$\mathcal{N}=3$ four dimensional field theories

Diego Regalado

Hamburg, September 2016

Based on [1512.06434] with I. García-Etxebarria

Goal and strategy

Goal:

- Understand F-theory at singularities with no supersymmetric smoothing.
 Only some examples!
- In particular, D3-branes probing codimension 4 terminal singularities.
- The simplest unknown cases lead to 4d $\mathcal{N}=3$ theories on the worldvolume of the D3s.

Goal and strategy

Goal:

- Understand F-theory at singularities with no supersymmetric smoothing.
 Only some examples!
- In particular, D3-branes probing codimension 4 terminal singularities.
- The simplest unknown cases lead to 4d $\mathcal{N}=3$ theories on the worldvolume of the D3s.

Strategy:

- D3s probing an O3 from several perspectives:
 - Worldsheet
 - M/F-theory
 - 4d field theory
- Generalize the O3-plane.

O3s in perturbation theory

• In 2d CFT, O3s are defined as the quotient of 10d Type IIB by $\mathcal{I}(-1)^{F_L}\Omega$

$$\mathcal{I}: (z_1, z_2, z_3) \to (-z_1, -z_2, -z_3)$$

$$\frac{(-1)^{F_L}: \text{ left moving spacetime fermion number }}{\Omega: \text{ orientation reversal on the worldsheet}} \right\} \left(\begin{array}{c} B_2 \\ C_2 \end{array} \right) \rightarrow \left(\begin{array}{c} -B_2 \\ -C_2 \end{array} \right)$$

O3s in perturbation theory

• In 2d CFT, O3s are defined as the quotient of 10d Type IIB by $\mathcal{I}(-1)^{F_L}\Omega$

$$\mathcal{I}: (z_1, z_2, z_3) \to (-z_1, -z_2, -z_3)$$

$$\frac{(-1)^{F_L}: \text{ left moving spacetime fermion number }}{\Omega: \text{ orientation reversal on the worldsheet}}\right\} \left(\begin{array}{c} B_2 \\ C_2 \end{array}\right) \to \left(\begin{array}{c} -B_2 \\ -C_2 \end{array}\right)$$

 When including N parallel D3s, we need to specify an action on the Chan-Paton factors. [Gimon, Polchinski]

Before the quotient

After the quotient

$$4d \mathcal{N} = 4 \mathfrak{u}(N)$$

$$4d \mathcal{N} = 4 \mathfrak{u}(N)$$

$$4d \mathcal{N} = 4 \mathfrak{usp}(N)$$

$$(N \in 2\mathbb{Z})$$

There are different kinds of O3-planes.

O3s in M/F-theory (I)

10d Type IIB is given by the F-theory limit of M-theory on a torus.

M-th. on
$$\mathbb{R}^{1,2} \times \mathbb{C}^3 \times T^2$$
 $\xrightarrow{T^2 \to 0}$ IIB on $\mathbb{R}^{1,3} \times \mathbb{C}^3$ Complex structure of T^2 \longrightarrow Axio-dilaton $(\tau \supset g_s)$

O3s in M/F-theory (I)

10d Type IIB is given by the F-theory limit of M-theory on a torus.

M-th. on
$$\mathbb{R}^{1,2} \times \mathbb{C}^3 \times T^2$$
 $\xrightarrow{T^2 \to 0}$ IIB on $\mathbb{R}^{1,3} \times \mathbb{C}^3$ Complex structure of T^2 \longrightarrow Axio-dilaton $(\tau \supset g_s)$

The M-theory lift of the O3 is given by

[Hanany, Kol]

M-th. on
$$\mathbb{R}^{1,2} \times (\mathbb{C}^3 \times T^2)/\mathbb{Z}_2$$
 with $(z_1, z_2, z_3, u) \to (-z_1, -z_2, -z_3, -u)$
$$(-1)^{F_L}\Omega \quad \text{lifts to:} \quad \mathcal{M}_{(-1)^{F_L}\Omega} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in SL(2, \mathbb{Z})$$

This can be seen by looking at the action of the O3 on $\begin{pmatrix} B_2 \\ C_2 \end{pmatrix}$, which comes from reducing C_3 along the one-cycles in the torus.

O3s in M/F-theory (II)

- Four fixed points, which locally look like $\mathbb{C}^4/\mathbb{Z}_2$.

 This singularity has no susy smoothings: no low-energy dynamics associated to the O3.

 [Morrison, Stevens; Anno]
- D3-branes parallel to the O3-plane lift to M2-branes.
- In M-theory, this is precisely ABJM (at level k=2).

The F-theory limit provides the 4d lift of ABJM.

$$k=1:$$
 4d $\mathcal{N}=4$ $\mathfrak{u}(N)$

$$k=2$$
: $4d \mathcal{N}=4 \mathfrak{so}(N), \mathfrak{usp}(N)$

• Orientifold variants: discrete flux \longrightarrow $O3^-$, $O3^+$, $\widetilde{O3}^-$, $\widetilde{O3}^+$.

[Hanany, Kol]

• Before the quotient we have $4d~\mathcal{N}=4~\mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM}=\tau_{\rm IIB}$.

- Before the quotient we have $4d~\mathcal{N}=4~\mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM}=\tau_{\rm IIB}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.

- Before the quotient we have $4d~\mathcal{N}=4~\mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM}=\tau_{\rm IIB}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.
- We have seen that $(-1)^{F_L}\Omega$ maps to $\mathbb{Z}_2^S\subset SL(2,\mathbb{Z})$.

$$SL(2,\mathbb{Z})$$
 is a duality, not a symmetry: $au o rac{a au + b}{c au + d}$

However,
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathbb{Z}_2^S$$
 is a symmetry: $\tau \to \tau$

- Before the quotient we have $4d~\mathcal{N}=4~\mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM}=\tau_{\rm IIB}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.
- We have seen that $(-1)^{F_L}\Omega$ maps to $\mathbb{Z}_2^S\subset SL(2,\mathbb{Z})$.

$$SL(2,\mathbb{Z})$$
 is a duality, not a symmetry: $au o rac{a au + b}{c au + d}$

However,
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathbb{Z}_2^S$$
 is a symmetry: $\tau \to \tau$

- Therefore, the orientifold corresponds to gauging $\mathbb{Z}_2^{O3} = \mathbb{Z}_2^R \cdot \mathbb{Z}_2^S$.
- Supercharges: $Q_{\alpha a}$ is charged under both \mathbb{Z}_2^R and \mathbb{Z}_2^S . [Kapustin, Witten]

$$\mathbb{Z}_2^{O3}:Q_{\alpha a}\to Q_{\alpha a}$$
 (the O3 does not break SUSY further)

Beyond the O3

Different ways to look at the O3:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_L}\Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_2$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_2^R) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_2^S).

Beyond the O3

Different ways to look at the O3:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_L}\Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_2$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_2^R) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_2^S).

The last three admit a generalization: $\mathbb{Z}_2 \longrightarrow \mathbb{Z}_k$

- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_k$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_k^R) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_k^S).

We call the associated objects $OF3_k$ -planes. $(OF3_2 = O3)$

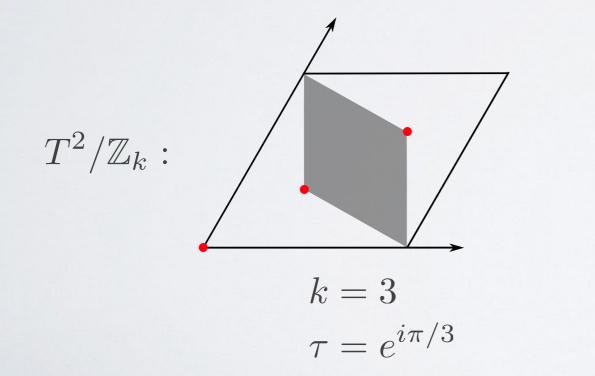
OF3s in M/F-theory (I)

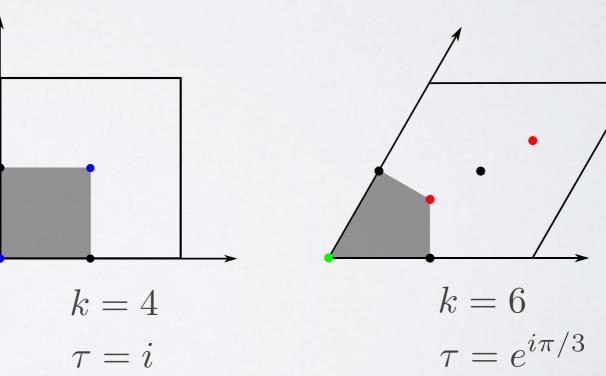
• We want to consider M/F-theory on $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_k$

$$(z_1, z_2, z_3, u) \to (\zeta_k z_1, \bar{\zeta}_k z_2, \zeta_k z_3, \bar{\zeta}_k u)$$
 with $\zeta_k = e^{2\pi i/k}$ $(k = 2, 3, 4, 6)$

 $\mathrm{OF3}_k$ -planes exist only for some values of k.

Only well-defined for special values of the complex structure τ (g_s^{IIB}).





(Different kinds of singularities for a given k)

OF3s in M/F-theory (II)

- Similarly to k=2, these do not have supersymmetric smoothings. [Morrison, Stevens ; Anno]
- Preserve twelve supercharges, $\mathcal{N}_{3d}=6$ or $\mathcal{N}_{4d}=3$. (k>2)
- ABJM at level k>2 preserves $\mathcal{N}_{3d}=6$. The lift only works for some values of k, because there has to be a torus in M-theory.
- M-theory geometry admits discrete flux \longrightarrow Different OF3_k

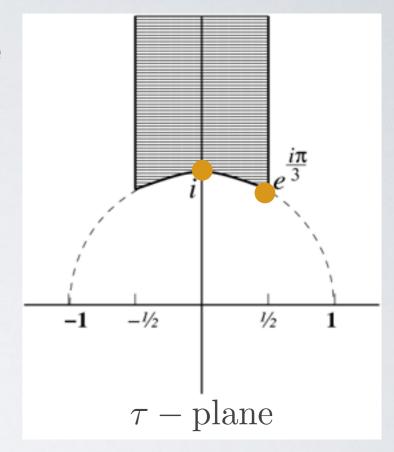
[Aharony, Tachikawa]

- The theory on N D3s probing an $\mathrm{OF3}_k$ should arise as a \mathbb{Z}_k quotient of 4d $\mathcal{N}=4$ $\mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{\mathrm{OF}} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with

$$\mathbb{Z}_k^R \subset SO(6)_R$$
 and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$

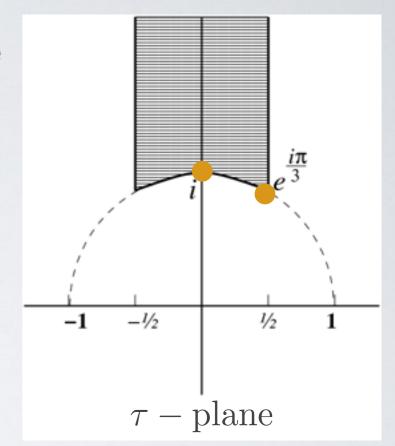
- The theory on N D3s probing an $\mathrm{OF3}_k$ should arise as a \mathbb{Z}_k quotient of 4d $\mathcal{N}=4$ $\mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{\mathrm{OF}} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$
- Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\qquad \tau \to \frac{a\tau + b}{c\tau + d}$.

- The theory on N D3s probing an $OF3_k$ should arise as a \mathbb{Z}_k quotient of 4d $\mathcal{N}=4$ $\mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{\mathrm{OF}} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$
- Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\qquad \tau \to \frac{a\tau + b}{c\tau + d}$.



However, for special values of τ there is a \mathbb{Z}_k^S symmetry (τ invariant). Restriction in both k and τ . The theory is stuck at strong coupling.

- The theory on N D3s probing an $OF3_k$ should arise as a \mathbb{Z}_k quotient of 4d $\mathcal{N}=4$ $\mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{\mathrm{OF}} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$
- Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\qquad \tau \to \frac{a\tau + b}{c\tau + d}$.



- However, for special values of τ there is a \mathbb{Z}_k^S symmetry (τ invariant). Restriction in both k and τ . The theory is stuck at strong coupling.
- The action on the supercharges shows that $\mathcal{N}=3$.

$$\mathcal{N}=3$$
 is not always $\mathcal{N}=4$

• Having $\mathcal{N}=3$ in 4d is surprising. There is an argument saying that, in the absence of gravity,

$$\mathcal{N}=3+\mathrm{CPT} \implies \mathcal{N}=4$$
 [e.g. Weinberg]

$$\mathcal{N}=3$$
 is not always $\mathcal{N}=4$

• Having $\mathcal{N}=3$ in 4d is surprising. There is an argument saying that, in the absence of gravity,

$$\mathcal{N} = 3 + \text{CPT} \implies \mathcal{N} = 4$$
 [e.g. Weinberg]

- Loophole: notion of elementary field (vector). This only applies to
 Lagrangian theories.
 [García-Etxebarria, DR; Aharony, Evtikhiev]
- In our case, we have massless "electrons" and "monopoles", so it's reasonable not to have a Lagrangian.
- Actually, since we have $\mathcal{N}=3$, we conclude that it cannot have a Lagrangian description.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N}=3$ field theories in 4d as quotients of $\mathcal{N}=4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- (Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling.)

[Aharony, Tachikawa]

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N}=3$ field theories in 4d as quotients of $\mathcal{N}=4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- (Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling.)

[Aharony, Tachikawa]

Outlook:

- Other $\mathcal{N}=3$ theories? Classification?
- Connection to class S theories

[To appear]

- Better understanding in M-theory (BPS states).
- Other (less supersymmetric) isolated singularities.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N}=3$ field theories in 4d as quotients of $\mathcal{N}=4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- (Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling.)

[Aharony, Tachikawa]

Outlook:

- Other $\mathcal{N}=3$ theories? Classification?
- Connection to class S theories

[To appear]

- Better understanding in M-theory (BPS states).
- Other (less supersymmetric) isolated singularities.

Thank you!

Holographic dual (O3)

[Witten]

- The holographic dual can be obtained from the IIB construction.
- Before introducing the O3, we have $N\gg 1$ D3-branes, whose near horizon limit is $AdS_5\times S^5$. [Maldacena]
- The geometric action \mathbb{Z}_2 gives IIB on $AdS_5 \times S^5/\mathbb{Z}_2$ (which is not supersymmetric by itself).
- There is also an $SL(2,\mathbb{Z})$ bundle on S^5/\mathbb{Z}_2 (now supersymmetric).
- The near horizon geometry in F-theory is $AdS_5 imes (S^5 imes T^2)/\mathbb{Z}_2$.
- The different O3 variants are given by turning on discrete fluxes $[H_3, F_3] \in H^3(S^5/\mathbb{Z}_2, \tilde{\mathbb{Z}}) = \mathbb{Z}_2$

Holographic dual (OF3)

- Just like for the usual O3, we can derive it from the IIB construction.
- Before introducing the OF3, we have N D3-branes, whose near horizon limit is $AdS_5 \times S^5$.
- In the presence of an OF3, we have Type IIB on $AdS_5 \times S^5/\mathbb{Z}_k$ with an $SL(2,\mathbb{Z})$ bundle. Or F-theory on $AdS_5 \times (S^5 \times T^2)/\mathbb{Z}_k$.

 $\stackrel{ullet}{\mathbb{Z}}_k$

[Aharony, Tachikawa]

- · We see that:
 - Smooth, weakly curved geometry.
 - Stuck at strong string coupling. No marginal deformation in the CFT.

Other results in the literature

- [Aharony, Evtikiev] General properties of 4d N=3 SCFTs, assuming they exist. Many results: no (N=3 preserving) relevant or marginal deformations, a=c, etc.
- [García-Etxebarria, DR] First examples of 4d N=3.
- [Nishinaka, Tachikawa] Rank-one 4d N=3 theories. Moduli space is C^3/Z_k for k=3,4,6. Compute the central charge. 2d chiral algebra.
- [Argyres, Lolito, Lü, Martone] Classification of 4d N=2 SCFTs. The N=3 theories seem to fit in their classification.
- [Aharony, Tachikawa] Classification of the different OF3 variants.
 Large N limit, discrete gaugings.
- [Imamura, Yokoyama] Superconformal index (large N).
- [Imamura et al.; Agarwal et al.] N=3 to N=4 enhancement.