
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Ice and Spin-Ice
Gauge theories play a fundamental role in condensed matter systems
as well — Ice.

Water ios Spin ice

Ice rules can be encoded by the ground states of the Hamiltonian

2
4
H=J> 877 =J)" (Zs@) ; J>0

i =1

Constraints can select the sector of the theory by using an external magnetic field

4 2 4 2
Ho=JY (Zs@) =) hSE =J> (Z s,zah/z)

=1l in=1



QDM and the U(1) link model

Rule: Eyx; = (—1) [Ny — 2

Ey i - Electric flux at site x in dir i
ny.; - Dimer number on the bond connecting sites x and X+1

e

Dimer Model config U(1) QLM config



QDM and the U(1) link model

Rule: Eyx; = (—1)[ny; — 3
Ey i - Electric flux at site x in dir i
ny ; : Dimer number on the bond connecting sites x and X+1
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Dimer Model config shaded : flippable plquette

crosses : non—flippable plaq



QDM and the U(1) link model

Rule: Eyx; = (—1)[ny;i — 2
Ey i - Electric flux at site x in dir i
ny.; - Dimer number on the bond connecting sites x and X+1

e

@ negative  background

Dimer Model config ® . e



Candidate Phases and Phase Diagrams
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Interfaces between columnar phases
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Plaguette phases exist as interfaces between columnar phases A = —1.0
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Interfaces with charges
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Energy density for a 2Q charge-anti-charge profile at A = —0.5. Plaquette "phase” acts
as interface carrying fractionalized flux %
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Conclusion
» Interesting non-trivial physics, exotic phasess, interesting continuum
limits.
» Extensively studied in condensed matter physics with reference to
high-T; phenomena.
» Interface physics: fractionalized flux.

» Broader applicability of the dualization techniques. Playground for
ideas for extending the construction to other theories, particularly
QCD.

» “Observing” this physics in engineered cold-atom systems.
Glatzle et. al., PRX (2014); D. Marcos et. al., Ann. Phys. (2014)

» Wilson-type gauge theories can be constructed by self-adjoint
extensions which show similar ground states (under study).

Thank You for your attention!




Mimicking QLM physics in Wilson-type theories

. 1
H = He+Hs= % Z (—/8%,’_)2 — v Z [Ux,iux+i,ju;+j,iu;,j T hC]
X, i

X,i>]f

[exi> Uyj] = Oxydijux,i [x, U}T,’j] = _5x7y5i,jul’,'

v

Uxi= eXp(i¢x,i)

T , » flux-basis: my; € Z
, » “ground state” when all m, ; =0
» very different from the QLM

Yot » However, one parameter of
5 self-adjoint extension possible

1 1 H 6 i
X: Uz,p : K L2 eX,i = _Iad)x,i + #
| / » Motivation: quantum rotor



Quantum Rotor: Particle on a ring

> H= 2,, L= —idy

> Ym = Aexp(ime), En =T, my; € 7

» 1 need not be single-valued: twisted boundary condition
W(¢+2m) = e’y

» Equivalently, demand (¢ + 27) = ¢(¢), but introduce 6 in the

Hamiltonian
» Energies shifted: Ep, = 4,(m — £)>?

» 0 : Vector potential of a magnetlc field penetrating the “ring”

» Key idea: Use a similar construction to change the spectrum of
the Wilson type theory.

» Flux can be made half-integral. In particular, the ground state
has the same amount of flux as the QLM



Height Model

v

DOF: hy where x = (x1, X2, X3) (dual lattice)

odd and even lattice sites: (—1)**Y)
Partition function of a classical spin model:

2
z=11 > II > ew(-sih: S[h]=e—Z(h(Hmfhx)2
2

x even hyeZ x odd h,+ 1 €z X,

v

v

v

Integer shift symmetry: b, = hy + 1,1 € Z
Dual to the gauge symmetry
Charge conjugation: Chy = —hy

Spatial Translation: "hy = h, -+ 5

v

v



Height Model: Order Parameters

>

Any OP must be invariant under shift symmetries

o OC,T[h] Zx even Zx odd hyx

Sensitive to both C and T symmetry breaking

Oc.7[N] = Oc.7lh], Oc.7[°h] = —Oc 7[hl, Oc.t["h = —Oc.7[h]

L OT[h] = Zx even(hX _ E)Z - Zx odd(hX o E)Z; 77 = lVZX hX
» Sensitive to T only

Or[W] = Or[h], Or[°h] = Or[h], Or["h] = —Or[h]

Sign problem associated with 6 gone

Can be simulated with a variety of algorithms: Metropolis,
Over-relaxation, Cluster



Histograms: Distribution of Or, Ocr

P(Oy)
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Broken translational symmetry, but charge conjugation is
unbroken. A = 0 phase in QLM.
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