Tackling differential distributions for Higgs production at higher orders

Simone Lionetti

ETH zürich

In collaboration with:

Babis Anastasiou, Bernhard Mistlberger, Andrea Pelloni, Caterina Specchia

Motivation

After ICHEP 2016: Higgs looking great!

Motivation

Inclusive Higgs cross-section in gluon fusion: N³LO QCD

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger]

$48.58{\rm pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	$+ 9.56\mathrm{pb}$	(+19.7%)	(NNLO, rEFT)
	$+ 0.34 \mathrm{pb}$	(+0.2%)	$(NNLO, 1/m_t)$
	$+ 2.40 \mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	$+ 1.49 \mathrm{pb}$	(+3.1%)	$(N^{3}LO, rEFT)$

"The fiducial cross section is measured to be $\hat{\sigma}_{\text{fid}} = 69^{+18}_{-22} \text{ fb} [\dots]$ " $\hat{\sigma}_{\text{fid}} = \sigma_H^{\text{th}} \times \text{BR}_{\gamma\gamma} \times f_{\text{acc}}$

N³LO differential?

Success of N³LO inclusive...

- Reverse unitarity + IBP reduction
- Expansion around the soft limit

... and challenges of NNLO differential!

- Subtraction of infrared singularities
- Master integrals with multiple scales

N³LO differential?

Success of N³LO inclusive...

- Reverse unitarity + IBP reduction
- Expansion around the soft limit

... and challenges of NNLO differential!

- Subtraction of infrared singularities
- Master integrals with multiple scales

Fully differential?

N³LO differential?

Success of N³LO inclusive...

- Reverse unitarity + IBP reduction
- Expansion around the soft limit

... and challenges of NNLO differential!

- Subtraction of infrared singularities
- Master integrals with multiple scales

Single differential, maybe rapidity?

Double differential

Integrate over extra QCD radiation analytically and

be completely differential in the Higgs.

Gluon fusion in Higgs effective theory

NNLO QCD throughout.

Gluon fusion in Higgs effective theory

NNLO QCD throughout.

Partonic kinematics

Gluon fusion in Higgs effective theory

NNLO QCD throughout.

Differential in the Higgs momentum...

$$\frac{d^3\sigma}{d^3\vec{p}_H} \to \frac{d^2\sigma}{dp_H^T \, dY_H}$$
...double differential!

Partonic kinematics

Generate all $2 \rightarrow 2$ forward scattering diagrams

Apply integration-by-parts identities

Matrix elements:

products of rational coefficients and master integrals

Analytic integrals over radiation

$$g \equiv \sum_{i \text{ real}} g_i \qquad p_H = p_1 + p_2 - g$$

$$\prod_{i=1}^{\ell} M = \int \prod_{i=1}^{\ell} [d^D g_i] \delta[p_H^T - p_H^T(g)] \delta[y_H - y_H(g)]$$

$$\times \delta[p_H^2(g) - m_H^2] f(g_i \cdot g_j, g_i \cdot p_1, g_j \cdot p_2)$$

Analytic integrals over radiation

$$g \equiv \sum_{i \text{ real}} g_i \qquad p_H = p_1 + p_2 - g$$

$$M = \int \prod_{i=1}^{\ell} [d^D g_i] \delta[p_H^T - p_H^T(g)] \delta[y_H - y_H(g)]$$

$$\times \delta[p_H^2(g) - m_H^2] f(g_i \cdot g_j, g_i \cdot p_1, g_j \cdot p_2)$$

Double differential

"Higgs loop" completely resolved!

Simone Lionetti

Numeric integrals over Higgs variables

IR singularities: one variable

$$\int y^{-1+\alpha\epsilon} f(y) \, dy \to \int y^{-1+\alpha\epsilon} [f(y) - f(0)] \, dy + \frac{1}{\alpha\epsilon} f(0)$$

Phase space parametrisation

Soft $g^{\mu} \sim \bar{z}$ Collinear $2gp_2 \sim \bar{z}\lambda$ Radiation invariant mass $g^2 \sim \bar{z}^2\lambda(1-\lambda)x$

Just iterate!

- Crucial for double-differential strategy to be viable
- Any color singlet, also more particles
- Higher orders (NⁿLO)

RR master integrals: inclusive

RR master integrals: single differential

RR master integrals: double differential

Rapidity distribution

28.09.2016

p_T distribution

- 3rd order radiative QCD corrections relevant for Higgs phenomenology
- **Rethought** how to compute differential cross-sections at higher orders
- Proof of concept: NNLO double differential Higgs production via gluon fusion

Outlook

- Combine with other results to obtain fully differential
- Stay tuned for N³LO updates!

Differential distributions

Extra radiation: analytic integrals

$$(p_H^T, y_H) \rightarrow (Q^2, W)$$

 $g \equiv \sum_{i \text{ real}} g_i \qquad Q^2 \equiv g^2 \qquad W \equiv 2g(p_1 - p_2)$

Extra radiation: analytic integrals

$$(p_H^T, y_H) \rightarrow (Q^2, W)$$

 $g \equiv \sum_{i \text{ real}} g_i \qquad Q^2 \equiv g^2 \qquad W \equiv 2g(p_1 - p_2)$

$$\mathcal{F}(Q^2, W) = \int \prod_i [d^D g_i] \delta^{(D)}(p_1 + p_2 - g - p_H) \times f(g_i \cdot g_j, g_i \cdot p_1, g_j \cdot p_2)$$

✓ Direct integration✓ Differential equations

Extra radiation: analytic integrals

Numeric integrals over Higgs variables

Parametrization of phase space

$$\begin{split} \bar{z} &= 1 - \frac{m_H^2}{2p_1p_2} \in [0, 1 - \tau] \qquad \tau = \frac{m_H^2}{S} \qquad \begin{array}{l} \operatorname{Soft} \\ g^{\mu} \sim \bar{z} \\ \lambda &= \frac{2p_2g}{2p_1p_2 - m_H^2} \in [0, 1] \\ x &= \frac{g^2 \ 2p_1p_2}{2p_1g \ 2p_2g} \in [0, 1] \\ \end{array} \qquad \begin{array}{l} \operatorname{Radiation\ invariant} \\ \max \\ g^2 \sim \bar{z}^2 \lambda (1 - \lambda) x \\ \end{array} \end{split}$$

- Singularities: $\overline{z} = 0; \quad \lambda = 0, 1; \quad x = 0, 1.$
- Soft expansion: powers of \overline{z} , nontrivial rapidity distribution
- (Asymmetric but rational)

Simone Lionetti

28, 09, 2016

 $(-\lambda)x$