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Outline

Gravitational wave landscape
Millisecond pulsars as cosmic clocks
GW signal in the nano-Hz band
Upper limit on GW signal with EPTA
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GW landscape

[credits: A. Sesana]
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LIGO: GW150914

Detection of Gravitational wave signal from the merging black
hole binary.
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eLISA: GW observatory in space

Gravitational wave in mHz: eLISA mission to be launched 20...
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Pulsar Timing Array

The main idea behind pulsar timing array (PTA) is to use
ultra-stable millisecond pulsars as beacons for detecting GW in
the nano-Hz range (10−9 − 10−7 Hz).

[credits D. Champion]
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Milisecond Pulsars

Pulsars are neutron stars with rapid rotation and strong
magnetic field. Period from few seconds to few milliseconds
(MSP). MSP - usually old, recycled pulsars, often in binaries.
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IPTA/EPTA

International Pulsar Timing Array (IPTA) consortium of consortia:
PPTA (Australian), EPTA (European), NanoGrav (North
American).

EPTA: consist of 5 radio telescopes (coherent observations;
LEAP-project)
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Timing pulsars

[Figs. credits S. Burke-Spolar and L. Lentati]

Each pulse profile has a lot of micro-structure, but
averaged over hour it is stable
We use average pulse profile to get time-of-arrival (TOA)
for the pulses
We know well the spin of pulsars: can predict TOAs and
subtract them from measured: residuals
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Timing pulsars

We need to add a timing model: to adjust the theoretical
TOAs taking into account various physical effects
We need to take into account dispersion and time
dependent variations of dispersion, need to fit for rate of
change of rotation (b), for position of a pulsar (c), proper
motion of a pulsar (d) to get clean residuals
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Timing residuals

The complete timing model for times-of-arrival depends on
many parameters:

ttoa = ttoa(P, Ṗ, P̈,∆clock ,∆DM(L),∆�−⊕,∆E ,∆S)

P, Ṗ, P̈ - period of pulsar, its spin-down, glitches
∆clock difference in local clock and terrestrial standard
∆DM(L) delay caused by ISM
∆�−⊕ translation from the SSB to observatory frame
∆E accounts for the time dilation from the moving pulsar (and
observatory) and the gravitational redshift caused by the Sun
and planets or the binary companion
∆S is the extra time required by the pulses to travel through the
curved space-time containing the Sun/planets/companions

dt = tp
toa − to

toa = dterrors + δτGW + noise
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Response to GW

Assume TT-gauge. On the ground (LIGO) or in space (eLISA)
we use Michelson interferometer to measure the phase (or
frequency) difference between the laser beams travelled along
arms in the tidal field of GW.

PTA can be seen as a multi-arm detector where e/m signal
travels only in one direction (from a pulsar to the Earth). Pulsar
plays role of an accurate clock, and we measure change in
phase (frequency) of arriving pulses (similar to the frequency
(phase) of the laser light)

Important quantity in the response function is ε = (2πfL/c): if
ε << 1 - long wavelength approximation R ∼ hijx ix j

Introduce f∗ : ε(f∗) = 1, LIGO: f∗ = 12000Hz, LISA: f∗ = 0.05
Hz, PTA: f∗ = 0.002nHz
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Response to GW

dt = tp
toa − to

toa = dterrors + δτGW + noise

The response to GW is given as

δτGW = r(t) =

∫ t

0

δν

ν
(t ′)dt ′;

δν

ν
=

1
2

n̂i n̂j

1 + n̂.k̂
∆hij

n

L

k

(x, t)

DL

+

-

-

+

(xp, tp)

∆hij = hij(tp = t − L(1 + n̂.k̂))− hij(t)
Since the pulsars are not correlated (tp,
the emission time of the pulse detected
at the time t on the Earth, is different for
all pulsars) the “pulsar” terms do not add
up coherently.

Stas Babak for EPTA collaboration EPTA: search for GWs 13/ 42



Super massive black holes (SMBHs)

We believe that (super) massive black holes reside in the nuclei
of every galaxy. SMBHs are formed from relatively small initial
seeds (popIII stars, direct collapse of a giant protocloud) and
acquired mass through accretion and major mergers

[credits: G. De Lucia]
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SMBH binaries as GW sources

Main sources are super-massive (107 − 1010M�) black
hole binaries
PTA is sensitive to binaries in the broad orbits (period ∼
year)
The GWs remove orbital energy and angular momentum
from the binaries dE/dt ∼ η(M/r)5: signal is almost
monochromatic at nHz orbital frequency
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Population of SMBH binaries

  

Signal from a MBHB populationSignal from a MBHB population

Contribution of individual sources

Brightest sources in each 

frequency bin

Resolvable systems: Resolvable systems: i.e. 

systems whose signal is larger 

than the sum of all the other 

signals falling in their frequency 

bin

Total signal

Unresolved background

Theoretical 'average' spectrum

Spectrum averaged over 1000 

Monte Carlo realizations

[credits: A. Sesana]
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GW signal

Consider non-spinning SMBH binaries in circular orbit.

each pulsar and earth term are monochromatic signals

frequency of pulsar term might or might not coincide with the
earth term tp = t − L(1 + n̂.k̂)

amplitude of a pulsar term is larger (∼ ω−1/3)

sα = F+
α (k̂ , n̂α)

[
h+(tαp , ωα)

2πfα
− h+(t , ω)

2πf

]
+

F×α (k̂ , n̂α)

[
h×(tαp , ωα)

2πfα
− h×(t , ω)

2πf

]
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Earth-term and pulsar-term

Pulsar and earth terms "see" different part of the GW signal.

T- earth time

Tp – pulsar time

Stas Babak for EPTA collaboration EPTA: search for GWs 18/ 42



Earth-term and pulsar term
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Detection statistic and search algorithm

The likelihood function (likelihood of the signal with given
parameters is present in the observed data) is given by

P(~δt , ~θ) =
1√

(2π)ndet(C)
exp

(
−1

2
(~δt − ~s)T C−1(~δt − ~s)

)
,

~δt are observed timing residuals from all pulsars packed in a
single array of a total size n
~s is a model for a GW contribution from individual resolvable
signals.
C is a variance-covariance matrix:

Cαi,βj = Cwnδαβδij + Crn
ij δαβ + Cdm

ij δαβ + CGW
αi,βj .

Stas Babak for EPTA collaboration EPTA: search for GWs 20/ 42



Detection statistic and search algorithm

The likelihood function (likelihood of the signal with given
parameters is present in the observed data) is given by

P(~δt , ~θ) =
1√

(2π)ndet(C)
exp

(
−1

2
(~δt − ~s)T C−1(~δt − ~s)

)
,

~δt are observed timing residuals from all pulsars packed in a
single array of a total size n
~s is a model for a GW contribution from individual resolvable
signals.
C is a variance-covariance matrix:

Cαi,βj = Cwnδαβδij + Crn
ij δαβ + Cdm

ij δαβ + CGW
αi,βj .

Stas Babak for EPTA collaboration EPTA: search for GWs 20/ 42



Detection statistic and search algorithm

The likelihood function (likelihood of the signal with given
parameters is present in the observed data) is given by

P(~δt , ~θ) =
1√

(2π)ndet(C)
exp

(
−1

2
(~δt − ~s)T C−1(~δt − ~s)

)
,

~δt are observed timing residuals from all pulsars packed in a
single array of a total size n
~s is a model for a GW contribution from individual resolvable
signals.
C is a variance-covariance matrix:

Cαi,βj = Cwnδαβδij + Crn
ij δαβ + Cdm

ij δαβ + CGW
αi,βj .

Stas Babak for EPTA collaboration EPTA: search for GWs 20/ 42



Detection statistic and search algorithm

The likelihood function (likelihood of the signal with given
parameters is present in the observed data) is given by

P(~δt , ~θ) =
1√

(2π)ndet(C)
exp

(
−1

2
(~δt − ~s)T C−1(~δt − ~s)

)
,

~δt are observed timing residuals from all pulsars packed in a
single array of a total size n
~s is a model for a GW contribution from individual resolvable
signals.
C is a variance-covariance matrix:

Cαi,βj = Cwnδαβδij + Crn
ij δαβ + Cdm

ij δαβ + CGW
αi,βj .

Stas Babak for EPTA collaboration EPTA: search for GWs 20/ 42



Characterizing signal and noise

Individual signals are characterized by: Earth term A, ι, ψ,Φ0, f,
θ, φ, pulsar term Lα,Mc : (8 + Np parameters)

GW background (GWB) signal is characterized by amplitude and
slope A(f0), γ (for population of binaries γ = 13/3: (2
parameters)

"Red" noise and DM variations are characterized by amplitude
and slope (similar to GWB), DM variations depend on
measurement (radio) frequency. White noise: measurement
error σ is scaled + systemtics: αiσ

2 + β2
i :

(4× Np + (2× Nb)× Np) parameters).
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Analysing EPTA data

Analysing 41 pulsar (or 6 best pulsars for most
computationally expensive searches)
Noise: the noise parameters should not correlate across
pulsars (only GWB), so we can estimate parameters of the
noise for each pulsar separately (single pulsar analysis).
→ use either maximum likelihood estimators for the noise
parameters or posterior distribution to sample from.
Data analysis tools: Multi-modal genetic algorithm, MCMC
Hammer, MultiNest.
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Residuals of 6 best EPTA pulsars

From top to bottom these are PSRs: J0613-0200, J1012+5307,
J1600-3053, J1713+0747, J1744-1134, and J1909-3744
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Assumptions and setup

Assume non-spinning SMBHs in circular orbit
Model contains a single GW signal
Separate searches: (i) using earth-term only (ii) using full
non-evolving signal (fp = fe) (iii) using full evolving signal
Methods: We use frequentist and Bayesian methods for
setting upper limit on the strain of monochromatic GW
source
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Simulated data [SB, A. Sesana, 2012]

What do we expect to see if we use a “single-GW-source"
model?
Consider simulated data: 5 GW sources, and 50 pulsars.
The sky map assuming a single GW source.

With 1-source model we
resolve three strongest
sources (the size of circle ∼
strength)
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The upper limit on the strain of continuous GW signal
with EPTA data, [Babak+ 2015]

The upper limit on the strain of continuous GW signal:
6× 10−15 < A < 1.5× 10−14
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The upper limit on the strain of continuous GW signal
with EPTA data. [Babak+ 2015]

Directional dependence of the upper limit (at 7nHz)
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The upper limit on the strain of continuous GW signal
with EPTA data. [Babak+ 2015]

Horizon distance: max distance we are sensitive to.
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The upper limit on the strain of continuous GW signal
with EPTA data. [Babak+ 2015]

Given current EPTA sensitivity: what probability that we would
detect a GW signal?
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Stochastic GW background

Once more the likelihood:

P(~δt , ~θ) =
1√

(2π)ndet(C)
exp

(
−1

2
(~δt − ~s)T C−1(~δt − ~s)

)
,

where

Cαi,βj = Cwnδαβδij + Crn
ij δαβ + Cdm

ij δαβ + CGW
αi,βj .

The GW signal is a noise like, but noise which is the same in
each pulsar data. If it comes from superposition of multiple MBH
binaries then it has power-law spectral shape: S(f ) ∼ Agw f−13/3.
The red noise (jitter of the NS spin vector) has similar shape but
the noise is not correlated between pulsars Srn ∼ Arnf−γ , where
γ < 3.
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Searching GWB with EPTA pulsars. [Lentati+ 2015]

Estimation of the correlation coefficients and comparison to
Hellings-Downs correlation (dashed curve)
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Upper limit on GWB with EPTA pulsars & astrophysical
implication. [Lentati+ 2015]

Results in terms of Ωgw (f ) as a function of GW frequency, with
H0 = 70kms−1Mpc−1
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PPTA limit oh stochastic GWs [Shannon et al. 2015]

The best current limit on stochastic GW background from PPTA

data:
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Limiting parameters of strings from stochastic GWs
[Arzoumanian et al. 2015]

Assume that the stochastic GW background is created by
cosmic (super)strings, then the upper limit can be translated
into restrictions on the string parameters: tension (µ) vs.
probability reconnection and/or tension vs char. size at birth (α).
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Astrophysical uncertainties and future perspectives [S.

Burke-Spolaor 2015]

There are many uncertainties which come into predictions of
astrophysical GW background (talk by A. Sesana)
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Estimation of significance

We use Bayesian approach to the detection and parameter
estimation
Bayesian model selection (model that the signal is present
in the data vs. model where we have noise only) is based
on computation of the Bayes factor (ratio of evidence for
each hypothesis)
Need to quantify if it is significant or not
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Estimation of significance

LIGO: Time shift of H1 and L1 data > light propagation
time guarantees that there is no signal in coincidence (low
event environment)
eLISA: No need, usually high SNR events, the problem is
the signal confusion
PTA: ???, low SNR signal, signal is stochastic correlated
noise + (maybe) individual signals.

In PTA we can destroy correlation (Hellings-Downs) of the
signal across pulsars: (1) scramble the sky position of pulsars,
(2) mess up the phase across frequency bands
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Estimation of significance

We need to produce realistic data which has no GW signal
(or we destroy the GW properties (correlation) in the data)
Alternative: Search for a "wrong" signal in the data
"wrong"→ (1) using wrong position of pulsars on the sky
(2) using uncorrelated phase at different frequencies
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Let us look at "SNR" in the frequency domain ( [Anholm et.al.
2008]):

ρ ∼
∑
α,β

∑
k

f−13/3
k Γαβ(fk , θαβ)

Sαβ(fk , θαβ)

Pα(fk )Pβ(fk )

Sαβ(fk , θαβ) observed cross-correlation between each pair of
pulsars α, β, and Pα(fk ),Pβ(fk ) is PSD for each pulsar data at
frequency fk

f−13/3
k Γαβ(fk , θαβ) expected amplitude (spectral) and correlation
of GWB

Instead of touching the data (which is also possible), we modify the
"expected signal": Γαβ(fk , θαβ)→ Γαβ(fk , θ̃αβ) - changing the sky
position of pulsars; or Γαβ(fk , θαβ)→ Γαβ(fk , θαβ) cos(φα,k − φβ,k ) -
changing the phase at different fk .
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Estimation of significance

We have simulated the data with GWB: Bayes factor 43

We have performed both (1) sky position scramble (red) and (2)
freq. dependent phase shift: The Bayes factor is consistent with
common uncorrelated red noise
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[S. R. Taylor, L. Lentati, S. Babak, P. Brem, J. R. Gair, A. Sesana, A. Vecchio 2016]
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Summary

The SMBH binaries in the local Universe will create GW
signal which could be seen as a stochastic signal plus
(may be) few resolvable signals standing above the
background
Several search methods were developed: (i) search for
isotropic stochastic GWB (ii) search for multiple individual
signals (iii) combined single source(s) plus isotropic
background
No detection. The upper limits on the stochastic GWB:
EPTA: A < 3× 10−15, Ωgwh2 < 1.1× 10−9 ,
Nanograv: A < 1.5× 10−15, Ωgwh2 < 4.2× 10−10

PPTA: A < 10−15, Ωgw < 2.3× 10−10

and individual sources become astrophysically interesting
(we rule out some models).
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Summary

The GW signal in PTA is a result of long-term integration:
will gradually emerge
We have discussed two methods how to make destroy the
properties of the GWB in the data and estimate
significance of any a GW candidate
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