Peter Pauli

Observation of the Top Quark

DØ Collaboration arXiv:hep-ex/9503003v1 3 Mar 1995

Outline

- * Pre top quark era
- * The D0 experiment
- Analysis techniques
- Results
- * Implications on SM

Pre Top Quark era

- several lower mass limits for the top quark by UA1/2, e⁺e⁻collider, W/Z measurements and other EW measurements
- * upper limits from consistency with W/Z masses

Tevatron

- * Running time 1983-2011
- * 6km circumference
- * proton anti-proton collider
- * 1.96 TeV centre of mass energy

D0 @ Tevatron

- inner tracking detectors
- * calorimeters
- outside muon chambers

Top Production

Top Decay

 $b \to \mu + X$

- * Di-lepton: $e \mu + jets$ e e + jets $\mu \mu + jets$
- Single-lepton
 e + jets
 µ + jets
- Single-lepton b-tagged
 e + jets / μ
 μ + jets / μ

Kinematic Requirements

	Loptons			Iots				
		Leptons		Jets				
Channel	E	$\mathbb{E}_T(e)$	$p_T(\mu)$	$N_{ m jet}$	E_T	E_T	H_T	\mathcal{A}
$e\mu + \text{jets}$		15	12	2	15	20	120	-
ee + jets		20		2	15	25	120	-
$\mu\mu + \text{jets}$			15	2	15	-	100	-
e + jets		20		4	15	25	200	0.05
$\mu + { m jets}$			15	4	15	20	200	0.05
$e + \mathrm{jets}/\mu$		20		3	20	20	140	-
$\mu + {\rm jets}/\mu$			15	3	20	20	140	-

* tagged muon minimum $p_T = 4GeV/c$

- * for last 70% of data muons restricted to $|\eta| < 1$
- * $\mu\mu$ +jets and μ +jets / μ inconsistent with Z + jets (kin. fit)

H_T Cuts

FIG. 1. Shape of H_T distributions expected for the principal backgrounds (dashed line) and 200 GeV/c² top quarks (solid line) for (a) $e\mu$ + jets and (b) untagged single-lepton + jets.

Avs H_T Cuts

- Event shape criteria
 - ideal
 spherical:
 A=1/2
 - plane circular
 or linear:
 A=0

FIG. 2. \mathcal{A} vs H_T for single-lepton events for (a) multijet background from data (effective luminosity = 60 × data luminosity), (b) background from W + 4 jet VECBOS Monte Carlo simulation (580 pb⁻¹), (c) 180 GeV/ c^2 top ISAJET Monte Carlo simulation (2200 pb⁻¹), and (d) data (13.5 pb⁻¹). The dotted lines represent the event shape cuts used in the analysis.

Event Display

Results

- 17 events with expected background of 3.8
- * 11 were used in kinematic fit to determine the top quark mass
- mass:
 199(+19 -21)(± 22)GeV
- production cross-section:
 6.4 ± 2.2pb

FIG. 5. Fitted mass distribution for candidate events (histogram) with the expected mass distribution for 199 GeV/c^2 top quark events (dotted curve), background (dashed curve), and the sum of top and background (solid curve) for (a) standard and (b) loose event selection.

Implications

- constrained Higgs Mass
- * top quark is the heaviest elementary particle known... why so heavy?
- top decays before it hadronizes: unique opportunity to study a "bare" quark
- (Yukawa) coupling to the Higgs field is close to 1: special roll in EW symmetry breaking?
- * maybe sensitive to new couplings?
- stability of the universe

Thank You

Papers:

- * Observation of the Top Quark, Phys. Rev. Letters {74} 2632 (1995)
- * Search for High Mass Top Quark Production in pbarp Collisions at sqrt s = 1.8TeV, Phys. Rev. Letters {74} 2422 (1995)
- * The D0 Detector, Nucl. Instr. and Methods, A338, 185 (1994)

Backup: H_T Data

