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Introduction

•  is a fundamental parameter of SM  most precise measurement 
is essential

•  is obtained through fitting  quality predictions are needed

• One way: from 3-jet event shapes in  collisions

• In 3-jet production the Born is proportional to 

• All SMEs are known to carry out a calculation in NNLO QCD

• NNLO QCD computations are already performed1 2 (useful for 
cross-check and validation)

• Extensively measured by multiple collaborations in the past

2 Weinzierl JHEP 0906 (2009) 041

1 Gehrmann-De Ridder et al. JHEP 0712 (2007) 094
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The CoLoRFulNNLO method3

3 Del Duca, Somogyi and Trócsányi
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The CoLoRFulNNLO method

• Idea: do NNLO calculations as it was done with NLO: use local subtractions

• The NLO correction for a  jet function:

 

• The NNLO correction is composed of three contributions:

 

• Kinematic singularities in the  and  parton contribution

• : doubly and singly unresolved emission

• : singly unresolved radiation   poles from  parton one-loop
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• In the  parton line subtractions are needed to regularize 1- and 2-parton 
emissions:

 

•  and  develop additional singularities   is needed to cancel

• In the  line 1-parton emissions like in NLO but for one-loop-tree interference:

 

• It contains the integrated  from  which is still singular 
subtraction is needed (last term)

• The  parton line contains the double virtual and integrated subtractions:
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• The scheme is completely general and worked out for 
processes with colorless inital state

• It is implemented in a fortran90 program: MCCSM 
(Monte Carlo for the Colorful Subtraction Method) (AK)

• Completely general

• User friendly and flexible

• Phase space is recursively constructed

• Only needs the SMEs, color- and spin-correlated 
ones (having local subtractions)

• The implementation needed validation and cross-
check   is a perfect candidate
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 production

• Computation was done at former LEP2 energy, 

• Six standard event shapes were calculated4 5, compared to 
Gehrmann et al. and Weinzierl

• Three event shapes are computed at NNLO QCD for the first time
• The used normalization for an event shape :

 

: LO cross section for 

5 Del Duca, Duhr, AK, Somogyi et al. arXiv:1606.03453, to appear in PRD

4 Del Duca, Duhr, AK, Somogyi et al. arXiv:1603.08927, to appear in PRL
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New predictions
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• New predictions made for oblateness, energy-energy correlation and jet cone 
energy fraction

• Oblateness:

 

• Energy-energy correlation:

 

• Jet cone energy fraction:

 

 : thrust major, : thrust minor, : total hadronic XS, : thrust axis pointing 
from heavy jet mass hemisphere
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Conclusions
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Conclusions

• The CoLorFulNNLO subtraction method is briefly 
introduced

• The scheme is fully worked out for colorless initial 
states

• Application to  is shown

• Validated through standard event shape variables

• New predictions at NNLO QCD for oblateness, 
energy-energy correlation and jet cone energy fraction

• The extension to hadron colliders is in progress
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Thank you for your attention!
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Extra slides
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The  distribution
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NNLO QCD corrections to "new" event 
shapes
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