Searching the hidden stop from sbottom decays

Jiayin Gu

DESY/IHEP

DESY theory workshop September 29, 2016

based on current work with Haipeng An and Lian-Tao Wang

Introduction		
motivation		

- Natural SUSY requires light stop. LHC is pushing up the bound on stop mass.
- It is possible that the stop is hiding in the compressed regions, making it hard to be discriminated from background.
 - $\blacktriangleright m_{\tilde{t}} \approx m_t + m_{\chi} \,,$
 - $\blacktriangleright m_{\tilde{t}} \approx m_W + m_b + m_\chi \,,$
 - $m_{\tilde{t}} \approx m_{\chi}$.
- ▶ The region $m_{\tilde{t}} \approx m_{\chi}$ has important implications on coannihilation, and the strongest bound is from the mono-jet searches ($m_{\tilde{t}} \gtrsim 323 \text{ GeV}$ from ATLAS with 3.2 fb^{-1} data at $\sqrt{s} = 13 \text{ TeV}$).
- ▶ If the sbottom is not too heavy and the branching ratio of $\tilde{b} \rightarrow \tilde{t} W$ is significantly large, it could be ideal to search for the hidden stop from sbottom decays.
- If the branching ratio of $\tilde{b} \to b\chi$ is small, the bound on sbottom mass from the traditional searches in the $2b + E_{\pi}^{\text{miss}}$ channel is weak.

current bounds

	signal and backgrounds		
model spectrum			
		$\underline{\widetilde{b}_2} \cdot \underline{\chi}^c$,	
	~		
	$\frac{t_2}{\tilde{b_1}}$	_	

• χ is (mostly) bino, \tilde{t}_2 is not too heavy, \tilde{b}_1 is (mostly) left-handed and is lighter than \tilde{t}_2 due to stop mass mixing.

 \tilde{t}_1

- \tilde{t}_1 is preferably mostly righthanded so that the mass gap between \tilde{b}_1 and \tilde{t}_1 can be large.
- \tilde{b}_1 has two decay channels, $\tilde{b} \rightarrow \tilde{t} W$ and $\tilde{b} \rightarrow b \chi$.
- \tilde{t}_1 has two decay channels, $\tilde{t} \rightarrow bW^*\chi \rightarrow bl\nu\chi/bjj\chi$ and $\tilde{t} \rightarrow c\chi$.

Jiayin Gu

- Two decay channels, $\tilde{b} \rightarrow \tilde{t} W$ and $\tilde{b} \rightarrow b \chi$.
- ▶ In viable regions of the model parameter space, $\tilde{b} \rightarrow \tilde{t} W$ tends to dominate. (Good for us!)
 - ▶ $\Gamma(\tilde{b} \to \tilde{t} W)$ is enhanced by a factor of $m_{\tilde{b}}^2/m_W^2$ due to the longitudinal contribution,
 - large stop mixing is preferred by the Higgs mass (at least in MSSM),
 - $\tilde{b} \rightarrow b \chi$ is suppressed by the small hypercharge of \tilde{b}_L (-1/6),
 - ▶ the stop mixing term need to be tuned very small for $\Gamma(\tilde{b} \to \tilde{t} W)$ and $\Gamma(\tilde{b} \to b \chi)$ to be comparable.

$$\frac{\Gamma(\tilde{b} \to \tilde{t} W)}{\Gamma(\tilde{b} \to b \chi)} \approx 150 \frac{X_t^2}{m_{\tilde{b}}^2} \,.$$

Nevertheless, we will treat the branching ratio as a free parameter in order to cover as much parameter space as possible.

signal

- A sbottom pair has 3 ways to decay.
- We consider searches in 3 channels with final states
 - $2\ell + E_{T}^{miss}$, best channel if $\Gamma(\tilde{b} \rightarrow \tilde{t} W)$ dominates;
 - ▶ $1b1\ell + E_{T}^{miss}$, best channel if $\Gamma(\tilde{b} \rightarrow \tilde{t} W)$ and $\Gamma(\tilde{b} \rightarrow b \chi)$ are comparable;
 - ▶ $2b + E_T^{\text{miss}}$, best channel if $\Gamma(\tilde{b} \to b\chi)$ dominates (conventional channel for sbottom search).

result

- This channel has already been used for the searches of electroweakinos and sleptons.
- The dominant backgrounds (tt̄, WW, tW) contain two Ws both decaying leptonically, with E_T^{miss} mostly coming from the two neutrinos.
- ► The variable *M*_{T2} can very efficiently remove this type of background.

result

$1b1\ell + \textit{E}_{ extsf{T}}^{ extsf{miss}}$

- This channel is very similar to the semi-leptonic channel of the conventional stop search.
- The dominate background is dileptonic tt
 with one lepton not reconstructed.
- ► The M^W₁₂ variable helps reducing this background. [JHEP 1207 (2012) 110, Bai, Cheng, Gallicchio, JG]

results

• $m_{\tilde{b}} - m_{\tilde{t}} = 400 \text{ GeV}, \ m_{\tilde{t}} - m_{\chi} = 30 \text{ GeV}, \ 13 \text{ TeV LHC} \text{ with } 300 \text{ fb}^{-1} \text{ data}.$

Jiayin Gu

results

▶ BR($\tilde{b} \rightarrow \tilde{t}W$) = 0.9, $m_{\tilde{t}} - m_{\chi} = 30$ GeV, 13 TeV LHC with 300 fb^{-1} data.

Jiayin Gu

results

▶ BR($\tilde{b} \rightarrow \tilde{t}W$) = 0.5, $m_{\tilde{t}} - m_{\chi} = 30 \text{ GeV}$, 13 TeV LHC with 300 fb^{-1} data.

• The $2b + E_T^{\text{miss}}$ channel does not directly constrain $m_{\tilde{t}}$.

Jiayin Gu

		conclusion
conclusion		

- A light stop with mass almost degenerate with the lightest neutralino has important implications on naturalness and dark matter relic abundance, and is hard to search at colliders.
- We study the potential of searching for such stop particles at the LHC from sbottom decays, focusing on two channels with final states $2\ell + E_{\rm T}^{\rm miss}$ and $1b1\ell + E_{\rm T}^{\rm miss}$.
- ▶ If $m_{\tilde{b}} \lesssim 1 \text{ TeV}$ and the decay $\tilde{b} \to \tilde{t} W$ has a significant branching ratio, a stop almost degenerate with neutralino can be excluded up to about 500–600 GeV at the 13 TeV LHC with 300 fb^{-1} data. (The mono-jet search needs $\sim 3000 \text{ fb}^{-1}$ to reach the same bound.)
- The searches we proposed are complementary to the conventional searches and other searches.
- Our goal is to convince the experimentalists to do the searches we proposed, which are very easy to implement.

backup slides

Jiayin Gu

Searching the hidden stop from sbottom decays

DESY/IHEP

sbottom decay

The decay width are given by

$$\begin{split} \Gamma(\tilde{b}_1 \to \tilde{t}_1 \ W) &= \frac{g_2^2 \sin^2 \theta_t \cos^2 \theta_b}{32\pi} \frac{\left[(m_{\tilde{b}}^2 - (m_{\tilde{t}} + m_W)^2) (m_{\tilde{b}}^2 - (m_{\tilde{t}} - m_W)^2) \right]^{3/2}}{m_W^2 m_{\tilde{b}}^3} \ , \\ \Gamma(\tilde{b}_1 \to b \ \chi) &= \frac{g_1^2}{32\pi} \frac{(m_{\tilde{b}}^2 - m_\chi^2)^2}{m_{\tilde{b}}^3} 4 \left[\left(-\frac{1}{3} \right)^2 \sin^2 \theta_b + \left(\frac{1}{6} \right)^2 \cos^2 \theta_b \right], \end{split}$$

where the mixing angles are defined as

$$\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_t & \sin \theta_t \\ -\sin \theta_t & \cos \theta_t \end{pmatrix} \begin{pmatrix} \tilde{t}_R \\ \tilde{t}_L \end{pmatrix} , \qquad \begin{pmatrix} \tilde{b}_1 \\ \tilde{b}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_b & \sin \theta_b \\ -\sin \theta_b & \cos \theta_b \end{pmatrix} \begin{pmatrix} \tilde{b}_L \\ \tilde{b}_R \end{pmatrix} .$$

	conclusion

sbottom decay

The stop mass matrix is

$$M_{\tilde{t}}^2 = \begin{pmatrix} m_{Q_3}^2 + m_t^2 + \Delta_{\tilde{u}L} & m_t X_t \\ m_t X_t & m_{u_3}^2 + m_t^2 + \Delta_{\tilde{u}R} \end{pmatrix},$$

where $X_t = A_t - \mu \cot \beta$.

The decay widths are given by

$$\begin{split} \Gamma(\tilde{b}_1 \to \tilde{t}_1 \; W) &\approx \frac{X_t^2}{16\pi m_{\tilde{b}}} \;, \qquad \Gamma(\tilde{b}_1 \to b \, \chi) \approx \frac{\alpha_{\rm em} m_{\tilde{b}}}{72 \cos^2 \theta_W} \;, \\ &\frac{\Gamma(\tilde{b}_1 \to \tilde{t}_1 \; W)}{\Gamma(\tilde{b}_1 \to b \, \chi)} \approx 150 \frac{X_t^2}{m_{\tilde{b}}^2} \,. \end{split}$$

• $\Gamma(\tilde{b}_1 \rightarrow \tilde{t}_1 W)$ dominates unless X_t is very small.

$2\ell + E_{\rm T}^{\rm miss}$ channel ($m_{\tilde{b}} = 1000 \,{ m GeV}$, $m_{\tilde{t}} = 600 \,{ m GeV}$, $m_{\chi} = 570 \,{ m GeV}$)

Jiayin Gu

$1b1\ell + E_{T}^{miss}$ channel $(m_{\tilde{b}} = 900 \text{ GeV}, m_{\tilde{t}} = 500 \text{ GeV}, m_{\chi} = 470 \text{ GeV})$

Jiayin Gu