BLACK HOLES IN THE LAB

NICO WINTERGERST STOCKHOLM UNIVERSITY

Work in collaboration with Gia Dvali, Daniel Flassig, Tino Foit, Andre Franca, Cesar Gomez, Alex Pritzel

arXiv:1212.3344 (PRD 87), arXiv:1307.3458 (PRD 88), arXiv:1504.04384 (PRD 92), arXiv:1507.02948 (PRD 92)

Hamburg, DESY Theory Workshop, 29.09.2016

29.09.2016 Rethinking Quantum Field theory

Black holes

• In stationary state, characterized only by nontrivial asymptotic charges:

M, J, Q

• Evaporation: $T = \hbar/4\pi R_s = \hbar/8\pi G_N M$

• Implies entropy
$$T^{-1} = \frac{\partial S}{\partial M} \Rightarrow S = \frac{R_s^2}{\hbar G_N} = \frac{4A}{\ell_p^2}$$

• Mass loss
$$\frac{dM}{dt} = -\frac{\hbar}{G_N^2 M^2}$$
 , life time $t \sim \frac{G_N^2 M^3}{\hbar}$

- Scrambling: Information entering a black hole scrambled amongst essentially all degrees of freedom in logarithmic time $t_s \sim R_s \log S_{\rm BH}/\hbar$
- Fast entanglement generation. Fastest in nature?

Black holes

• In stationary state, characterized only by nontrivial asymptotic charges:

M, J, Q

• Evaporation: $T = \hbar/4\pi R_s = \hbar/8\pi G_N M$

• Implies entropy
$$T^{-1} = \frac{\partial S}{\partial M} \Rightarrow S = \frac{R_s^2}{\hbar G_N} = \frac{4A}{\ell_p^2}$$

• Mass loss
$$\frac{dM}{dt} = -\frac{\hbar}{G_N^2 M^2}$$
 , life time $t \sim \frac{G_N^2 M^3}{\hbar}$

- Scrambling: Information entering a black hole scrambled amongst essentially all degrees of freedom in logarithmic time $t_s \sim R_s \log S_{\rm BH}/\hbar$
- Fast entanglement generation. Fastest in nature?

Black holes

• In stationary state, characterized only by nontrivial asymptotic charges:

M, J, Q

• Implies entropy
$$T^{-1} = \frac{\partial S}{\partial M} \Rightarrow S = \frac{R_s^2}{\hbar G_N} = \frac{4A}{\ell_p^2}$$

• Mass loss
$$\frac{dM}{dt} = -\frac{\hbar}{G_N^2 M^2}$$
 , life time $t \sim \frac{G_N^2 M^2}{\hbar}$

- Scrambling: Information entering a black hole scrambled amongst essentially all degrees of freedom in logarithmic time $t_s \sim R_s \log S_{\rm BH}/\hbar$
- Fast entanglement generation. Fastest in nature?

But not all is great...

Semiclassical limit $G_N \to 0, \ M \to \infty, \ R_s$ fixed. $S \to \infty$

Mass loss for finite M actually implies loss of unitarity. Pure states turned into mixed states.

Simple extrapolation from $S = \infty$ to finite S inconsistent.

So how about finite S?

Inspiration from Condensed Matter: Physics of quantum phase transitions

29.09.2016

- Conjectural guideline: Identify light modes with Bogolyubov modes of a quantum critical Bose condensate of (longitudinal) gravitons of wavelength R_s . (Dvali, Gomez)
- *N* identified with the mean number of gravitons in the condensate.

 $N\sim R_s^2/\ell_p^2$

- Implies that *universally*, for any black hole $\langle \alpha \hat{N} \rangle \sim 1$
- <u>QUANTUM CRITICALITY</u> guideline for black hole physics?
- Allows to reproduce properties in much simpler systems, namely atomic Bose condensate.
- These model systems are so simple that they can be, and are being, prepared in labs!

Lieb-Liniger model

Rethinking Quantum Field theory

- 1+1d model of nonrelativistic bosons on a ring with <u>attractive</u> interactions.
- Quantum phase transition when varying the strength of the attractive collective coupling lpha N
- Homogenous ground state for small lpha N
- At $\alpha N = 1$, homogenous ground state is destabilized. Formation of "bright soliton"
- Hamiltonian in 2nd quantized version:

$$H = \int d\theta \,\psi^{\dagger}(-\frac{\partial_{\theta}^{2}}{2m})\psi - \alpha |\psi|^{4} - \mu(|\psi|^{2} - N)$$

Lieb-Liniger model

Rethinking Quantum Field theory

- 1+1d model of nonrelativistic bosons on a ring with <u>attractive</u> interactions.
- Quantum phase transition when varying the strength of the attractive collective coupling lpha N
- Homogenous ground state for small lpha N
- At $\alpha N = 1$, homogenous ground state is destabilized. Formation of "bright soliton"
- Hamiltonian in 2nd quantized version:

$$H = \int d\theta \,\psi^{\dagger}(-\frac{\partial_{\theta}^{2}}{2m})\psi - \alpha |\psi|^{4} - \mu(|\psi|^{2} - N)$$

Lieb-Liniger model

Rethinking Quantum Field theory

- 1+1d model of nonrelativistic bosons on a ring with <u>attractive</u> interactions.
- Quantum phase transition when varying the strength of the attractive collective coupling lpha N
- Homogenous ground state for small lpha N
- At $\alpha N = 1$, homogenous ground state is destabilized. Formation of "bright soliton"
- Hamiltonian in 2nd quantized version:

$$H = \int d\theta \,\psi^{\dagger}(-\frac{\partial_{\theta}^{2}}{2m})\psi - \alpha |\psi|^{4} - \mu(|\psi|^{2} - N)$$

Goldstone modes

LL Hamiltonian of lowest modes can be written as SU(3) invariant ٠ Hamiltonian with explicit breaking

$$H = H_{SU(3)} + H_{br}$$

- Particle number breaks SU(3) symmetry down to U(1) \rightarrow pseudo-٠ Goldstone doublet due to explicit breaking
- For $\alpha N = 1, \ H_{br} = 0$. Light mode becomes massless. •
- Effective Hamiltonian around critical point ٠

 $H_{Gold} \sim (n_{gold})^2 \alpha_{gold} + n_{gold} m_{gold}^2$ \rightarrow gap $\Delta \sim \frac{1}{N} \left(\frac{\hbar^2}{2R^2m} \right)$

- LL only one light mode, but simple extensions can supply $\mathcal{O}(N)$ ٠ modes with gap 1/N
- Entropy $S \sim N$ ٠
- Decoupling as $1/N \rightarrow$ "no hair"

29.09.2016

Goldstone modes Entropy and no hair

• LL Hamiltonian of lowest modes can be written as SU(3) invariant Hamiltonian with explicit breaking

$$H = H_{SU(3)} + H_{br}$$

- Particle number breaks SU(3) symmetry down to U(1) → pseudo-Goldstone doublet due to explicit breaking
- For $lpha N=1,\ H_{br}=0$. Light mode becomes massless.
- Effective Hamiltonian around critical point

$$H_{Gold} \sim (n_{gold})^2 \alpha_{gold} + n_{gold} m_{gold}^2$$

ightarrow gap $\Delta \sim rac{1}{N} \left(rac{\hbar^2}{2R^2m}
ight)$

- LL only one light mode, but simple extensions can supply $\mathcal{O}(N)$ modes with gap 1/N

- Entropy
$$S \sim N$$

• Decoupling as $1/N \rightarrow$ "no hair"

29.09.2016

Goldstone modes Entropy and no hair

• LL Hamiltonian of lowest modes can be written as SU(3) invariant Hamiltonian with explicit breaking

$$H = H_{SU(3)} + H_{br}$$

- Particle number breaks SU(3) symmetry down to U(1) → pseudo-Goldstone doublet due to explicit breaking
- For $lpha N=1,\ H_{br}=0$. Light mode becomes massless.
- Effective Hamiltonian around critical point

$$H_{Gold} \sim (n_{gold})^2 \alpha_{gold} + n_{gold} m_{gold}^2$$

 \rightarrow gap $\Delta \sim \frac{1}{N} \left(\frac{\hbar^2}{2R^2m} \right)$

- LL only one light mode, but simple extensions can supply $\mathcal{O}(N)$ modes with gap 1/N

• Entropy
$$S \sim N$$

• Decoupling as $1/N \rightarrow$ "no hair"

29.09.2016

Quantumness

- Ground state at critical point characterized by large quantum fluctuations
- Fluctuations δa_k for low k strongly entangled in GS
- Breakdown of mean field theory despite large N, large macroscopic quantumness!
- Superposition of classical field configurations
- <u>Testable through engineering appropriate coupling to</u> <u>external modes, e.g. magnetic field, ...</u>

Quantumness

- Ground state at critical point characterized by large quantum fluctuations
- Fluctuations δa_k for low k strongly entangled in GS
- Breakdown of mean field theory despite large N, large macroscopic quantumness!
- Superposition of classical field configurations
- <u>Testable through engineering appropriate coupling to</u> <u>external modes, e.g. magnetic field, ...</u>

Particle loss and collapse

$$\dot{N} = -\int \Gamma(\mathbf{k}_1, \mathbf{k}_2) \phi_{\mathbf{k}_1}^{\dagger} \phi_{\mathbf{k}_2}$$

- Physical picture for condensate evaporation: Condensate modes scatter, eject on-shell particle
- Scaling solutions $R_c(N) \sim \Lambda^{-1} \sqrt{a_0 N} \Rightarrow \alpha N \sim 1$
- Time dependence corresponds to Hawking loss law:

$$\dot{R}_c \sim -\frac{1}{\Lambda^2 R_c^2}$$

- Process of course unitary. Backreaction included. ☺
- Emission of other degrees of freedom suppressed by N^\prime/N Trapping.
- Can in principle be tested in labs (Bosenova, ...)
- Use Feshbach resonance to tune self-interaction to maintain criticality.

Particle loss and collapse

$$\dot{N} = -\int \Gamma(\mathbf{k}_1, \mathbf{k}_2) \phi_{\mathbf{k}_1}^{\dagger} \phi_{\mathbf{k}_2}$$

- Physical picture for condensate evaporation: Condensate modes scatter, eject on-shell particle
- Scaling solutions $R_c(N) \sim \Lambda^{-1} \sqrt{a_0 N} \Rightarrow \alpha N \sim 1$
- Time dependence corresponds to Hawking loss law:

- Process of course unitary. Backreaction included. \bigcirc
- Emission of other degrees of freedom suppressed by N^\prime/N . Trapping.
- Can in principle be tested in labs (Bosenova, ...)
- Use Feshbach resonance to tune self-interaction to maintain criticality.

Instability implies Entanglement

- Phase space instability with positive Lyapunov coefficient λ
- In QM, no compression beyond \hbar -> quantum breaking after

 $t_{\rm br} \sim \lambda^{-1} \log S/\hbar$

- For critical BEC analogous mechanism, with $S\sim \hbar N$
- LL after quantum quench to $\alpha N > 1$, monitor entanglement entropy
- In 3+1d $\lambda = R$
- Agrees with scrambling time!
- Again testable by quenching through Feshbach resonance

Instability implies Entanglement

- Phase space instability with positive Lyapunov coefficient λ
- In QM, no compression beyond \hbar -> quantum breaking after

 $t_{\rm br} \sim \lambda^{-1} \log S/\hbar$

- For critical BEC analogous mechanism, with $S\sim \hbar N$
- LL after quantum quench to $\alpha N > 1$, monitor entanglement entropy
- In 3+1d $\lambda = R$
- Agrees with scrambling time!
- Again testable by quenching through Feshbach resonance

Instability implies Entanglement

- Phase space instability with positive Lyapunov coefficient λ
- In QM, no compression beyond \hbar -> quantum breaking after

 $t_{\rm br} \sim \lambda^{-1} \log S/\hbar$

- For critical BEC analogous mechanism, with $S\sim \hbar N$
- LL after quantum quench to $\alpha N > 1$, monitor entanglement entropy
- In 3+1d $\lambda = R$
- Agrees with scrambling time!
- Again testable by quenching through Feshbach resonance

Instability implies Entanglement

- Phase space instability with positive Lyapunov coefficient λ
- In QM, no compression beyond \hbar -> quantum breaking after

 $t_{\rm br} \sim \lambda^{-1} \log S/\hbar$

- For critical BEC analogous mechanism, with $S\sim \hbar N$
- LL after quantum quench to $\alpha N > 1$, monitor entanglement entropy
- In 3+1d $\lambda = R$
- Agrees with scrambling time!
- Again testable by quenching through Feshbach resonance

Rethinking Quantum Field theory

Conclusions

- Quantum criticality responsible for many BH properties in lab systems:
 - Trapping
 - Baldness and decoupling
 - Entropy
 - Temperature and evaporation
 - Quantumness
 - Scrambling
- Many of these properties can be experimentally tested with current technology.

Many other results and open questions

- What to learn about gravity? Useful description of BH as BECs?
- Black hole formation both through collapse and high energy scattering. Model as condensate formation? (Dvali, Gomez, Lüst, Stieberger, Isermann; Kühnel, Sundborg)
- Nonperturbative understanding of black holes as bound states. (Hofmann, Rug, Gründing, Müller)
- Global charges.

(Dvali, Gomez; Gußmann; Kühnel, Sandstad)

• Goldstone modes and broken gauge symmetries

(Averin, Dvali, Gomez, Lüst, Zell)

- Observation!
- Construct thermalizing Bose condensates and measure them!