Metastability, Chaotic Inflation, and Primordial Black Holes

Kyohei Mukaida

Kavli IPMU, Univ. of Tokyo

Based on I 605.04974 (PhysRevD.94.063509) In collaboration with M.Kawasaki, T.T.Yanagida

Introduction

Metastability v.s. Inflation

Metastable Electroweak Vacuum v.s. Chaotic Inflation

Metastability v.s. Inflation

during inflation stabilized for

- Curvature coupling of Higgs: $\xi R h^2$
- Stabilize the EW vacuum during inflation @ $\xi > O(0.1)$

 $-\mathscr{L}_{\text{int}}(\phi,h) = \frac{1}{2}\xi Rh^2 \qquad \qquad m_{H;h}^2 = 12\xi H_{\text{inf}}^2 \qquad \gtrsim H_{\text{inf}}^2$

• However, the "tachyonic resonance" can destabilize it afterwards!

Motivation

Is there any interesting scenario that is consistent with the metastable electroweak vacuum and chaotic inflation?

Requirements:

- EW vacuum should be stabilized during the course of cosmological evolution.
- A candidate of **DM** is provided.
- BAU can be explained.

We have proposed **a simple scenario** in which

- Initial condition problem is solved.
- EW vacuum is always stabilized during inflation, preheating, and afterwards.
- Our solution naturally yields **PBHs** that can be a dominant component of **DM**.
- Leptogenesis can be accommodated (BAU).

Ingredients: Chaotic New Reheating RD

• Chaotic inflation

- (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

• Curvature coupling

- Stabilize the EW vacuum during inflation(s).

• New inflation

- (i) Avoid the resonance after inflation + (ii) produce **PBHs** as a candidate of DM!

Kyohei Mukaida - Kavli IPMU

Ingredients: Chaotic New Reheating RD

• Chaotic inflation

- (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

• Curvature coupling

- Stabilize the EW vacuum during inflation(s).

New inflation

- (i) Avoid the resonance after inflation + (ii) produce PBHs as a candidate of DM!

• (0) Solve the initial condition problem

- Drawback of new inflation: Universe has to start with a large region in which new inflaton is homogeneous and close to the local minimum of its potential...extreme fine tuning is required.

Ingredients: Chaotic New Reheating RD

Chaotic inflation

- (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

• Curvature coupling

- Stabilize the EW vacuum during inflation(s).

New inflation

- (i) Avoid the resonance after inflation + (ii) produce PBHs as a candidate of DM!

• (0) Solve the initial condition problem

- Drawback of new inflation: Universe has to start with a large region in which new inflaton is homogeneous and close to the local minimum of its potential...extreme fine tuning is required.

⇒ Chaotic inflaton can provide a dynamical reason why new inflaton had such a specific value initially.

[Izawa, Kawasaki, Yanagida]

e.g.
$$-\mathcal{L}_{int} = c^2 \phi^2 \varphi^2$$
 $m_{\varphi}^2 \sim c^2 \Phi^2$

New inflation starts @ $m_{\varphi} \sim H_{\rm new}$

(c.f.) another solution: tunneling via CDL instanton \rightarrow open Universe

Ingredients:

• Chaotic inflation

- (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

• Curvature coupling

- Stabilize the EW vacuum during inflation(s).

New inflation

- (i) Avoid the resonance after inflation + (ii) produce PBHs as a candidate of DM!

• (i) Free from the resonance

- Flat potential \rightarrow small amplitude

One requirement: $H_{\rm new} \sim H_{\rm ch}$

 \Rightarrow High T_R (good for leptogenesis)

Ingredients: Chaotic New Reheating RD

- Chaotic inflation
 - (0) Solve the initial condition problem + (ii) provide primordial density perturbations.

• Curvature coupling

- Stabilize the EW vacuum during inflation(s).
- New inflation
 - (i) Avoid the resonance after inflation + (ii) produce PBHs as a candidate of DM!

 \odot (ii) Formation of PBHs by large scalar perturbations ζ of new inflation

Kyohei Mukaida - Kavli IPMU

Time

Primordial Black Holes as whole DM

• New inflation potential:

$$\mathcal{V}(\varphi) = \left(v^2 - g\frac{\varphi^4}{M_{\rm pl}^2}\right)^2 - \kappa v^4 \frac{\varphi^2}{2M_{\rm pl}^2} - \varepsilon v^4 \frac{\varphi}{M_{\rm pl}}$$

• Abundance of PBHs for one particular parameter of the new inflation potential

of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Primordial Black Holes as whole DM

• New inflation potential:

$$\mathcal{V}(\varphi) = \left(v^2 - g\frac{\varphi^4}{M_{\rm pl}^2}\right)^2 - \kappa v^4 \frac{\varphi^2}{2M_{\rm pl}^2} - \varepsilon v^4 \frac{\varphi}{M_{\rm pl}}$$

• Abundance of PBHs for one particular parameter of the new inflation potential

Conclusions

Conclusions

- Chaotic inflation poses a threat to the stability of EW vacuum because it easily generates large fluctuations of Higgs during inflation or preheating.
- We have proposed a simple scenario (curvature coupling + chaotic inflation + new inflation) in which
 - Initial condition problem is solved.
 - EW vacuum is always stabilized during inflation, preheating, and afterwards.
 - Our solution naturally yields **PBHs** that can be a dominant component of **DM**.
 - Leptogenesis can be accommodated (BAU).

[M.Kawasaki. KM, T.T, Yanagida, 1605.04974, PhysRevD.94.063509]

Gravitational waves via second order effects of large scalar perturbations can be an interesting probe. [Saito, Yokoyama; Bugaev, Klimai]

Numerical Simulation

Vacuum decay via Tachyonic Resonance: $-\mathscr{L}_{int}(\phi,h) = \frac{1}{2}\xi Rh^2$

• To check $\xi \lesssim 10 \times \left[\frac{1}{\mu_{crv}}\right]^2 \left[\frac{\sqrt{2}M_{pl}}{\Phi_{ini}}\right]^2$, we performed a classical lattice simulation. - Stable: $\xi = 10$ - Unstable: $\xi = 20$ 10^{2} a³(<\$\$ 10² $a^3 (\langle \phi^2 \rangle$ 10^{0} $a^3 \langle \phi \rangle^2$ 10⁻² 10⁻² 10⁻⁴ 10^{-4} 10⁻⁶ 10⁻⁶ $a^{3}\left\langle h^{2}\right\rangle$ 10⁻⁸ 10⁻⁸ $a^{3}\langle\delta\phi^{2}\rangle_{10^{-10}}$ 10⁻¹⁰ 10 15 15 25 10 20 25 30 5 20 $m_{\phi}t$ m₀t $m_{\phi}t$ m₄t Resonance is over: Resonance is over: **p**∗ < m_Φ $p_* < m_{\Phi}$

Kyohei Mukaida - Kavli IPMU

[Ema, KM, Nakayama, 1602.00483]

Gravitational Wave

- GWs are produced via second order effects
 - Perturbed metric:

 $\mathrm{d}s^2 = -a^2(\eta) \left[e^{2\Phi} \mathrm{d}\eta^2 - e^{-2\Psi} \left(\delta_{ij} + \frac{1}{2} h_{ij} \right) \mathrm{d}x^i \mathrm{d}x^j \right]$

Scalar perturbs: $\Psi = \Phi$ (neglect anisotropic stress)

Tensor perturb

[Saito, Yokoyama; Bugaev, Klimai]

• Large scalar perturbations act as a source term in equation of motion for GWs.

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

projection to transverse-traceless part

Source term:
$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$

• Abundance of GWs is roughly given by...

$$\Omega_{\rm GW}(k) \sim 3 \times 10^{-8} \left(\frac{\mathscr{P}_{\zeta}(k)}{0.01}\right)^2$$