

Analysis Center Statistical Tool Group 20th November 2008

Gfitter – A Generic Fitting Package for HEP Model Testing

Martin Goebel DESY/ Universität Hamburg

Gfitter group: H. Flächer (CERN), M. G. (Univ. Hamburg, DESY), J. Haller (Univ. Hamburg), A. Höcker (CERN), K. Mönig (DESY), J. Stelzer (DESY)

- Gfitter: A Generic Fitter Project for HEP Model Testing
- aim: provide a reliable framework for involved fitting problems in the LHC era (and beyond).
- software:
 - abstract object-oriented code in C++ using ROOT functionality
 - core package:
 - tools for data handling, fitting, statistical analyses
 - physics: plug-in packages
 - **GSM**: Library for the Standard Model fit to the electroweak precision data
 - **G2HDM**: Library for the 2HDM extension of the SM
 - **GSUSY**: Library for supersymmetric extensions of the SM (in preparation)

The Gfitter project

- Gfitter features:
 - consistent treatment of statistical, systematic and theoretical errors, correlations, and inter-parameter dependencies
 - theoretical uncertainties: Rfit prescription [A Höcker et al., EPJ C21, 225 (2002)]
 - theory uncertainties included in χ^2 estimator with flat likelihood in allowed ranges
 - fitting:
 - several minimization algorithms available, e.g. TMinuit, genetic fitter
 - Next steps: inclusion of lvmini
 - caching of computation results between fit steps
 - only theory predictions are recalculated that depend on modified parameters
 - substantial speed improvement
 - advanced statistical analyses (frequentist approach):
 - e.g. parameter scans, contours, MC toy analyses, goodness-of-fit pvalue, etc.

- first theoretical library implemented in Gfitter framework: SM predictions of electroweak precision observables
- state-of-the art calculations (OMS scheme); in particular:
 - M_W and sin²θ^I_{eff}: full two-loop + leading beyond-two-loop correction
 [M. Awramik et al., Phys. Rev D69, 053006 (2004 and ref.][M. Awramik et al., JHEP 11, 048 (2006) and refs.]
 - radiator functions: N³LO of the massless QCD Adler function [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]
- calculations thoroughly cross-checked against ZFitter (Fortran) package → excellent agreement
- free fit parameters:
 - $M_{Z'}$, $M_{H'}$, $m_{t'}$, $\Delta \alpha_{had}^{(5)}(M_{Z}^{2})$, $\alpha_{S}(M_{Z}^{2})$, $\overline{m}_{c'}$, \overline{m}_{b}
 - parameters for theoretical uncertainties on $M_W (\delta M_W = 4-6 \text{GeV})$, $\sin^2 \theta_{eff}^I (\delta \sin^2 \theta_{eff}^I = 4.7 \cdot 10^{-5})$ (and the electroweak form factors ρ_Z^f , κ_Z^f)

SM fit: experimental input

Parameter	Input value	Free in fit
M_Z [GeV]	91.1875 ± 0.0021	yes
Γ_Z [GeV]	2.4952 ± 0.0023	_
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-
R^0_ℓ	20.767 ± 0.025	-
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-
$A_\ell (*)$	0.1499 ± 0.0018	-
A_c	0.670 ± 0.027	-
A_b	0.923 ± 0.020	-
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-
R_c^0	0.1721 ± 0.0030	-
R_b^0	0.21629 ± 0.00066	-
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	-
M_H [GeV] ^(\circ)	Likelihood ratios	yes
M_W [GeV]	80.398 ± 0.025	_
Γ_W [GeV]	2.106 ± 0.050	_
\overline{m}_{e} [GeV]	1.25 ± 0.09	yes
\overline{m}_b [GeV]	4.20 ± 0.07	yes
m_t [GeV]	172.4 ± 1.2	yes
$\Delta \alpha_{ m had}^{(5)}(M_Z^2)^{(\dagger \Delta)}$	2769 ± 22	yes
$\alpha_s(M_Z^2)$	-	yes
$\delta_{\mathrm{th}} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} ^{(\dagger)}$	$[-4.7, 4.7]_{\mathrm{theo}}$	yes
$\delta_{\mathrm{th}} \rho_Z^f$ (†)	$[-2,2]_{\mathrm{theo}}$	yes
$\delta_{ m th}\kappa_Z^f$ (†)	$[-2,2]_{\mathrm{theo}}$	yes

- usage of latest experimental results:
 - **Z-pole observables: LEP/SLD results** [ADLO+SLD, Phys. Rept. 427, 257-(2006)]
 - M_w and Γ_w: weighted mean of LEP + Tevatron [ADLO, hep-ex/0612034] [CDF, Phys Rev. D77, 112001 (2008)] [CDF, Phys. Rev. Lett. 100,
 - 071801 (2008)] [CDF+D0, Phys. Rev. D 70, 092008 (2004)] **m_{cl} m_b: world averages** [PDG, J. Phys. G33,1 (2006)]
 - m₁: <u>latest Tevatron average</u> [arXivx:0808.1089 [hep-ex]]
 - $\Delta \alpha_{had}^{(5)}(M_z^2)$: [K. Hagiwara et al., Phys. Lett. B649, 173 (2007)] + Gfitter rescaling mechanism to account for α_s -dependency
- fits are performed in two versions:
 - *Standard fit*: all data except results from direct Higgs searches
 - Complete fit: all data including results from direct Higgs searches at LEP [ADLO: Phys. Lett. B565, 61 (2003)] and Tevatron [CDF+D0: arXiv:0804.3423, CDF+D0: arXiv:0808.0534]

⁺ in units of 10⁻⁵

- Usage of CL_{S+B}:
 - describe probability of upwards fluctuations of the test statistics (LLR, -2lnQ)
 - transform one-sided CL_{S+B} into a two-sided CL
 - contribution to χ^2 estimator obtained via inverse error function
 - in optimal case: equivalent to χ^2 interpretation of test statistics

$$\chi^2(M_H) = \frac{(O_{\text{expected},SB} - O_{observed})^2}{\sigma_{band}^2}$$

SM fit: fit results

- convergence and naïve p-values:
 - standard fit: $\chi^2_{min}=16.4 \rightarrow \text{Prob}(\chi^2_{min}, 13)=0.23$
 - complete fit: $\chi^2_{min}=18.0 \rightarrow \text{Prob}(\chi^2_{min}, 14)=0.21$
- $\alpha_{\rm S}$ from *complete fit*: $\alpha_{\rm S}(M_Z^2) = 0.1193^{+0.0028}_{-0.0027} \pm 0.0001$
 - first error is experimental fit error
 - second error due to missing QCD orders:
 - incl. variation of renorm. scale from M_Z/2 to 2M_Z and massless terms of order/beyond $\alpha_s^{-5}(M_Z)$ and massive terms of order/beyond $\alpha_s^{-4}(M_Z)$
 - excellent agreement with recent N³LO result from τ decay [M. Davier et al., arXiv:0803.0979]

 $\alpha_s(M_z^2) = 0.1212 \pm 0.0011$

- pull values of *complete fit*
 - no value exceeds 3σ
 - known tension: leptonic and hadronic asymmetries

Treatment of theo. uncertainties

Uncertainties for Theory-Prediction (two main sources)

 $M_{W} \pm \Delta M_{W} (theo) \qquad \qquad \sin^{2} \Theta_{eff}^{lept} \pm \Delta \sin^{2} \Theta_{eff}^{lept} (theo)$

Old Treatment:

Band was done by **shifting** the predictions by these uncertainties **redoing** the scan and **choosing** the worst cases

New Treatment:

(à la Rfit [CKMFITTER])

if measurement

- within theory uncertainty: no contribution to χ^2 .
- outside theory uncertainty: χ² determined by distance between measurement and prediction ± uncertainty

SM fit: 2-dim results

- Gfitter allows 1-dim, 2-dim scans and contour plots
- different types of fits e.g.:
 - indirect (i.e. excluding the respective measurements)
 - including the *real* measurements
 - including in addition the results from direct Higgs searches

- indirect fit results agree with experimental values
- results from Higgs searches significantly reduce the allowed parameter space
- good probe of SM, if M_H is measured

Goodness of global fit

by using toy analysis

- execute the SM fit
- generate toy sample by random sampling from Gaussian distributions around initial fit results (Correlations are taken into account)
- refit with new values for observables, achieve a new χ^2

SM fit: statistical analysis

- p-values for fixed Higgs masses using toy experiment
- <u>here</u>: p-value is greater than for fit with free Higgs mass
 - Higgs mass fixed
 - n_{dof} increased by one

- Gfitter allows statistical analysis of fit results
- example: study of the Gaussian properties of the $\Delta \chi^2$ estimator
 - good agreement of CL from MC toy with Gaussian approximation using Prob().

2HDM fit: exp. input and theory

- 2HDM (Type-II)
 - additional Higgs doublet
 - one doublet couples to u-type, one doublet couples to d-type quarks
 - 6 free parameters \rightarrow M_{H±} , M_{A0}, M_{H0}, M_h, tan β , $|\alpha|$
- so far: only looked at processes sensitive to charged Higgs $\rightarrow M_{H\pm}$, tan β

observable	input value	exp. ref	calculation
R _b ⁰	0.21629 ± 0.00066	[ADLO, Phys. Rept.427, 257 (2006)	[H. E. Haber and H. E. Logan, Phys. Rev. D62, 015011 (2000)]
BR (B->Χ _s γ)	(3.52±0.23±0.09) [•] 10 ⁻⁴	[HFAG, latest update]	[M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)]
BR (Β->τν)	(1.51±0.33)·10 ⁻⁴	[P.Chang, Talk at ICHEP 2008]	[W. S. Hou, Phys. Rev. D48, 2342 (1993)]
BR (Β- >μν)	(-5.7±6.8±7.1)·10 ⁻⁴	[E. Baracchini, Talk at ICHEP 2008]	[W. S. Hou, Phys Rev. D48, 2342 (1993)]
BR (Κ-> μν)/ BR(π->μν)	1.004±0.007	[FlaviaNet,, arXiv:0801.1817]	[FlaviaNet, arXiv:0801.1817]
BR(B->DTV)/ BR(B->Dev)	0.416±0.117±0.052	[Babar, Phys. Rev. Lett 100, 021801 (2008)]	[J. F. Kamenik and F. Mescia, arXiv:0802.3790]

2HDM fit: fit results

- Overlay of individual 95% CL excluded regions
 - assuming n_{dof}=1 and 2-sided limits
- Combined fit:
 - excluded area depends on assumptions [Prob($\Delta \chi^2$, n_{dof}=1), Prob($\Delta \chi^2$, n_{dof}=2)]
 - resolved by MC toy study
 - 2-sided limits
 - χ^2_{min} =3.9 at M_H=858 GeV and tan β =6.8
- Excluded at 95% CL:
 - small $tan\beta$
 - for all $tan\beta$
 - $M_{\rm H} < 240 \; {\rm GeV}$
 - $M_{\rm H} < (8.6 \, {\rm tan}\beta) \, {\rm GeV}$

Summary

- Gfitter is a framework for involved fitting problems
- First theory package: Revisit of the electroweak fit of the SM
 - latest theoretical calculations and experimental results
 - advanced studies of the statistical properties of the fit
 - inclusion of direct Higgs searches
- Example for SM extension: 2HDM (Type-II)
- Next steps:
 - implementation of more theories, e.g. SUSY models, little Higgs
 - improve framework, e.g. lvmini
- More information:
 - http://cern.ch/Gfitter
 - paper submitted to Eur. Phys. J. C, (arXiv:0811.0009)

Fits:

SM fit: prospects

- LHC, ILC (+GigaZ)
 - exp. improvement on M_W , m_t , $sin^2\theta^{l}_{eff}$, R_{l}^0
- improved $\Delta \alpha_{had}^{(5)}(M_Z^2)$, e.g. $\sigma(\Delta \alpha_{had}^{(5)}) \sim 7.10^{-5}$ [F. Jegerlehner, hep-ph/0105283]

Quantity	Expected uncertainty				
	Present	LHC	ILC	GigaZ (ILC)	
M_W [MeV]	25	15	15	6	
$m_t \; [\; \text{GeV}]$	1.2	1.0	0.2	0.1	
$\sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$	17	17	17	1.3	
$R_{\ell}^0 [10^{-2}]$	2.5	2.5	2.5	0.4	
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) [10^{-5}]$	22 (7)	22 (7)	22 (7)	22 (7)	
$M_H (= 120 \text{ GeV}) [\text{ GeV}]$	$^{+56}_{-41} \begin{pmatrix} +52\\ -39 \end{pmatrix} \begin{bmatrix} +39\\ -31 \end{bmatrix}$	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$	$^{+26}_{-23} \begin{pmatrix} +20\\ -18 \end{pmatrix} \begin{bmatrix} +8\\ -7 \end{bmatrix}$	
$\alpha_s(M_Z^2)$ [10 ⁻⁴]	28	28	28	6	

[ATLAS, Physics TDR (1999)][CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893] [I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hep-ph/0003275] [R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)] [A. H. Hoang et al., EPJ direct C2, 1 (2000)][M. Winter, LC-PHSM-2001-016]

- not used: α_{s} , M_H measurements
- assume $M_{\rm H}$ =120 GeV
- improvement of M_H prediction
 - to be confronted with direct measurement \rightarrow goodness-of-fit
 - broad minima: Rfit treatment of theo. uncertainties
- GigaZ: significant improvement for $\alpha_{\rm s}({\rm M_7^2})$

5

 $^{\rm L}\chi^2$

3σ

2σ

1σ