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Black holes
• In stationary state, characterized only

by nontrivial asymptotic charges: 

• Evaporation:

• Implies entropy        

• Mass loss , life time

• Scrambling: Information entering a black hole scrambled 

amongst essentially all degrees of freedom in logarithmic 

time

• Fast entanglement generation. Fastest in nature?
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Semiclassical limit fixed. 

Mass loss for finite M actually implies loss of unitarity. Pure states turned into mixed 
states.

Simple extrapolation from to finite S inconsistent.

So how about finite S?

Inspiration from Condensed Matter: Physics of quantum phase 
transitions

But not all is great…



Aspects of 
black hole 

information
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Trapping

Baldness

Entropy

Evaporation

Scrambling

Quantumness



• Conjectural guideline: Identify light modes with Bogolyubov modes of 

a quantum critical Bose condensate of (longitudinal) gravitons of 

wavelength       .   (Dvali, Gomez)

• identified with the mean number of gravitons in the condensate.

• Implies that universally, for any black hole

• QUANTUM CRITICALITY – guideline for black hole physics?

• Allows to reproduce properties in much simpler systems, namely 

atomic Bose condensate.

• These model systems are so simple that they can be, and are being, 

prepared in labs!

Towards a 
microscopic 
description
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Lieb-Liniger
model

• 1+1d model of nonrelativistic bosons on a ring with 

attractive interactions.

• Quantum phase transition when varying the strength 

of the attractive collective coupling 

• Homogenous ground state for small 

• At                  , homogenous ground state is destabilized. 

Formation of “bright soliton”

• Hamiltonian in 2nd quantized version: 
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Goldstone 
modes

• LL Hamiltonian of lowest modes can be written as SU(3) invariant 

Hamiltonian with explicit breaking

• Particle number breaks SU(3) symmetry down to U(1)  pseudo-

Goldstone doublet due to explicit breaking

• For .. Light mode becomes massless.

• Effective Hamiltonian around critical point

 gap 

• LL only one light mode, but simple extensions can supply               

modes with gap

• Entropy 

• Decoupling as            “no hair”
29.09.2016
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Quantumness
• Ground state at critical point characterized by large 

quantum fluctuations

• Fluctuations           for low k strongly entangled in GS

• Breakdown of mean field theory despite large N, large 

macroscopic quantumness!

• Superposition of classical field configurations

• Testable through engineering appropriate coupling to 

external modes, e.g. magnetic field, …
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Particle loss 
and collapse

• Physical picture for condensate evaporation: Condensate 

modes scatter, eject on-shell particle

• Scaling solutions

• Time dependence corresponds to Hawking loss law:

• Process of course unitary. Backreaction included. 

• Emission of other degrees of freedom suppressed by 

Trapping.

• Can in principle be tested in labs (Bosenova, …)

• Use Feshbach resonance to tune self-interaction to maintain 

criticality.
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• Phase space instability with positive Lyapunov coefficient

• In QM, no compression beyond     -> quantum breaking after 

• For critical BEC analogous mechanism, with

• LL after quantum quench to  , monitor entanglement 

entropy

• In 3+1d

• Agrees with scrambling time!

• Again testable by quenching through Feshbach resonance

Rethinking Quantum Field theory

Scrambling 
BECs
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Instability implies Entanglement
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Conclusions • Quantum criticality responsible for many BH properties 

in lab systems:

– Trapping

– Baldness and decoupling

– Entropy

– Temperature and evaporation 

– Quantumness

– Scrambling

• Many of these properties can be experimentally tested 

with current technology.
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Many other 
results and 

open questions

• What to learn about gravity? Useful description of BH as 

BECs?

• Black hole formation both through collapse and high energy 

scattering. Model as condensate formation?
(Dvali, Gomez, Lüst, Stieberger, Isermann; Kühnel, Sundborg)

• Nonperturbative understanding of black holes as bound 

states. (Hofmann, Rug, Gründing, Müller)

• Global charges. 

(Dvali, Gomez; Gußmann; Kühnel, Sandstad)

• Goldstone modes and broken gauge symmetries 

(Averin, Dvali, Gomez, Lüst, Zell)

• Observation!

• Construct thermalizing Bose condensates and measure 

them!
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