Flavor Cosmology: Dynamical Yukawas in the Froggatt-Nielsen Mechanism

lason Baldes
In collaboration with Thomas Konstandin and Geraldine Servant

Rethinking Quantum Field Theory, DESY, 28 September 2016

Electroweak baryogenesis - basic picture

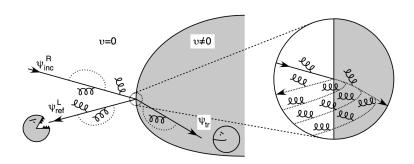
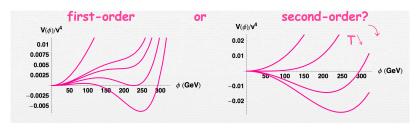


Image from - Gavela, Hernandez, Orloff, Pène, Quimbay [hep-ph/9406289]

- CP violating collisions with the bubble walls lead to a chiral asymmetry.
- Sphalerons convert this to a Baryon Asymmetry.
- This is swept into the expanding bubble where sphalerons are suppressed.

Electroweak baryogenesis - Requirements



Electroweak baryogenesis requires:

- A strong first order phase transition $(\phi_c/T_c \gtrsim 1)$
- Sufficient CP violation

However in the SM:

- The Higgs mass is too large
- Quark masses are too small

We require new (EW-scale) physics!

Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.



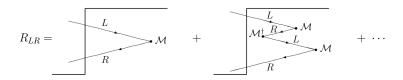
 $R_{HW} \equiv m_H/m_W$

Endpoint at: $m_H \approx 67 \text{ GeV}$

- Csikor, Fodor, Heitger, Phys. Rev. Lett. 82, 21 (1999)

Higgs mass is too large in the SM. The Higgs potential must be modified.

Baryogenesis from charge transport with SM CP violation



$$\epsilon_{
m CP} \sim rac{1}{M_W^6 T_c^6} \prod_{i>j top j, c,t} (m_i^2 - m_j^2) \prod_{i>j top j, c,t} (m_i^2 - m_j^2) J_{
m CP}$$

- Gavela, Hernandez, Orloff, Pène, Quimbay [hep-ph/9406289],
- Huet, Sather [hep-ph/9404302].

SM quark masses are too small!

Could the solution be linked to flavour?

Yukawa interactions:

$$y_{ij}\overline{f}_L^i\Phi^{(c)}f_R^j$$

Possible solutions

- Froggatt-Nielsen
- Composite Higgs
- Randall-Sundrum Scenario

Froggatt-Nielsen Yukawas:

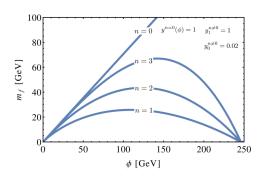
$$y_{ij} \sim \left(rac{\langle \chi
angle}{\Lambda}
ight)^{-q_i+q_j+q_H}$$

Some previous work: Baryogenesis from the Kobayashi-Maskawa phase

- Berkooz, Nir, Volansky Phys. Rev. Lett. 93 (2004) 051301
- Split fermions baryogenesis from the Kobayashi-Maskawa phase
- Perez, Volansky Phys. Rev. D 72 (2005) 103522

We postulate varying Yukawas

Study the strength of the EWPT with varying Yukawas in a <u>model</u> independent way. - IB, Konstandin, Servant (1604.04526)

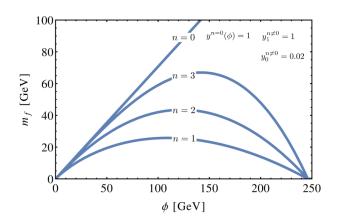


Ansatz

$$y(\phi) = egin{cases} y_1 \left(1 - \left[rac{\phi}{v}
ight]^n
ight) + y_0 & \quad ext{for} \quad \phi \leq v, \ y_0 & \quad ext{for} \quad \phi \geq v. \end{cases}$$

7/1

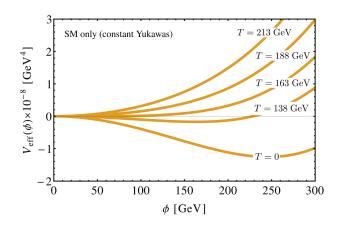
Effective Potential



Thermal correction

$$V_{\mathrm{eff}} \supset -\frac{g_*\pi^2}{90} T^4$$

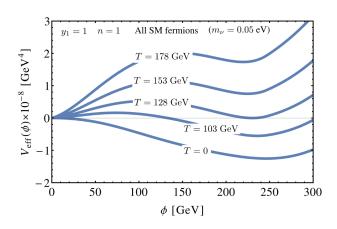
Effective Potential - SM case



Crossover transition $T_c = 163 \text{ GeV}$.

$$V_{\mathrm{eff}} = V_{\mathrm{tree}}(\phi) + V_{1}^{0}(\phi) + V_{1}^{T}(\phi, T) + V_{\mathrm{Daisy}}(\phi, T)$$

Effective Potential - Varying Yukawas



Strong first order phase transition

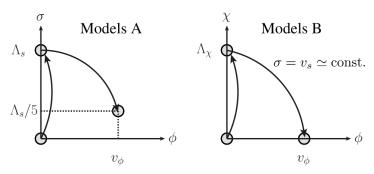
$$\phi_c=$$
 230 GeV, $T_c=$ 128 GeV, $\phi_c/T_c=$ 1.8

$$T_c = 128 \, \text{GeV},$$

$$\phi_c/T_c = 1.8$$

Including the flavon

Flavor Cosmology: Dynamical Yukawas in the Froggatt-Nielsen Mechanism - IB, Konstandin, Servant (1608.03254)

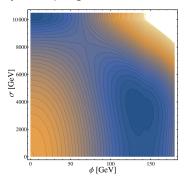


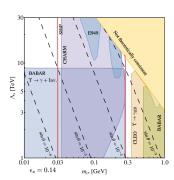
- Have to take into account constraints from flavour physics.
- Flavon dof also affects ϕ_c/T_c .
- Generic prediction: light flavon with mass below the EW scale.

We have implemented this idea in some non-standard Froggatt-Nielsen scenarios.

Expermental signatures - Model A-2

Couple a flavon to each mass eigenstate - K_{napen} , Robinson (1507.00009). Here we assume a simple polynomial scalar potential up to dimension four + FN style coupling to b's.



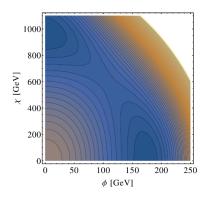


$$\Lambda_s = 10 \text{ TeV}, \ m_\sigma = 0.03 \text{ GeV}, \ \epsilon_s = 0.12, \ y_b = 1.7, \ \lambda_{\phi s} = 10^{-6.3}, \ \lambda_s = 1.6 \times 10^{-10}.$$

$$\mathcal{L} \supset rac{y_b}{\sqrt{2}} \left(rac{\sigma}{\sqrt{2} \Lambda_s}
ight)^2 \phi \overline{b} b \qquad \mathrm{Br}(\phi o \overline{b} b \sigma) = 1.1\% \left(rac{0.1}{\epsilon_s}
ight)^2 \left(rac{1 \mathrm{\ TeV}}{\Lambda_s}
ight)_{12/14}^2$$

Model B-1: $Q_{\rm FN}(X) = -1/2$ - phase transition strength

Here we assume a simple polynomial scalar potential up to dimension four + the Yukawa sector.





$$\Lambda_{\chi}=1$$
 TeV, $\lambda_{\chi}=10^{-4}$, $\lambda_{\phi\chi}=10^{-2}$, $\emph{m}_{\chi}=14$ GeV

$$\Gamma(\chi o \overline{c}c) pprox 10^{-12} \; {
m GeV} \left(rac{m_\chi}{10 \; {
m GeV}}
ight) \left(rac{v_\chi^{
m today}}{1 \; {
m GeV}}
ight)^2 \left(rac{1 \; {
m TeV}}{\Lambda_\chi}
ight)^4$$

Conclusions

Electroweak baryogenesis and flavour physics may be closely related.

Yukawa variation may allow us to address:

- The lack of a strong first order phase transition in the SM
- The insufficient CP violation for EW baryogenesis.
 - Bruggisser, Konstandin, Servant (in preperation)
- The related limits on EDMs (this approach leads to a lack of EDM signals)

This offers additional motivation to consider low scale flavour models and their cosmology.

Other models of flavour are worth looking at too (not just Froggatt-Nielsen). e.g. RS1 - von Harling, Servant (in preperation) New experimental signatures should then be accessible as we further probe the Higgs potential!

Effective Potential - T=0 terms

$$V_{ ext{eff}} = V_{ ext{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{ ext{Daisy}}(\phi, T)$$
 $V_{ ext{tree}}(\phi) = -rac{\mu_\phi^2}{2}\phi^2 + rac{\lambda_\phi}{4}\phi^4$

$$V_1^0(\phi) = \sum_i \frac{g_i(-1)^F}{64\pi^2} \left\{ m_i^4(\phi) \left(\text{Log}\left[\frac{m_i^2(\phi)}{m_i^2(v)}\right] - \frac{3}{2} \right) + 2m_i^2(\phi) m_i^2(v) \right\}$$

Gives a large negative contribution to the ϕ^4 term.

- ullet Can lead to a new minimum between $\phi=0$ and $\phi=246$ GeV.
- Not an issue for previous $y_1 = 1$, n = 1 example.
- Can make phase transition weaker.

Effective Potential - one-loop $T \neq 0$ correction

$$V_1^T(\phi, T) = \sum_i \frac{g_i(-1)^F T^4}{2\pi^2} \times \int_0^\infty y^2 \text{Log}\left(1 - (-1)^F e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}}\right) dy$$
$$V_f^T(\phi, T) = -\frac{gT^4}{2\pi^2} J_f\left(\frac{m_f(\phi)^2}{T^2}\right)$$

$$J_{f}\left(\frac{m_{f}(\phi)^{2}}{T^{2}}\right) \approx \frac{7\pi^{4}}{360} - \frac{\pi^{2}}{24} \left(\frac{m}{T}\right)^{2} - \frac{1}{32} \left(\frac{m}{T}\right)^{4} \operatorname{Log}\left[\frac{m^{2}}{13.9T^{2}}\right], \quad \text{for } \frac{m^{2}}{T^{2}} \ll 1,$$

$$\delta V \equiv V_{f}^{T}(\phi, T) - V_{f}^{T}(0, T)$$

$$\approx \frac{gT^{2}\phi^{2}[y(\phi)]^{2}}{96}$$

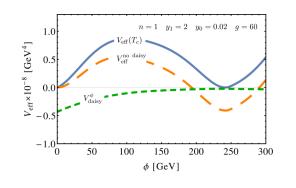
$$\approx \frac{gT^{2}\phi^{2}[y(\phi)]^{2}}{96}$$

$$= \frac{gT^{2}\phi^{2}[y(\phi)]^{2}}{96}$$

$$= \frac{gT^{2}\phi^{2}[y(\phi)]^{2}}{96}$$

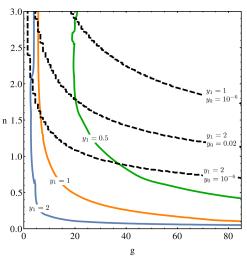
$$= \frac{gT^{2}\phi^{2}[y(\phi)]^{2}}{96}$$

Effective Potential - daisy correction



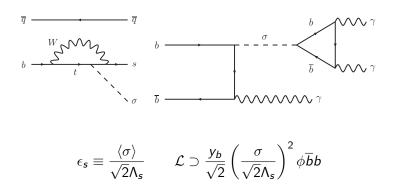
$$V_{\text{Daisy}}^{\phi}(\phi, T) = \frac{T}{12\pi} \left\{ m_{\phi}^{3}(\phi) - \left[m_{\phi}^{2}(\phi) + \Pi_{\phi}(\phi, T) \right]^{3/2} \right\}$$
$$\Pi_{\phi}(\phi, T) = \left(\frac{3}{16} g_{2}^{2} + \frac{1}{16} g_{Y}^{2} + \frac{\lambda}{2} + \frac{y_{t}^{2}}{4} + \frac{gy(\phi)^{2}}{48} \right) T^{2}$$

Strength of the phase transition with varying Yukawas

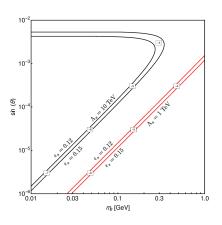


$$y(\phi) = y_1 \left(1 - \left[\frac{\phi}{v}\right]^n\right) + y_0 \text{ for } \phi \le v$$

Upsilon and B decays



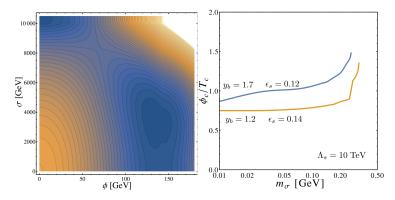
Parameter curves



$$\epsilon_{s} \equiv rac{\langle \sigma
angle}{\sqrt{2} \Lambda_{s}} \qquad \mathcal{L} \supset rac{y_{b}}{\sqrt{2}} \left(rac{\sigma}{\sqrt{2} \Lambda_{s}}
ight)^{2} \phi \, \overline{b} b$$

Model A-2: Disentangled hierarchy and mixing mechanism

Couple a flavon to each mass eigenstate - Knapen, Robinson (1507.00009)



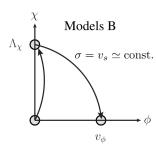
Here we assume a simple polynomial scalar potential up to dimension four augmented with a σ dependent Yukawa term.

$$\epsilon_s \equiv \frac{\langle \sigma \rangle}{\sqrt{2} \Lambda_s} \qquad \mathcal{L} \supset \frac{y_b}{\sqrt{2}} \left(\frac{\sigma}{\sqrt{2} \Lambda_s} \right)^2 \phi \overline{b} b$$

Models B

Two FN fields

$$\mathcal{L} = \tilde{y_{ij}} \left(\frac{S}{\Lambda_s} \right)^{\tilde{n}_{ij}} \overline{Q}_i \tilde{\Phi} U_j + y_{ij} \left(\frac{S}{\Lambda_s} \right)^{n_{ij}} \overline{Q}_i \Phi D_j$$
$$+ \tilde{f}_{ij} \left(\frac{X}{\Lambda_{\chi}} \right)^{\tilde{m}_{ij}} \overline{Q}_i \tilde{\Phi} U_j + f_{ij} \left(\frac{X}{\Lambda_{\chi}} \right)^{m_{ij}} \overline{Q}_i \Phi D_j$$



We assume a small VEV for the second FN field today: $\langle X \rangle \simeq 0$. The VEV $\langle S \rangle$ sets the Yukawas today while $\langle X \rangle$ varies during the EWPT.

Model B-1: $Q_{FN}(X) = -1/2$

$$\Lambda_\chi \gtrsim 700 \; {
m GeV} \; (K - \overline{K})$$

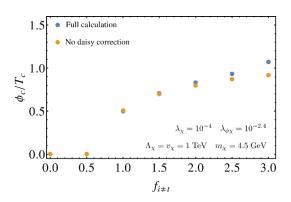
$$\Lambda_\chi \gtrsim 250 \,\, {
m GeV} \,\, (B_s - \overline{B_s})$$

Model B-2:
$$Q_{\mathrm{FN}}(X) = -1$$

$$\Lambda_{\chi} \gtrsim 2.5 \text{ TeV } (K - \overline{K})$$

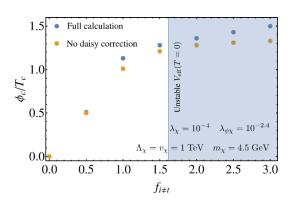
$$\sqrt{\Lambda_{\chi} m_{\chi}} \gtrsim 500 \text{ GeV } (D - \overline{D})$$

Model B-1: $Q_{\rm FN}(X) = -1/2$ - phase transition strength



$$\mathcal{L}\supset ilde{f}_{ij}\left(rac{X}{\Lambda_{\Upsilon}}
ight)^{ ilde{m}_{ij}}\overline{Q}_{i} ilde{\Phi}U_{j}+f_{ij}\left(rac{X}{\Lambda_{\Upsilon}}
ight)^{m_{ij}}\overline{Q}_{i}\Phi D_{j}+H.c.$$

Model B-1: $Q_{\rm FN}(X) = -1$ - phase transition strength



$$\mathcal{L} \supset \tilde{f}_{ij} \left(rac{X}{\Lambda_{Y}}
ight)^{ ilde{m}_{ij}} \overline{Q}_{i} \tilde{\Phi} U_{j} + f_{ij} \left(rac{X}{\Lambda_{Y}}
ight)^{m_{ij}} \overline{Q}_{i} \Phi D_{j} + H.c.$$

Model B-1: $Q_{\rm FN}(X) = -1$ - phase transition strength

