Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC

Kechen Wang

DESY, Hamburg, Germany CFHEP, IHEP, CAS, Beijing, China

DESY theory workshop, September 28, 2016 Based on [Phys. Rev. D 94 (2016) 013005]

Outline

★ Introduction of sterile neutrinos

- Simplified Model
- Productions @ LHC
- Current limits

★ Distinguishing Dirac/Majorana

- Basic idea
- Collider simulation & background
- Results

★ Summary

Theory Model

Discovery of neutrino oscillations => neutrinos have mass

- \rightarrow In SM, neutrinos are massless
- \rightarrow A window to BSM physics

Type-I see-saw: Singlet (Sterile) Fermions

Interactions: [0901.3589]

Simplified model with assumption:

Only 1 generation of sterile neutrinos is light & within experimental reach; $U_{N\tau} = 0$; 3 free parameters: m_N , U_{Ne} , $U_{N\mu}$, Dirac/Majorana.

Kechen Wang

Interesting Mass Scales of m_N

Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC

Kechen Wang

Productions @ LHC

$$q\bar{q} \to Z^{(*)} \to \nu N$$

 $gg \to H^{(*)} \to \nu N$

almost unobserved

(final states *I*⁺*I*⁺, *I*[±] suffer from huge background) (no resonance enhancement)

Mostly studied (important for m_N < 1 TeV)

More important for $m_N > 1 \text{ TeV}$

Studies @ LHC

Main Search Channels:

 e^+

Ν

e⁺

Ν

Kechen Wang

Global Constraints

from [Deppisch, Dev and Pilaftsis, New J. Phys. 17 (2015) 085019]

m_N: 0.1 ~ 500 GeV

Kechen Wang

Outline

★ Introduction of sterile neutrinos

- Simplified Model
- Productions @ LHC
- Current limits

★ Distinguishing Dirac/Majorana

- Basic idea
- Collider simulation & background
- Results

★ Summary

Basic Idea

Scale factors for different tri-lepton states

	Dirac (<mark>LNC</mark>)	Majorana (LNC+LNV)
e⁺ e⁺ µ⁻ v	S	<mark>s</mark> (1 + <i>r</i>)
µ+ µ+ e- v	S	$s(1+\frac{1}{r})$

normalization factor

$$s \equiv 2 \times 10^{6} \times \frac{|U_{Ne}U_{N\mu}|^{2}}{|U_{Ne}|^{2} + |U_{N\mu}|^{2}}$$
disparity factor $r \equiv \frac{|U_{Ne}|^{2}}{|U_{N\mu}|^{2}}$
For benchmark point

 $|U_{Ne}|^2 = |U_{N\mu}|^2 = 10^{-6} \rightarrow r = s = 1$

Basic idea: Distinguish Dirac/Majorana sterile neutrinos by counting and comparing events in different channels !

Kechen Wang

Collider Simulation

Simulation MadGraph (jet matching up to 2 extra partons) + PYTHIA + Delphes

```
Signal:
tri-lepton + MET with no OSSF lepton pairs
e^+ e^+ \mu^- / \mu^+ \mu^+ e^- / e^- e^- \mu^+ / \mu^- \mu^- e^+ + MET.
```

SM background:

→ Leptonic τ decay: WZ -> (I v) ($\tau \tau$) -> 3 I + MET

→ Fake leptons from jets containing heavy-flavor mesons: γ^*/Z +jets: γ^*/Z (-> $\tau \tau$) + a 3rd faked lepton t tBar+jets: prompt decay of t tBar + a 3rd fake lepton

Kechen Wang

Kechen Wang

Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC

11 / 14

Cut Flow Tables

Signal 14 TeV, 3000 fb⁻¹

m = 50 Col	e+6	$e^+e^+\mu^-$		$\mu^+\mu^+e^-$		$e^-e^-\mu^+$		$\mu^-\mu^-e^+$	
$m_N = 50 \text{ GeV}$	LNC	LNV	LNC	LNV	LNC	LNV	LNC	LNV	
Basic cuts	27.7	30.7	30.7	33.3	23.7	26.6	26.3	29.8	
$M_t(\text{leps}, \text{MET}) < 90 \text{ GeV}$	26.4	29.0	29.2	31.7	22.5	25.1	25.0	28.1	
MET < 40 GeV	26.1	28.7	28.9	31.4	22.3	25.1	24.8	28.1	
$N(\text{b-jets}) = 0, H_t < 50 \text{ GeV}$	23.7	26.0	26.2	28.4	20.1	22.8	22.4	25.5	
- $ -$	e^+e	$e^+e^+\mu^-$		$\mu^+\mu^+e^-$		$e^-e^-\mu^+$		$\mu^-\mu^-e^+$	
m = 2012-400									
$Cuts$ $m_N = 20 GeV$	LNC	LNV	LNC	LNV	LNC	LNV	LNC	LNV	
Cuts MN – 20 Gev Basic cuts	LNC 13.6	LNV 19.5	LNC 15.0	22.0	LNC 12.1	LNV 18.2	LNC 13.3	LNV 19.5	
$\frac{\text{Cuts}}{\text{Basic cuts}}$ $M_t(\text{leps, MET}) < 90 \text{ GeV}$	LNC 13.6 12.7	LNV 19.5 18.3	LNC 15.0 13.9	LNV 22.0 20.3	LNC 12.1 11.3	LNV 18.2 17.0	LNC 13.3 12.3	LNV 19.5 18.3	
Cuts M_t (leps, MET) < 90 GeV MET < 40 GeV	LNC 13.6 12.7 12.5	LNV 19.5 18.3 18.3	LNC 15.0 13.9 13.8	LNV 22.0 20.3 20.3	LNC 12.1 11.3 11.2	LNV 18.2 17.0 17.0	LNC 13.3 12.3 12.3	LNV 19.5 18.3 18.3	
Cuts Basic cuts M_t (leps, MET) < 90 GeV MET < 40 GeV N (b-jets) = 0, H_t < 50 GeV	LNC 13.6 12.7 12.5 11.1	LNV 19.5 18.3 18.3 16.6	LNC 15.0 13.9 13.8 12.2	LNV 22.0 20.3 20.3 18.5	LNC 12.1 11.3 11.2 10.0	LNV 18.2 17.0 17.0 15.6	LNC 13.3 12.3 12.3 11.0	LNV 19.5 18.3 18.3 16.6	
Cuts $ \frac{Cuts}{Basic cuts} $ $ M_t(leps, MET) < 90 \text{ GeV} $ $ MET < 40 \text{ GeV} $ $ N(b-jets) = 0, H_t < 50 \text{ GeV} $ $ \frac{M(\ell_N, \ell') < 20 \text{ GeV}}{20 \text{ GeV}} $	LNC 13.6 12.7 12.5 11.1 10.8	LNV 19.5 18.3 18.3 16.6 16.3	LNC 15.0 13.9 13.8 12.2 11.8	LNV 22.0 20.3 20.3 18.5 17.8	LNC 12.1 11.3 11.2 10.0 9.8	LNV 18.2 17.0 17.0 15.6 15.1	LNC 13.3 12.3 12.3 11.0 10.7	LNV 19.5 18.3 18.3 16.6 16.1	

SM background $I = e \text{ or } \mu$

	W	Z	$\gamma^*/Z + \text{jets}$	tī	
Cuts	$\ell^+\ell^+\ell'^-$	$\ell^-\ell^-\ell'^+$	$\ell^{\pm}\ell^{\pm}\ell'^{\mp}$	$\ell^{\pm}\ell^{\pm}\ell'^{\mp}$	
Basic cuts	779	550	1055	17147	
$M_T(\text{leps}, \vec{E}_T) < 90 \text{ GeV}$	52	34	374	160	
$E_T < 40 \text{ GeV}$	46	28	356	113	
$N(b-jets) = 0, H_T < 50 \text{ GeV}$	39	23	323	15	
$\overline{M(\ell_N,\ell')} < 20 \text{ GeV}$	7.4	4.4	62	2.7	

dominant !

Kechen Wang

Sensitivity of Excluding Dirac

→ 3σ level exclusion Provided s > 5, $r = |U_{Ne}|^2 / |U_{N\mu}|^2 < 0.7$ (or > 1/0.7=1.4), → $|U_{Ne}| / |U_{N\mu}| < 0.84$ or > 1.20

Summary

- ★ Sterile neutrinos may exist over a wide range of masses
- ★ A simple method to discriminate Dirac / Majorana
 - \rightarrow @ LHC, m_N < m_W & r \neq 1
 - \rightarrow trilepton channel
 - → excluding the Dirac by counting and comparing the numbers of events in the e e μ and μ μ e channels
- ★ Sensitivities @ 14 TeV LHC, 3000 fb⁻¹
 - → m_N = 20, 50 GeV
 - \rightarrow 3 σ exclusion on Dirac for $|U_{Ne}|^2 < 0.7 |U_{Nu}|^2$ or $|U_{Ne}|^2 > 1.4 |U_{Nu}|^2$
 - \rightarrow provided $|U_{Ne}|^2 > 2 \times 10^{-6}$

★ Further directions

 \rightarrow *r* ~ 1, challenging, kinematical distributions of final state leptons to enhance discriminating power

Thank you for your attention !

Any Questions ?

Backup Slide

Fake-lepton Simulation

FIG. 6. Validation results for fake lepton simulation. Black dots indicate experimental results in Ref. [31]. Our simulated results for γ^*/Z + jets, $t\bar{t}$, and WZ + jets are given by upper light gray bars, middle brown bars, and bottom pink bars, respectively. Eight bin categories are (1) 0-bjet, 1-OSSF, $M_{\ell^+,\ell^-} < 75$ GeV, (2) 0-bjet, 1-OSSF, $|M_{\ell^+,\ell^-} - M_Z| < 15$ GeV, (3) 0-bjet, 1-OSSF, $M_{\ell^+,\ell^-} > 105$ GeV, (4) 0-bjet, 0-OSSF, (5–8) are the same as the first four bins, but with at least one b-jet.

A pheno. FL simulation method

- → data-driven methods to estimate the fake lepton contributions
- → modeling parameters, pinned down by validating simulated results against actual experimental ones.

Mistag rate
 (probability of converting a jet to a lepton)

$$\epsilon_{j \to \ell}(p_{\mathrm{T}j}) = \epsilon_{200} \left[1 - (1 - r_{10}) \frac{200 - p_{\mathrm{T}j}/\mathrm{GeV}}{200 - 10} \right]$$

2. Transfer function (how much p_T is transferred into the lepton)

$$p_{\mathrm{T}\ell} \equiv (1-\alpha) p_{\mathrm{T}j}$$
$$\mathcal{T}_{j \to \ell}(\alpha) = \frac{1}{\mathcal{N}} \exp\left[-\frac{(\alpha-\mu)^2}{2\sigma^2}\right]$$

Backup Slide

Calculating the Confidence Level of Excluding Dirac

 \rightarrow To quantify how well the data sets are described within a given hypothesis.