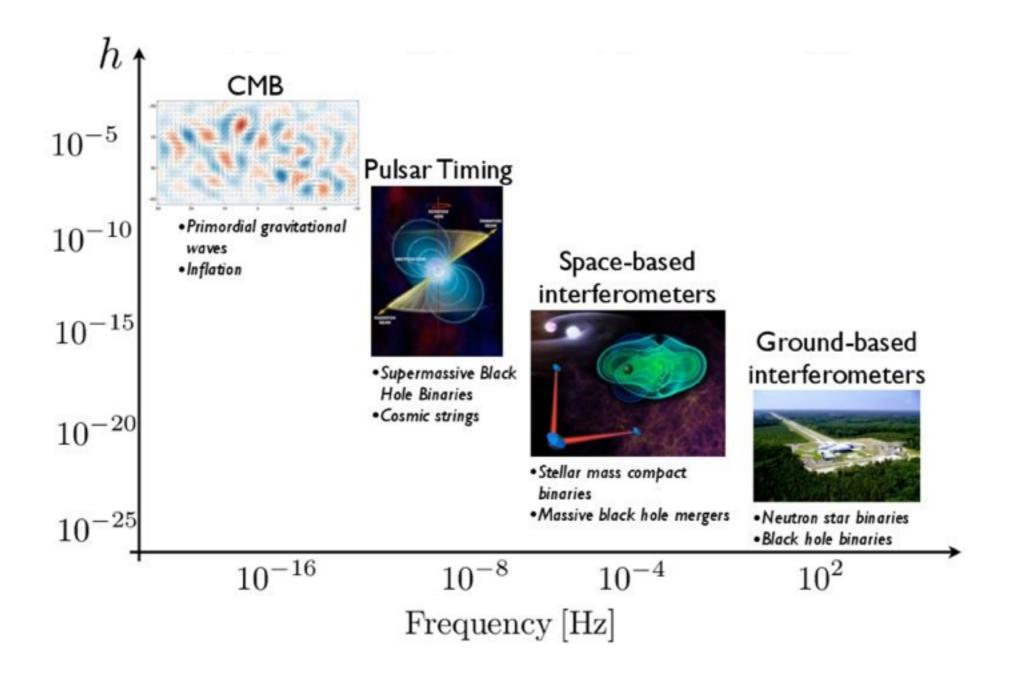
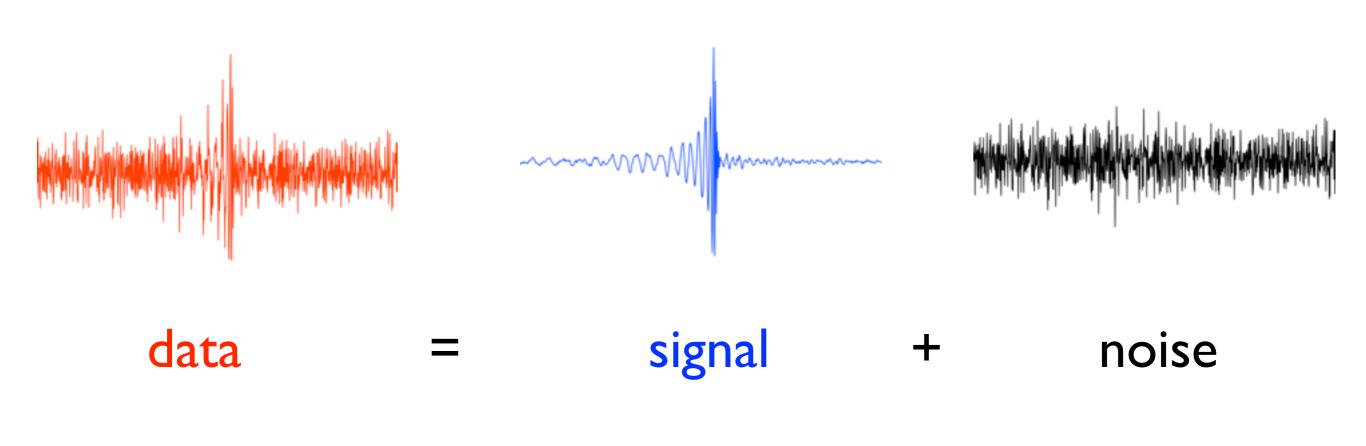
Detecting Stochastic Gravitational Wave Signals



Outline

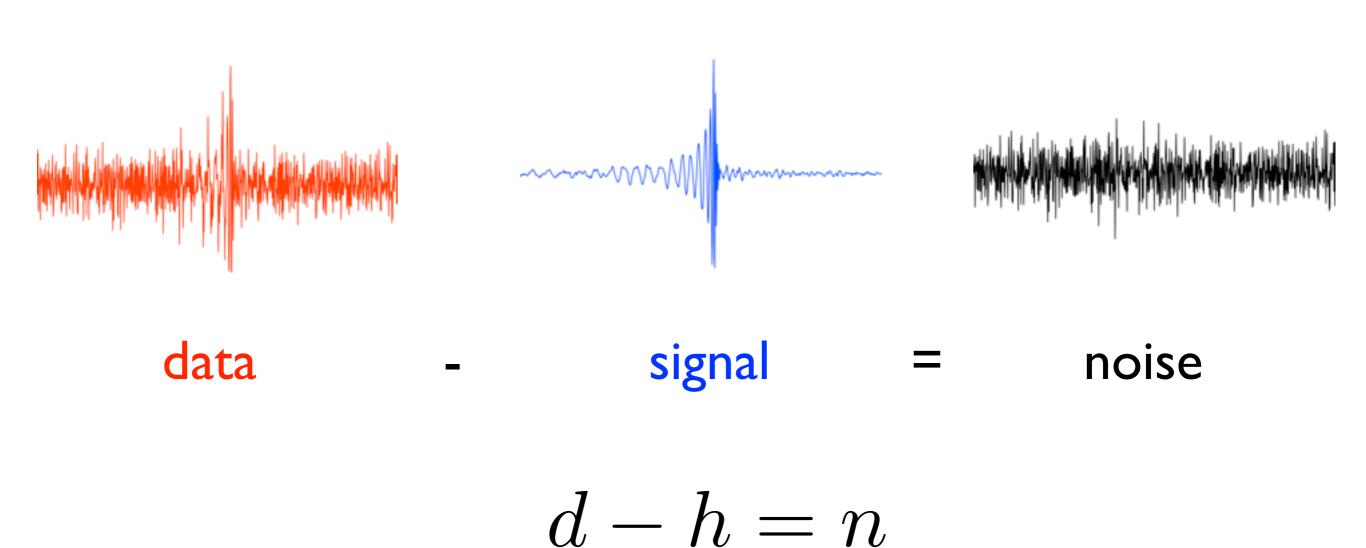
- Gravitational Wave Data Analysis 101
- Noise and Signal Models
- Multiple Detector Cross-correlation
- Single Detector Spectral Separation
- Alternative Gravity Tests with PTAs
- Detection with LISA

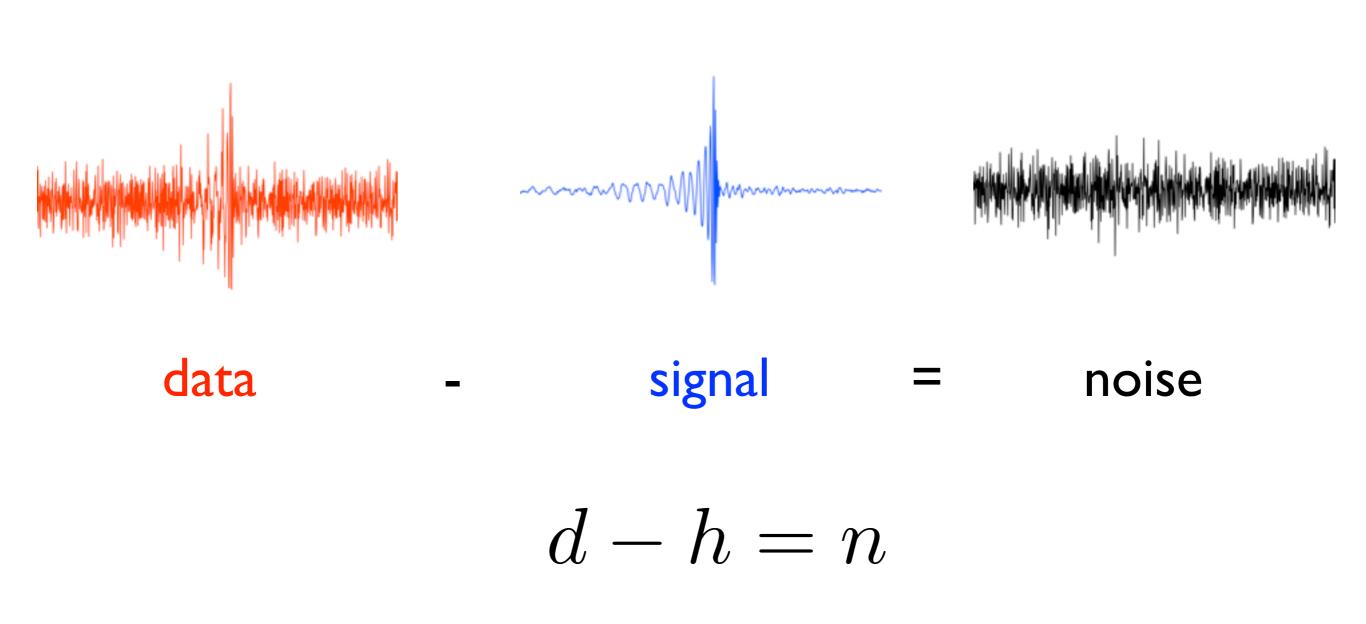
Romano & Cornish 1608.06889, Cornish & Romano 1305.2934, Adams & Cornish 1002.1291, Adams & Cornish 1307.4116



$$d = h + n$$

(randomly selected aLIGO data from 14 September 2015)





p(d|h) = p(d-h) = p(n)

$$p(d|h) = p(d-h) = p(n)$$

The likelihood is our statistical model for the noise

Noise Models

$$p(d|h) = p(d-h) = p(n)$$

Example: Stationary, colored, Gaussian noise

$$p(n, S_n(f)) = \prod_f \frac{1}{2\pi S_n(f)} e^{-\frac{\tilde{n}_f \tilde{n}_f^*}{S_n(f)}}$$

Noise Models

$$p(d|h) = p(d-h) = p(n)$$

Example: Stationary, colored, Gaussian noise

$$p(n, S_n(f)) = \prod_f \frac{1}{2\pi S_n(f)} e^{-\frac{\tilde{n}_f \tilde{n}_f^*}{S_n(f)}}$$

Note: This is a parametrized model, depends on the unknown spectrum $S_n(f)$

GW Posterior Distribution

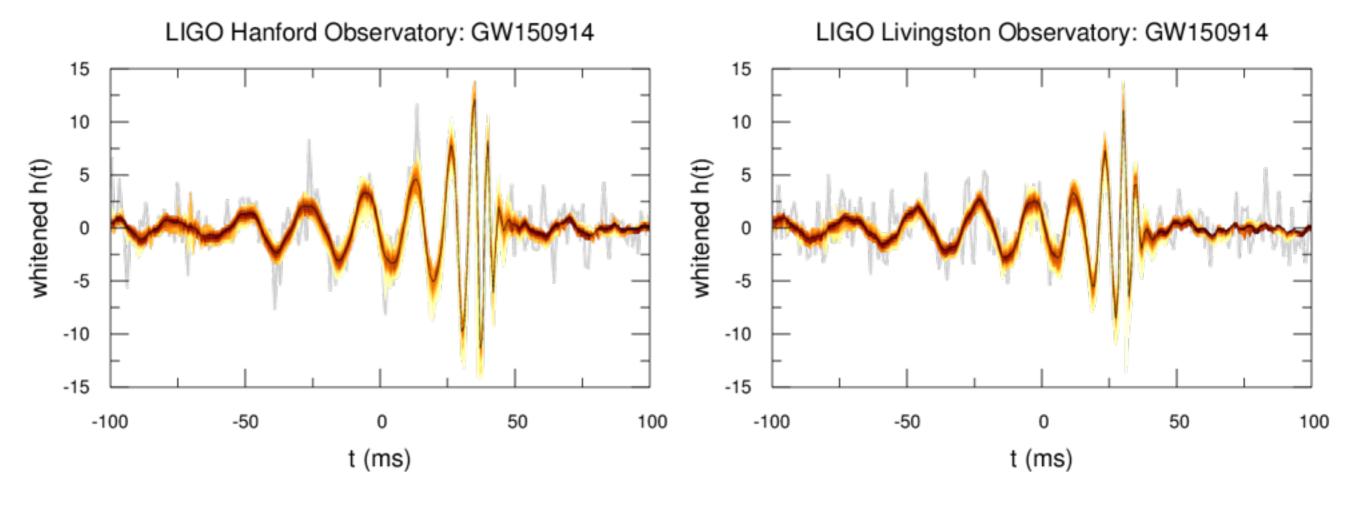
Posterior probability for $\longrightarrow p(h|d) = \frac{p(d|h)p(h)}{p(d)}$ waveform h

Normalization - model evidence

GW Posterior Distribution

Posterior probability for waveform h

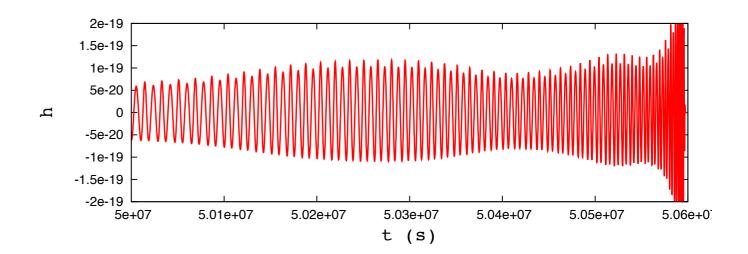
$$p(h|d) = \frac{p(d|h)p(h)}{p(d)}$$



Signal Models

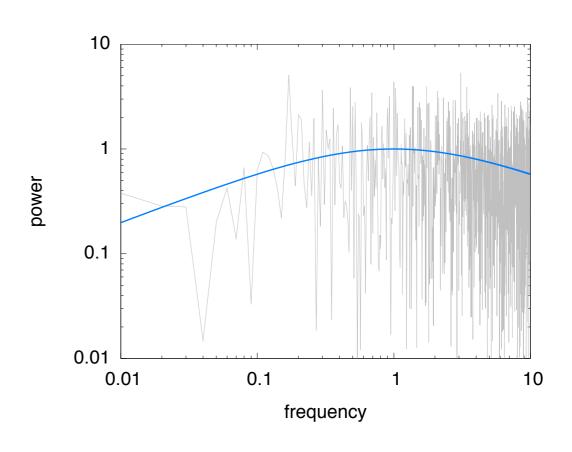
GW Template

$$p(h, \vec{\lambda}) = p(\vec{\lambda}) \, \delta(h - h(\vec{\lambda}))$$



Stochastic GW

$$p(h, S_h(f)) = \prod_f \frac{1}{2\pi S_h(f)} e^{-\frac{\tilde{h}_f \tilde{h}_f^*}{S_h(f)}}$$



Template Based Models

$$p(h, \vec{\lambda}) = p(\vec{\lambda}) \, \delta(h - h(\vec{\lambda}))$$

Marginalize over h(t). Converts posterior for waveform into posterior for physical parameters

$$p(\vec{\lambda}|d) = \int \frac{p(d|h)p(h,\vec{\lambda})}{p(d)} dh$$

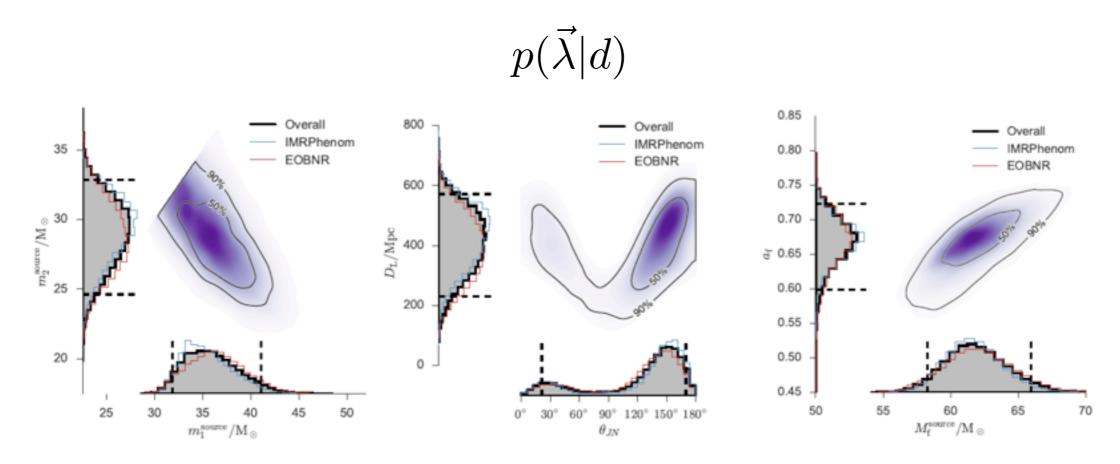
$$= \frac{p(d|\vec{\lambda})p(\vec{\lambda})}{p(d)}$$

Template Based Models

$$p(d|\vec{\lambda}, S_n(f)) = \prod_f \frac{1}{2\pi S_n(f)} e^{-\frac{(\tilde{d}_f - \tilde{h}_f(\vec{\lambda}))(\tilde{d}^* - \tilde{h}_f^*(\vec{\lambda}))}{S_n(f)}}$$

Template Based Models

$$p(d|\vec{\lambda}, S_n(f)) = \prod_f \frac{1}{2\pi S_n(f)} e^{-\frac{(\tilde{d}_f - \tilde{h}_f(\vec{\lambda}))(\tilde{d}^* - \tilde{h}_f^*(\vec{\lambda}))}{S_n(f)}}$$



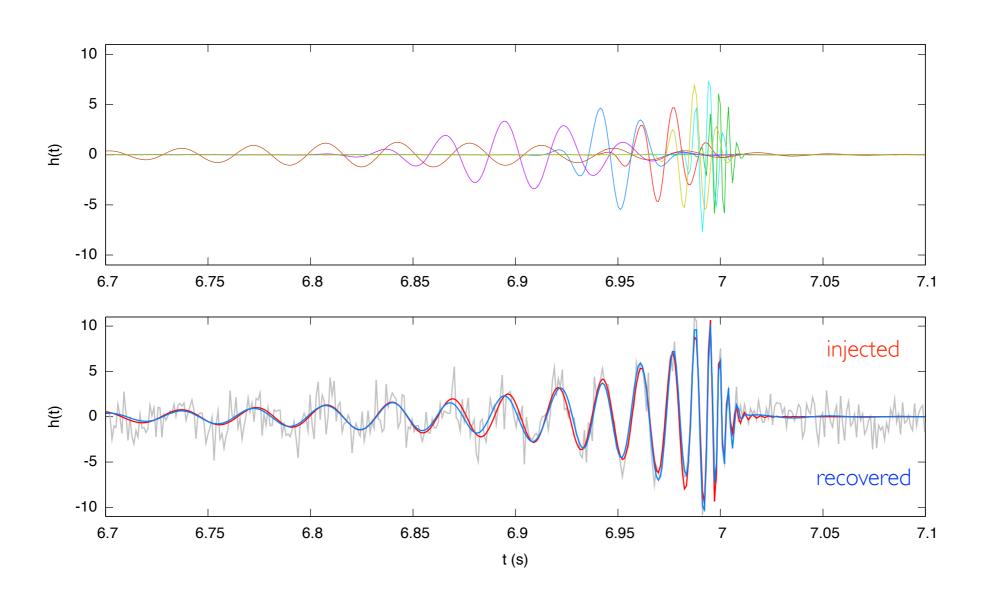
Example of I-d and 2-d GR IMR model posteriors for GW I 509 I 4 [arXiv:1602.03840]

Wavelet Based Models

$$p(h|M) = \sum \sqrt{M} p(\sqrt{M})$$

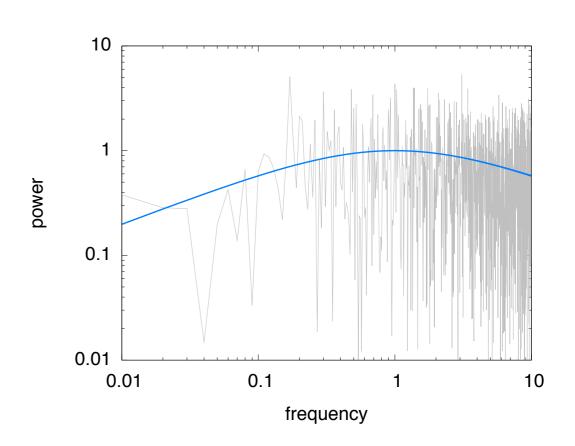
Wavelet Based Models

$$p(h|M) = \sum \sqrt{M} p(\sqrt{M})$$



$$p(h, S_h(f)) = \prod_f \frac{1}{2\pi S_h(f)} e^{-\frac{\tilde{h}_f \tilde{h}_f^*}{S_h(f)}}$$

Marginalize over h(f). Converts posterior for waveform into posterior for GW power spectrum

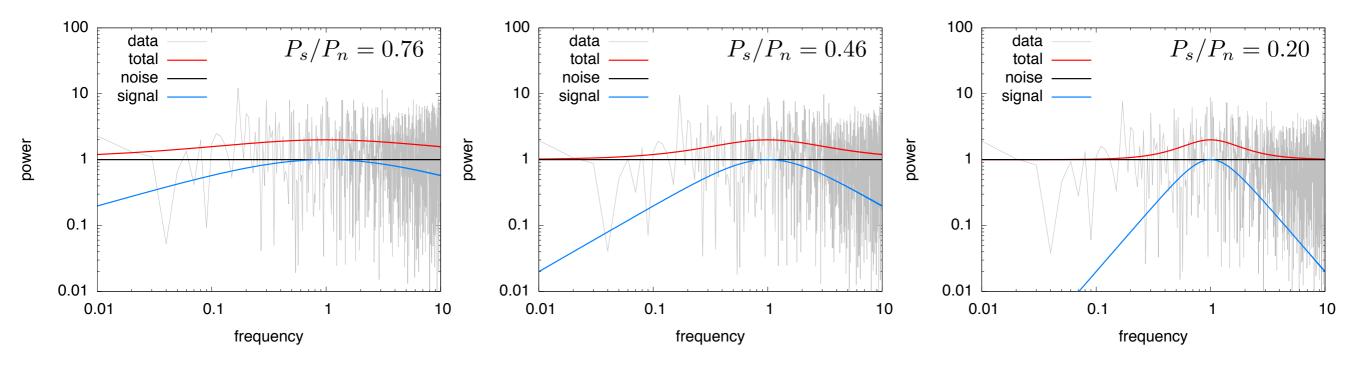


e.g. Single Detector

$$p(d, S_h(f), S_n(f)) = \prod_f \frac{1}{2\pi(S_h(f) + S_n(f))} e^{-\frac{\tilde{d}_f \tilde{d}_f^*}{(S_h(f) + S_n(f))}}$$

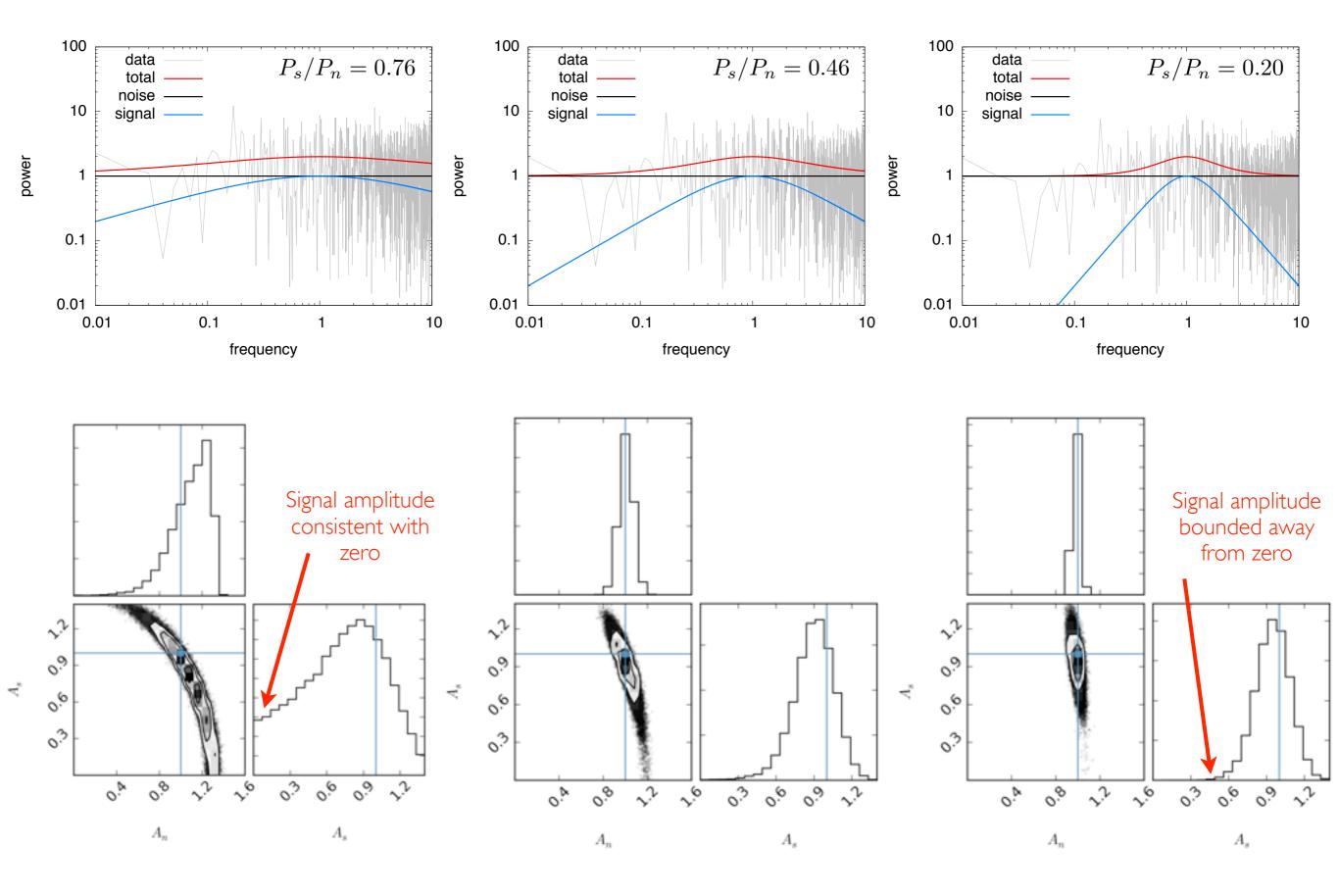
Only the sum of the signal and noise spectra constrained But, can separate them if we have strong priors on the spectra

Single Detector Spectral Component Separation

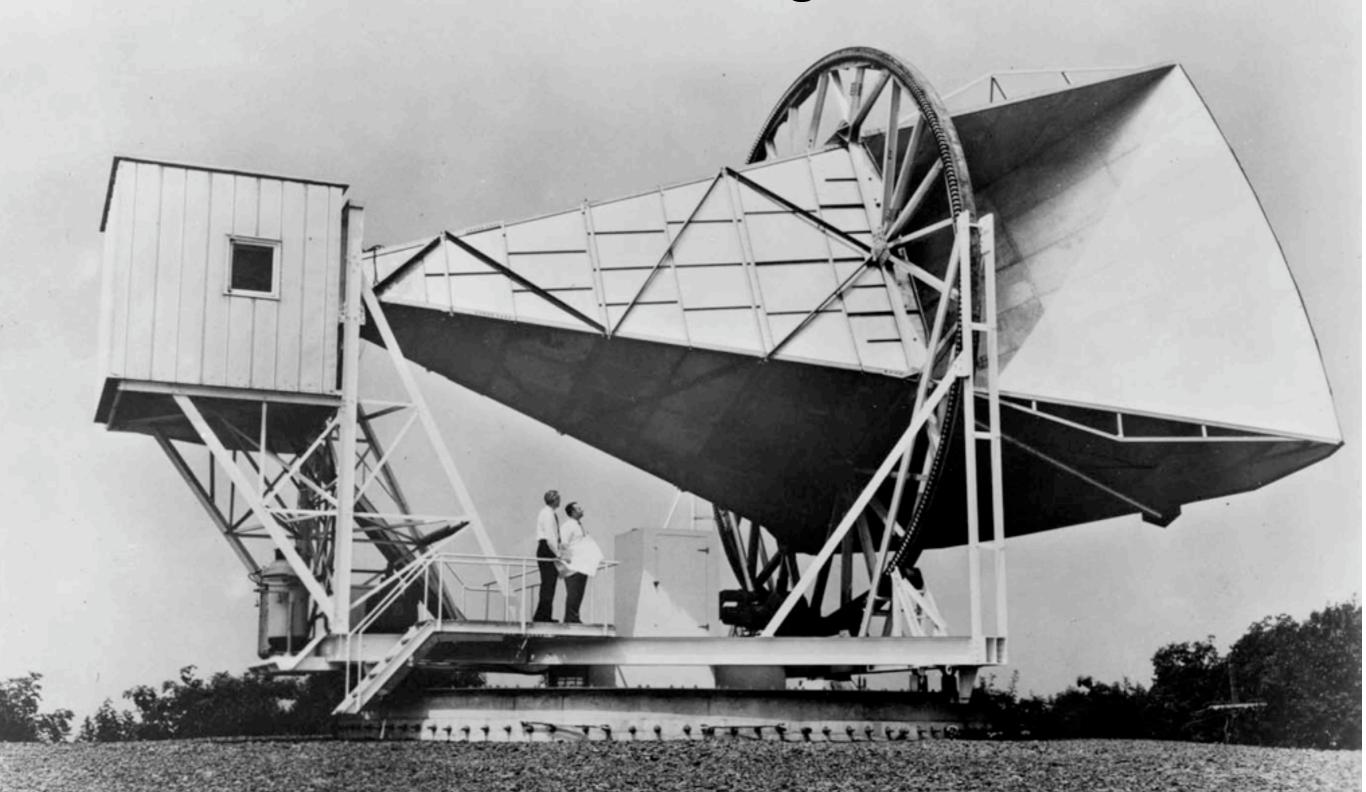


In this model the signal and noise shapes are assumed to be know, only the amplitudes unknown

Single Detector Spectral Component Separation

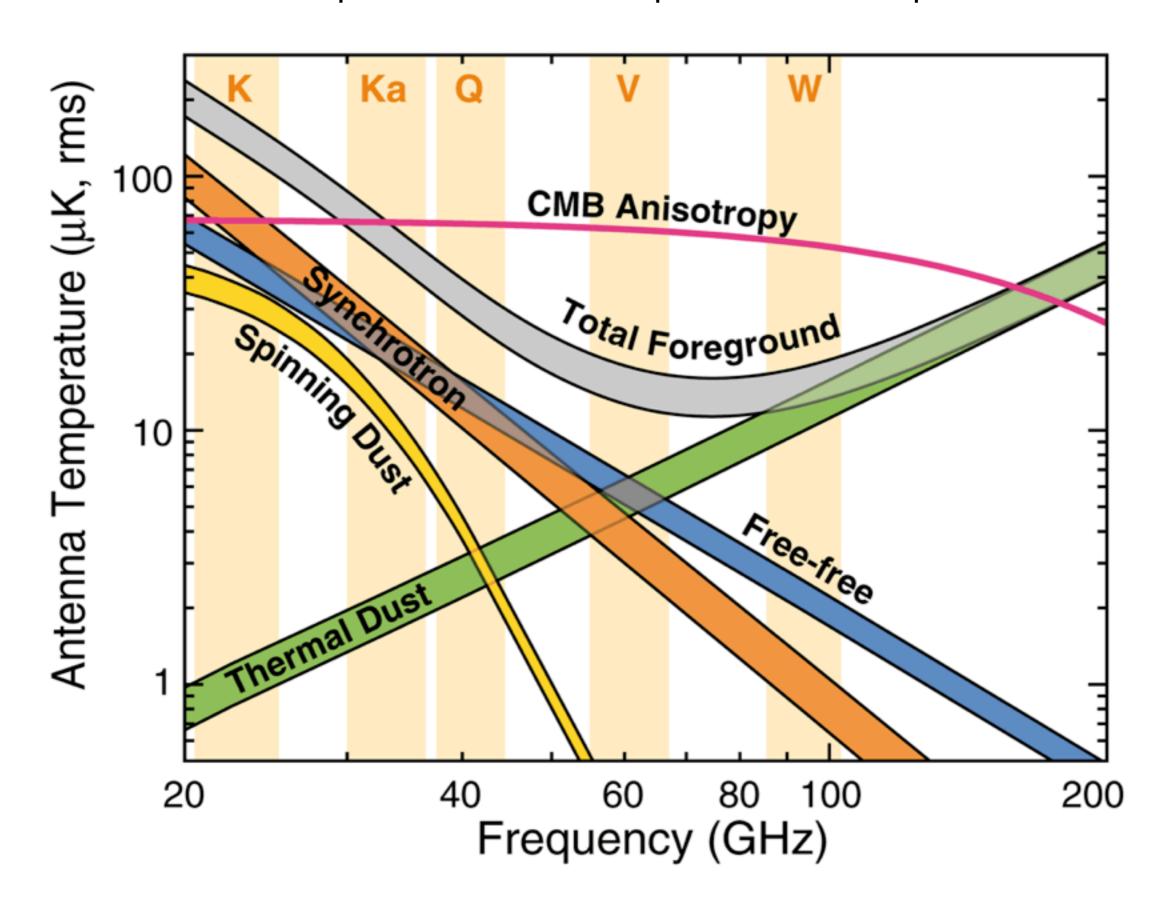


Primordial or Pigeons?

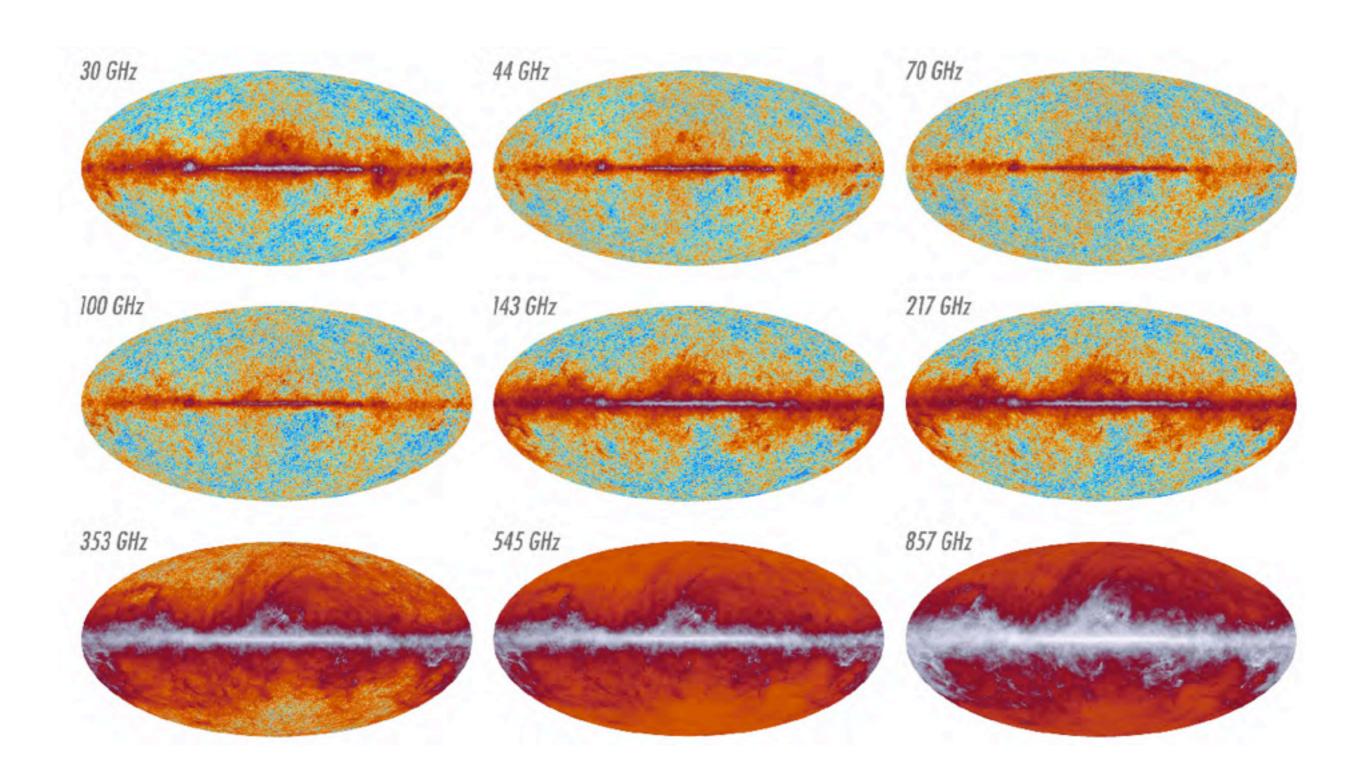


A Measurement of Excess Antenna Temperature at 4080 Megacycles per Second

CMB Spectral Component Separation

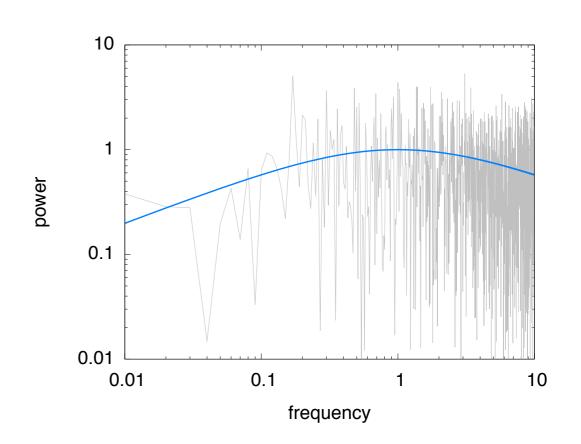


CMB Spectral Component Separation



$$p(h, S_h(f)) = \prod_f \frac{1}{2\pi S_h(f)} e^{-\frac{\tilde{h}_f \tilde{h}_f^*}{S_h(f)}}$$

Marginalize over h(f). Converts posterior for waveform into posterior for GW power spectrum



Multiple Detectors labeled by i,j

$$p(d|S_h(f), S_n(f)) = \prod_f \frac{1}{2\pi \det C(f)} e^{-(\tilde{d}_f)_i C_{ij}^{-1} (\tilde{d}_f^*)_j}$$

$$C_{ij}(f) = \delta_{ij} S_{n,i}(f) + \gamma_{ij} S_h(f)$$

$$p(d|S_h(f), S_n(f)) = \prod_f \frac{1}{2\pi \det C(f)} e^{-(\tilde{d}_f)_i C_{ij}^{-1} (\tilde{d}_f^*)_j}$$

$$C_{ij}(f) = \delta_{ij} \, S_{n,i}(f) + \gamma_{ij}(f) \, S_h(f)$$

Noise uncorrelated Signal correlated between detectors

$$p(d|S_h(f), S_n(f)) = \prod_f \frac{1}{2\pi \det C(f)} e^{-(\tilde{d}_f)_i C_{ij}^{-1} (\tilde{d}_f^*)_j}$$

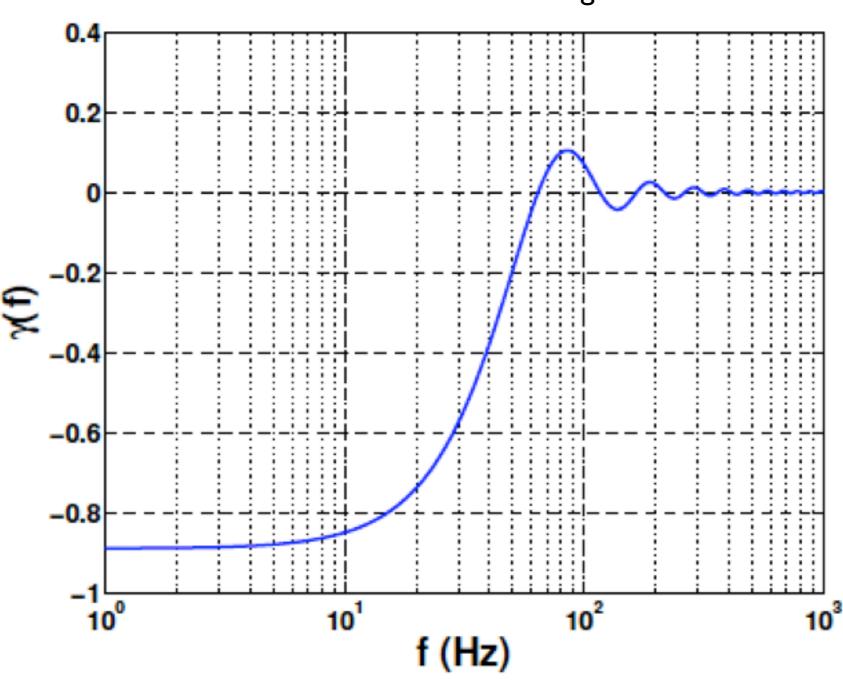
$$C_{ij}(f) = \delta_{ij} \, S_{n,i}(f) + \gamma_{ij}(f) \, S_h(f)$$

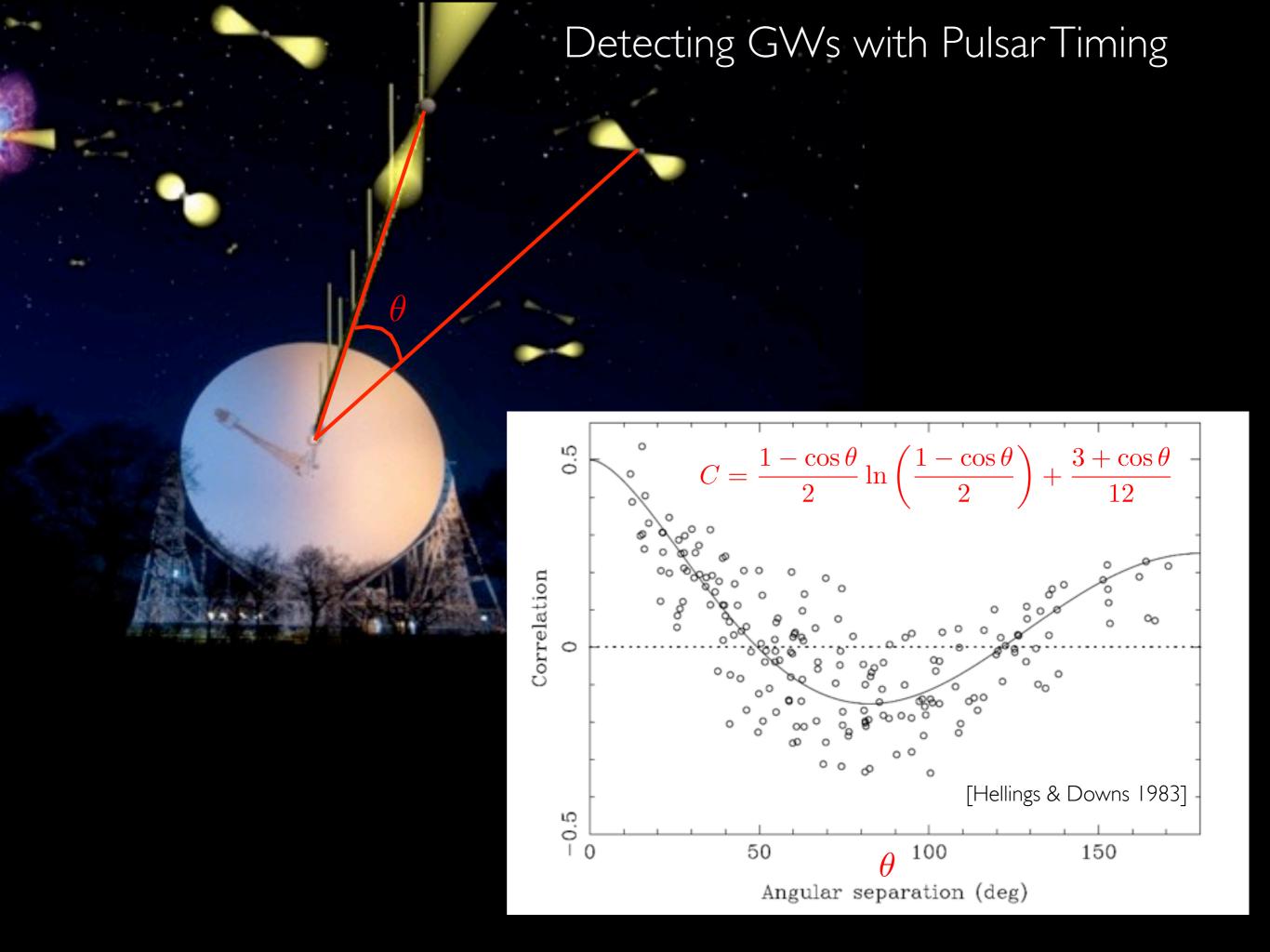
Noise uncorrelated Signal correlated between detectors

Overlap-reduction function, aka Hellings-Downs curve

$$\gamma_{ij}(f) = \frac{1}{4\pi} \int (F_i^+(\hat{n})F_j^+(\hat{n}) + F_i^{\times}(\hat{n})F_j^{\times}(\hat{n})) e^{2\pi i f(\vec{x}_i - \vec{x}_j) \cdot \hat{n}} d\Omega_{\hat{n}}$$

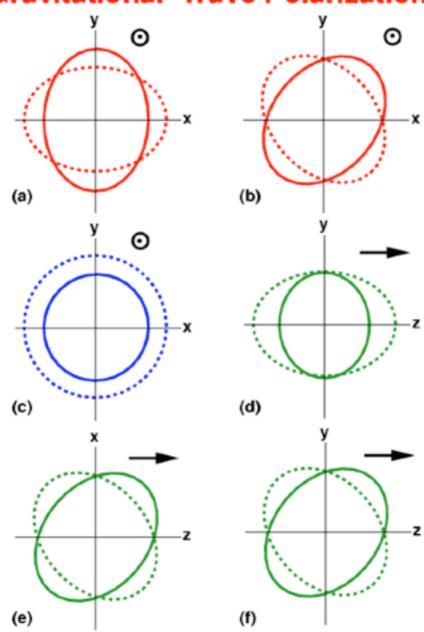
Correlation Function

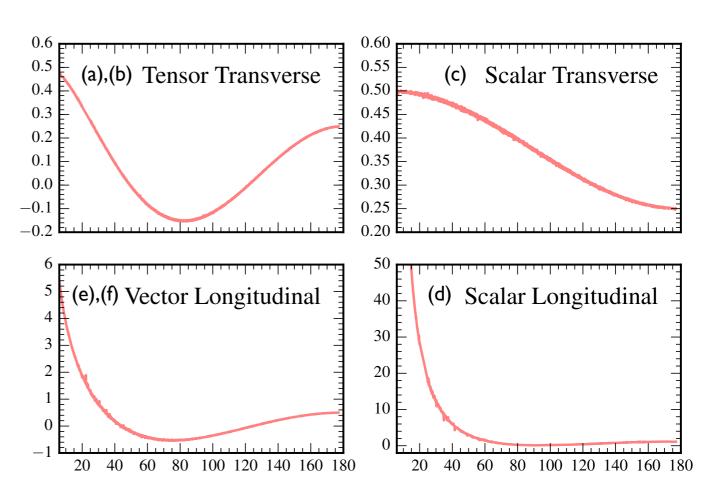




Alternative Polarization States

Gravitational-Wave Polarization

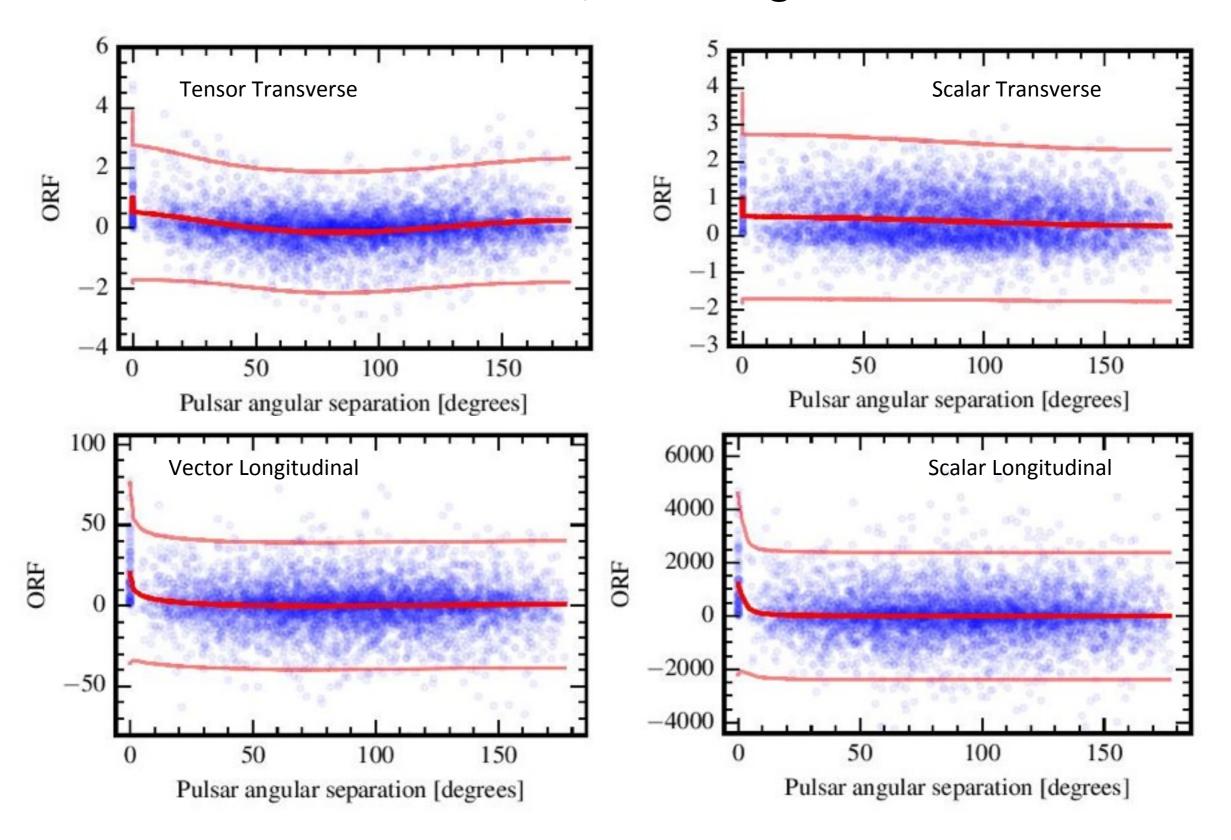




Pulsar angular separation [degrees]

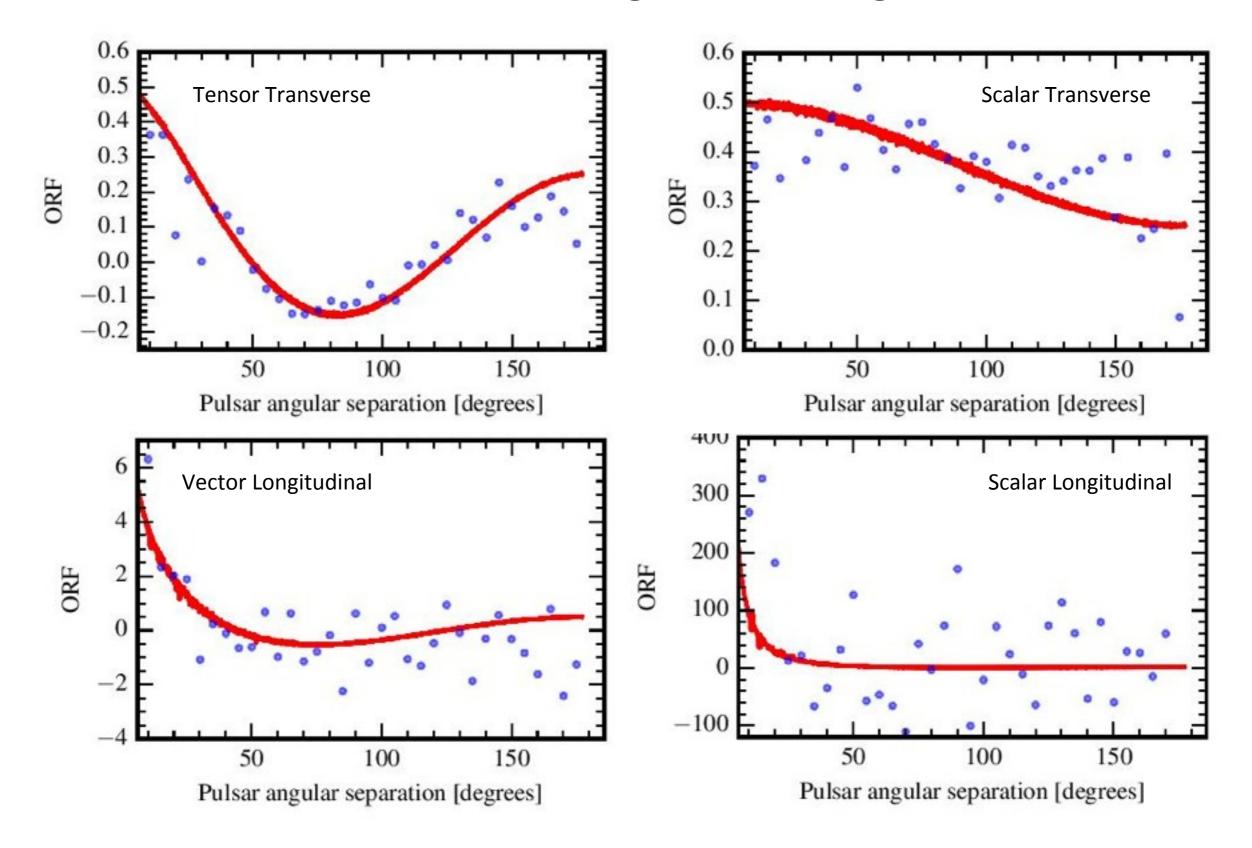
O'Bierne, Cornish, Taylor, Yunes, Sampson in prep

100 Pulsars, no timing noise



$$\sigma^2(\alpha) = C(0)^2 + C(\alpha)^2$$

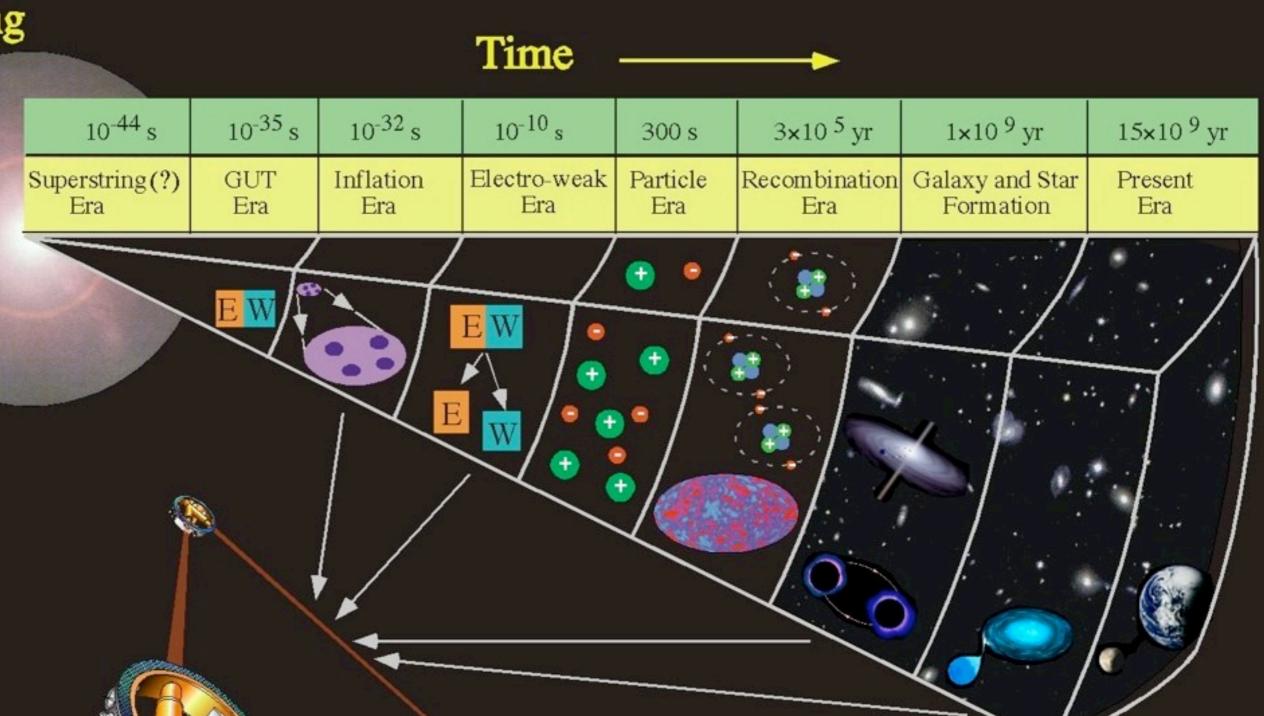
100 Pulsars, no timing noise, 5 degree bins



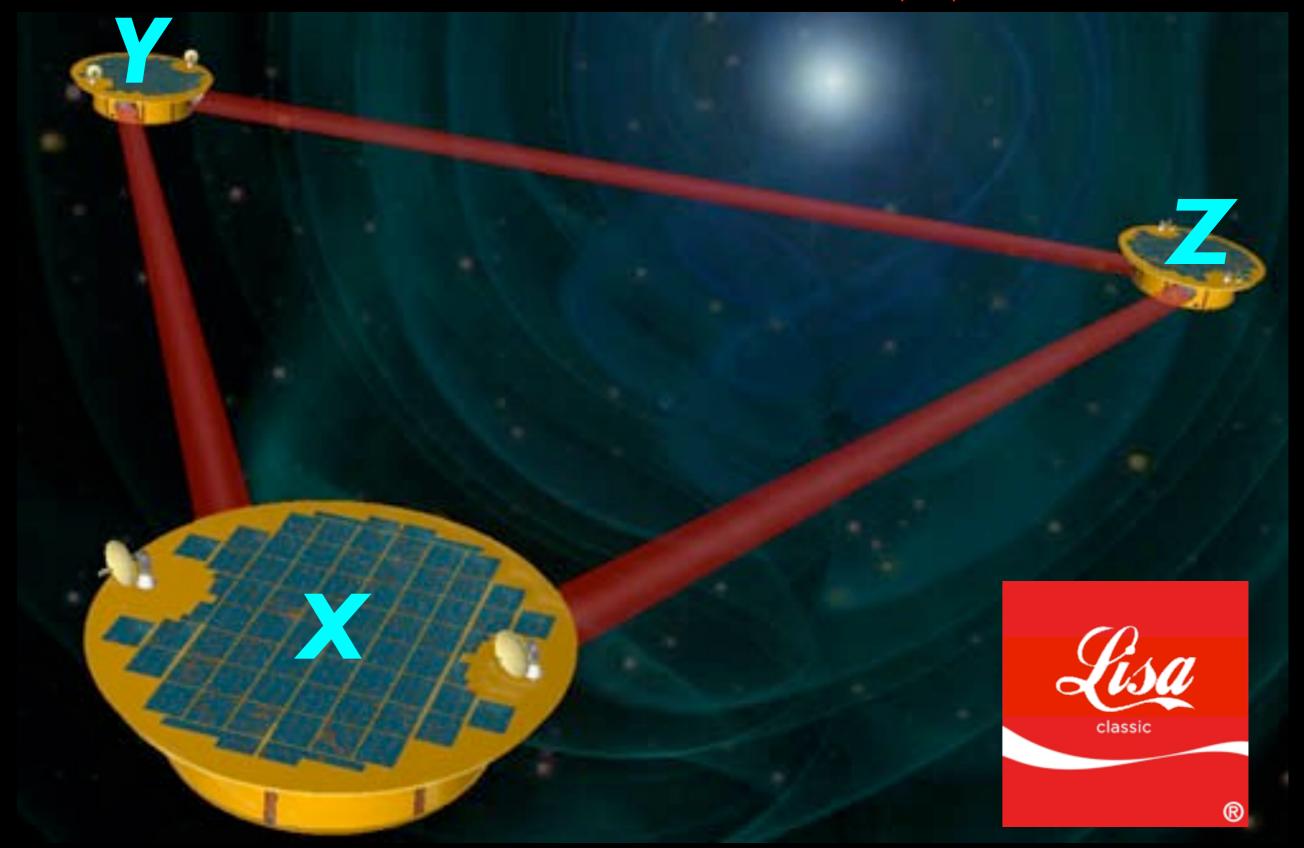
Large variance of longitudinal modes makes them very difficult to detect

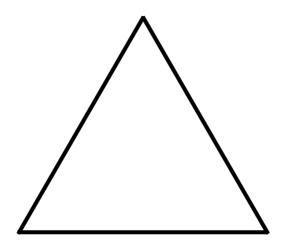
Big Bang

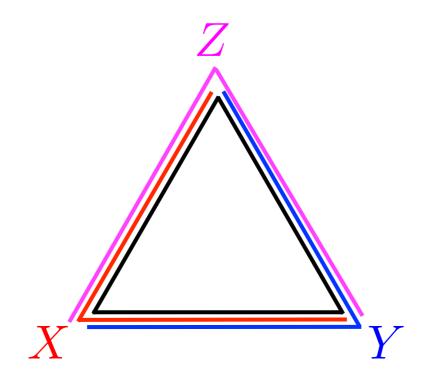
Laser Interferometer Space Antenna

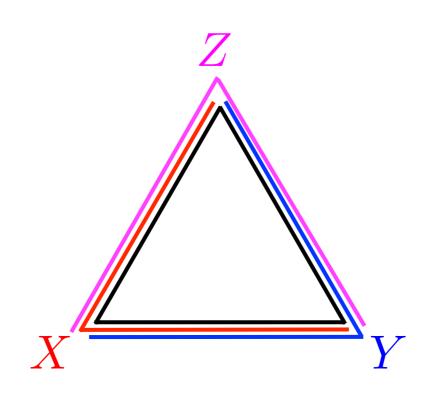


LISA Detector(s)







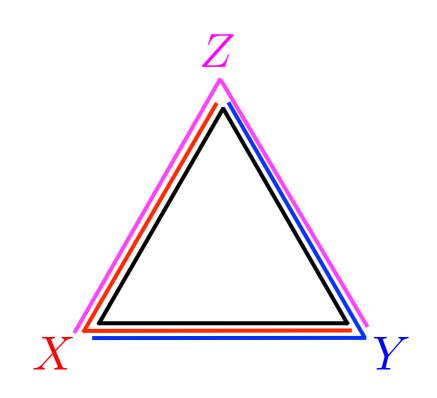


$$A = \frac{\sqrt{3}}{2}X$$

$$E = \frac{1}{2}(X + 2Y)$$

$$\Rightarrow$$

Instantaneous measurement of both polarization states and increased signal-to-noise

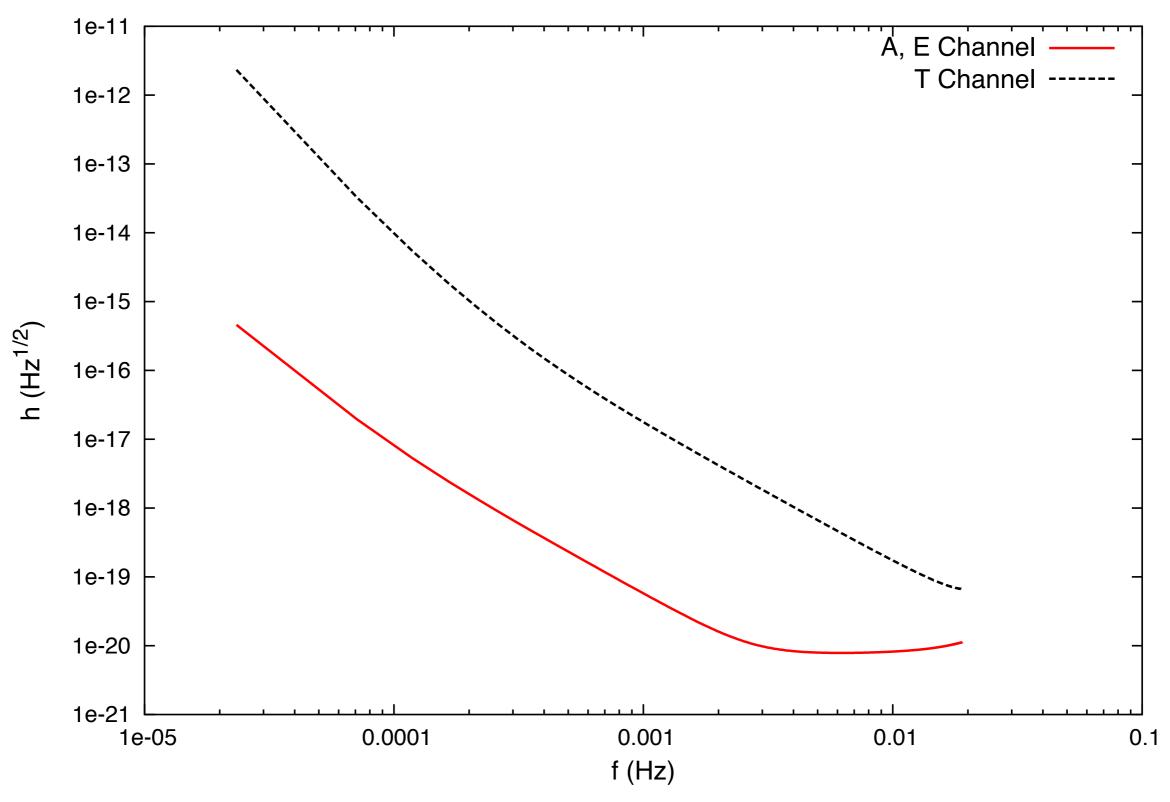


$$A = \frac{\sqrt{3}}{2}X \qquad \Rightarrow \qquad \qquad \\ E = \frac{1}{2}(X + 2Y) \qquad \Rightarrow \qquad \qquad \\ T = \frac{1}{3}(X + Y + Z) \qquad \Rightarrow \qquad \qquad \\$$

Instantaneous measurement of both polarization states and increased signal-to-noise

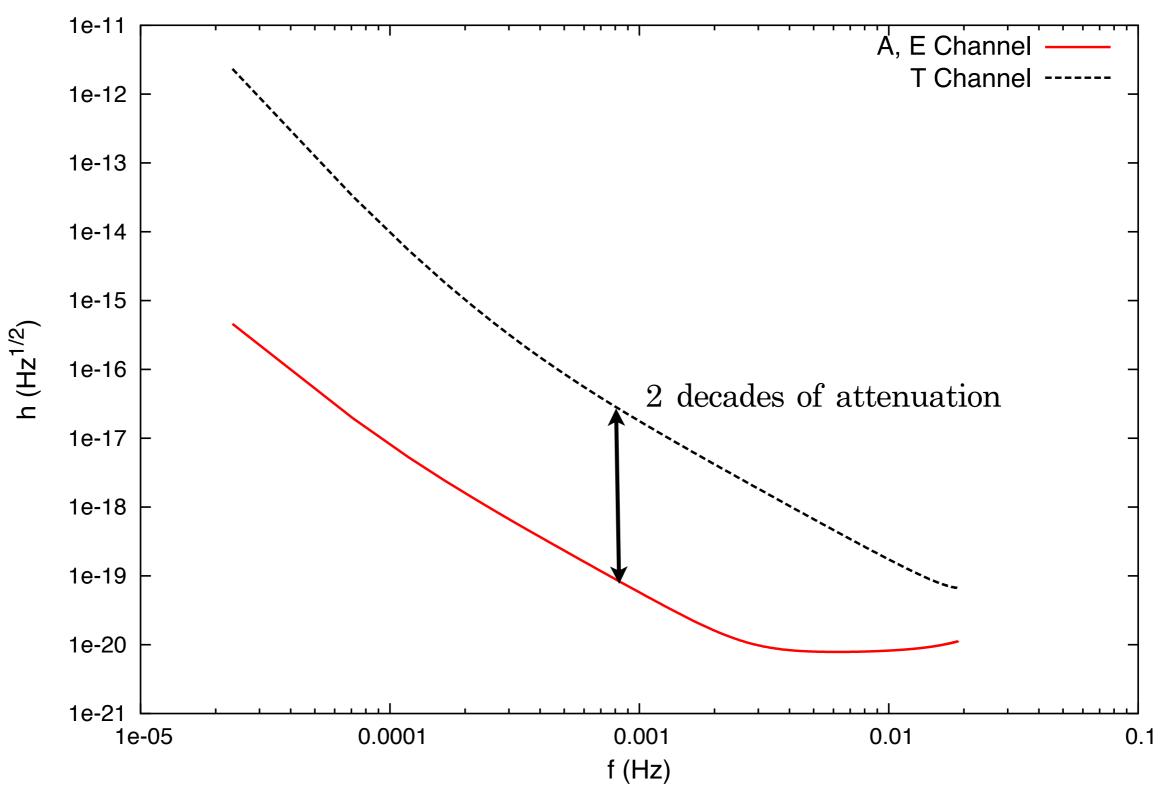
Null channel to monitor average low frequency instrument noise

LISA Sensitivity Curves



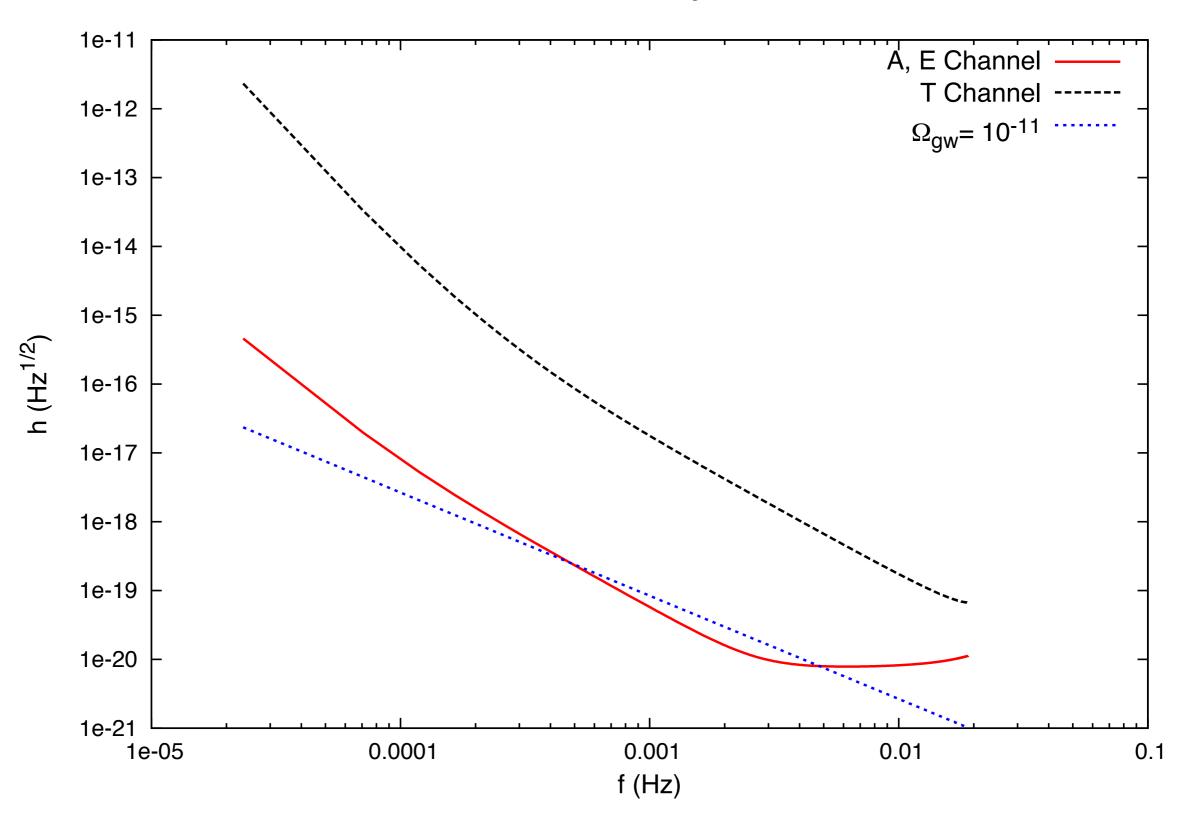
Tinto, Armstrong & Estabrook, Phys.Rev.D63:021101,2001 Hogan & Bender, Phys. Rev. D64 062002 (2001)

LISA Sensitivity Curves



Tinto, Armstrong & Estabrook, Phys.Rev.D63:021101,2001 Hogan & Bender, Phys. Rev. D64 062002 (2001)

LISA Sensitivity Curves



Instrument Noise Model

The phase measurement at a detector is given by:

$$\Phi_{ij}(t) = C_i(t - L_{ij}) - C_j(t) + \psi_{ij}(t) + n_{ij}^p - \hat{x}_{ij} \cdot (\hat{n}_{ij}^a(t) - \hat{n}_{ij}^a(t - L_{ij}))$$

Construct a Michelson signal by:

$$M_1(t) = \Phi_{12}(t - L_{12}) + \Phi_{21}(t) - \Phi_{12}(t - L_{13}) - \Phi_{31}(t)$$

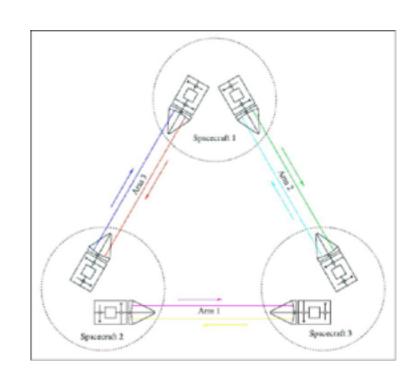
Move to Frequency Domain and form power spectra

$$S_{ij}(f) = \langle n_{ij}(f) n_{ij}^*(f) \rangle$$

Include 12 Noise Parameters:

$$S_{12}^{p}(f), S_{21}^{p}(f), S_{12}^{p}(f), S_{21}^{p}(f), S_{32}^{p}(f), S_{32}^{p}(f)$$

 $S_{12}^{a}(f), S_{21}^{a}(f), S_{12}^{a}(f), S_{21}^{a}(f), S_{32}^{a}(f), S_{32}^{a}(f)$



Stochastic Background Model

The LISA transfer functions are determined by the geometry of the constellation:

$$R_{ij}(f) = \sum_{P} \int \frac{d\Omega}{4\pi} F_i^P(\hat{\Omega}, f) F_j^{P^*}(\hat{\Omega}, f)$$

The spectral density from a uniform stochastic background is:

$$S_h = \frac{3H_0^2}{4\pi^2} \frac{\Omega_{gw}}{f^3}$$

The power seen in the LISA channels is:

$$\langle S_i(f), S_j(f) \rangle = S_h(f) R_{ij}(f)$$

We included a spectral slope parameter giving a total of two parameters to describe the stochastic background

$$\Omega_w, n$$

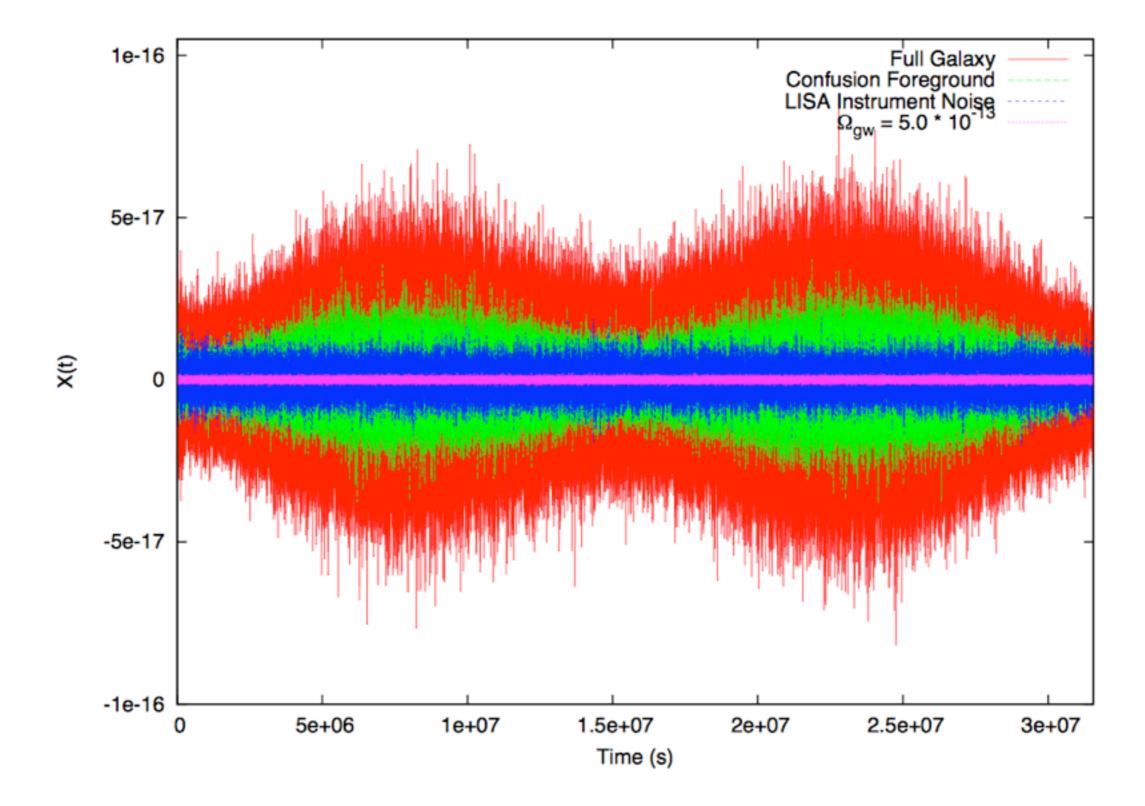
Transfer functions for noise and signal

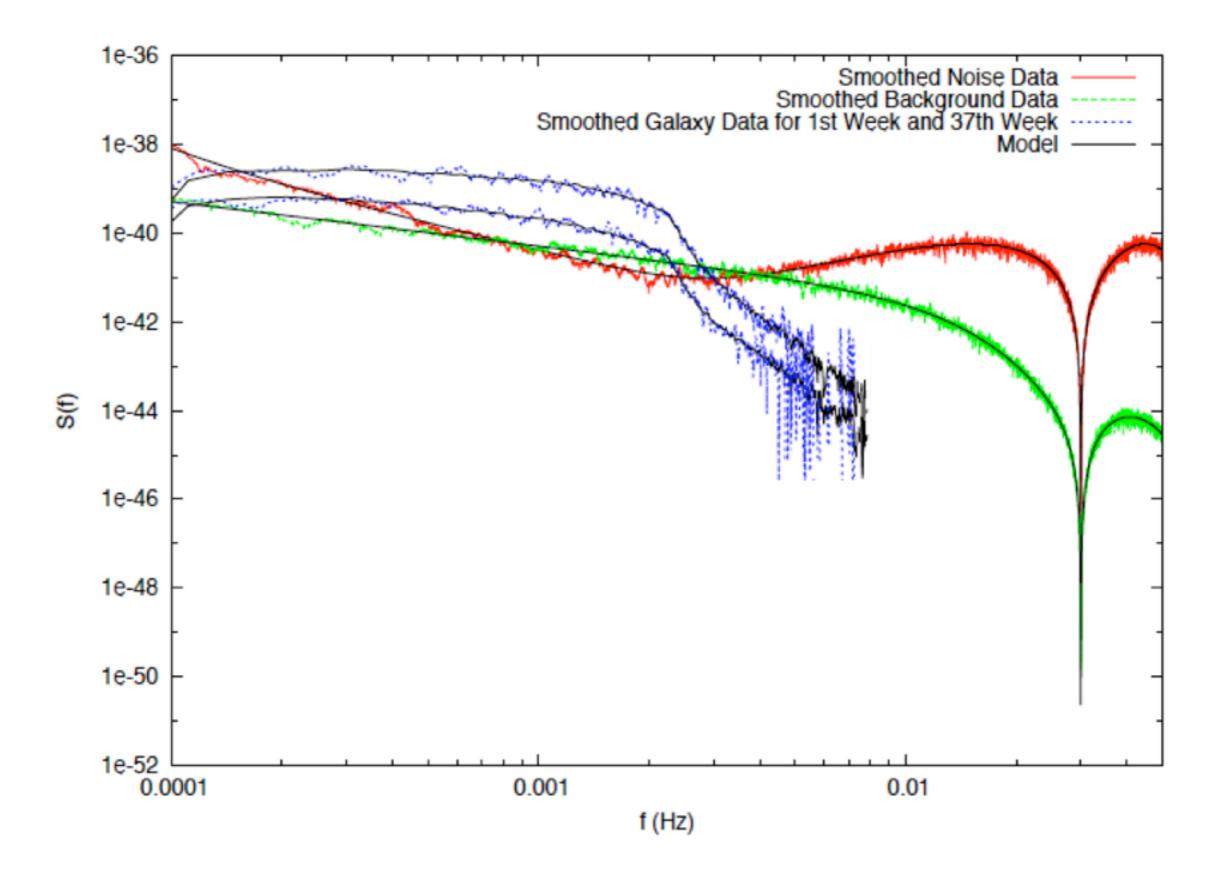
$$\langle AA^* \rangle_p = \frac{4}{9} \sin^2 \left(\frac{f}{f_*} \right) \cos \left(\frac{f}{f_*} \right) \left(\left[4(S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p) - 2(S_{23}^p + S_{32}^p) \right] + 5(S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p) + 2(S_{23}^p + S_{32}^p)$$

$$\langle AA^* \rangle_a = \frac{16}{9} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \left(\cos \left(\frac{f}{f_*} \right) \left[4(S_{12}^a + S_{13}^a + S_{31}^a + S_{21}^a) - 2(S_{23}^a + S_{32}^a) \right] \right. \\ \left. + \cos \left(\frac{f}{f_*} \right) \left[\frac{3}{2} (S_{12}^a + S_{13}^a + S_{23}^a + S_{32}^a) + 2(S_{31}^a + S_{21}^a) \right] \right. \\ \left. + \frac{9}{2} (S_{12}^a + S_{13}^a) + 3(S_{31}^a + S_{21}^a) + \frac{3}{2} (S_{23}^a + S_{32}^a) \right\}$$

$$\langle AA \rangle_s = \left\{ \frac{3}{10} - \frac{169}{1680} \left(\frac{f}{f_*} \right)^2 + \frac{85}{6048} \left(\frac{f}{f_*} \right)^4 - \frac{178273}{159667200} \left(\frac{f}{f_*} \right)^6 + \frac{19121}{24766560000} \left(\frac{f}{f_*} \right)^8 + \dots \right\} S_h(f)$$

Also have $\langle AE \rangle$, $\langle TT \rangle$, etc.





Bayesian Inference

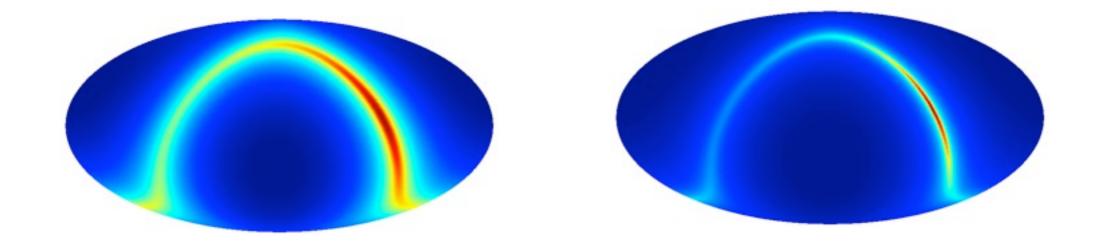
Likelihood
$$p(X|S_a, S_p, S_h) = \prod_f \frac{1}{(2\pi)^{3/2}|C|} e^{-(X_i C_{ij}^{-1} X_j)/2}$$

where
$$C(f) = \begin{pmatrix} \langle AA \rangle & \langle AE \rangle & \langle AT \rangle \\ \langle EA \rangle & \langle EE \rangle & \langle ET \rangle \\ \langle TA \rangle & \langle TE \rangle & \langle TT \rangle \end{pmatrix}$$

Spectral Priors $p(S_a), p(S_p) p(S_h)$

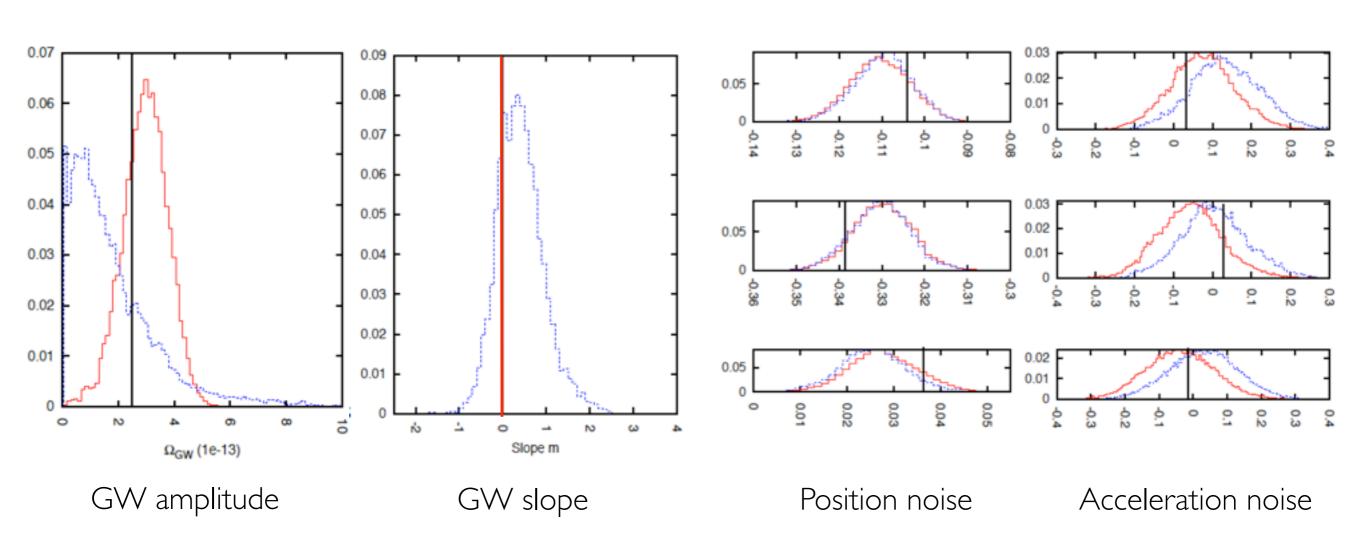
Galaxy Shape Priors

$$\rho(x, y, z) = \rho_0 e^{-\sqrt{x^2 + y^2}/R_d} \operatorname{sech}^2(z/Z_d)$$

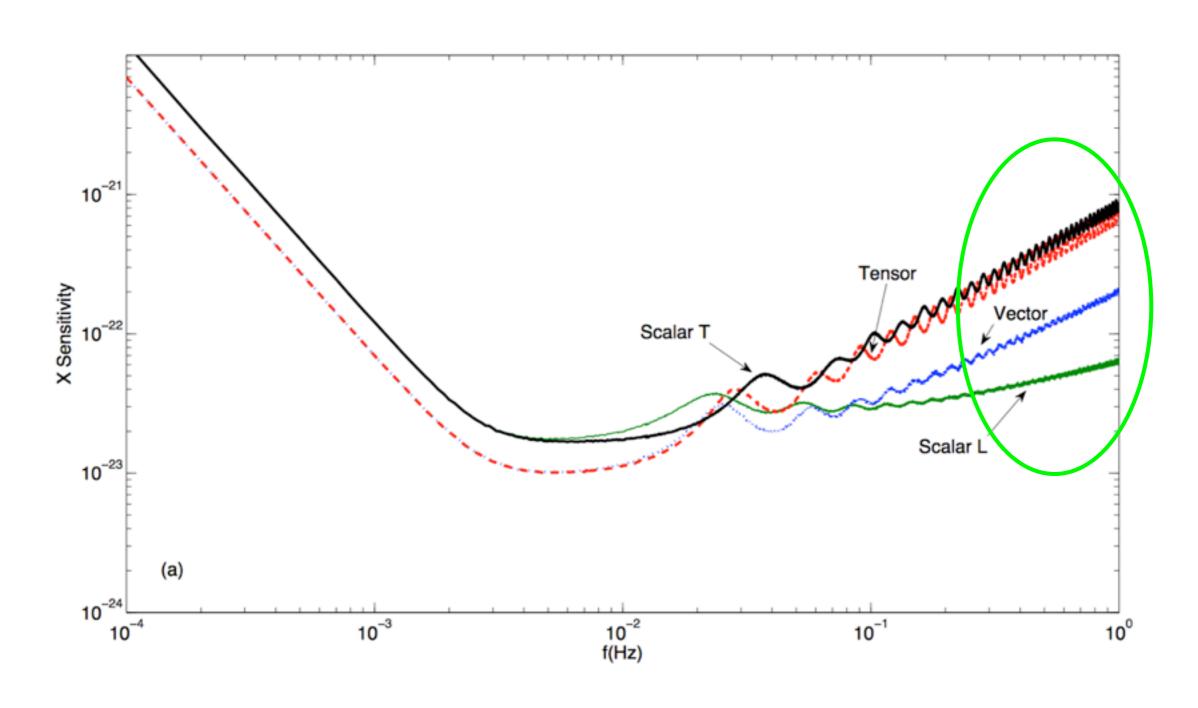


Bayesian Inference

Simultaneously solve for amplitude of instrument noise, stochastic background and galactic white dwarf density and distribution



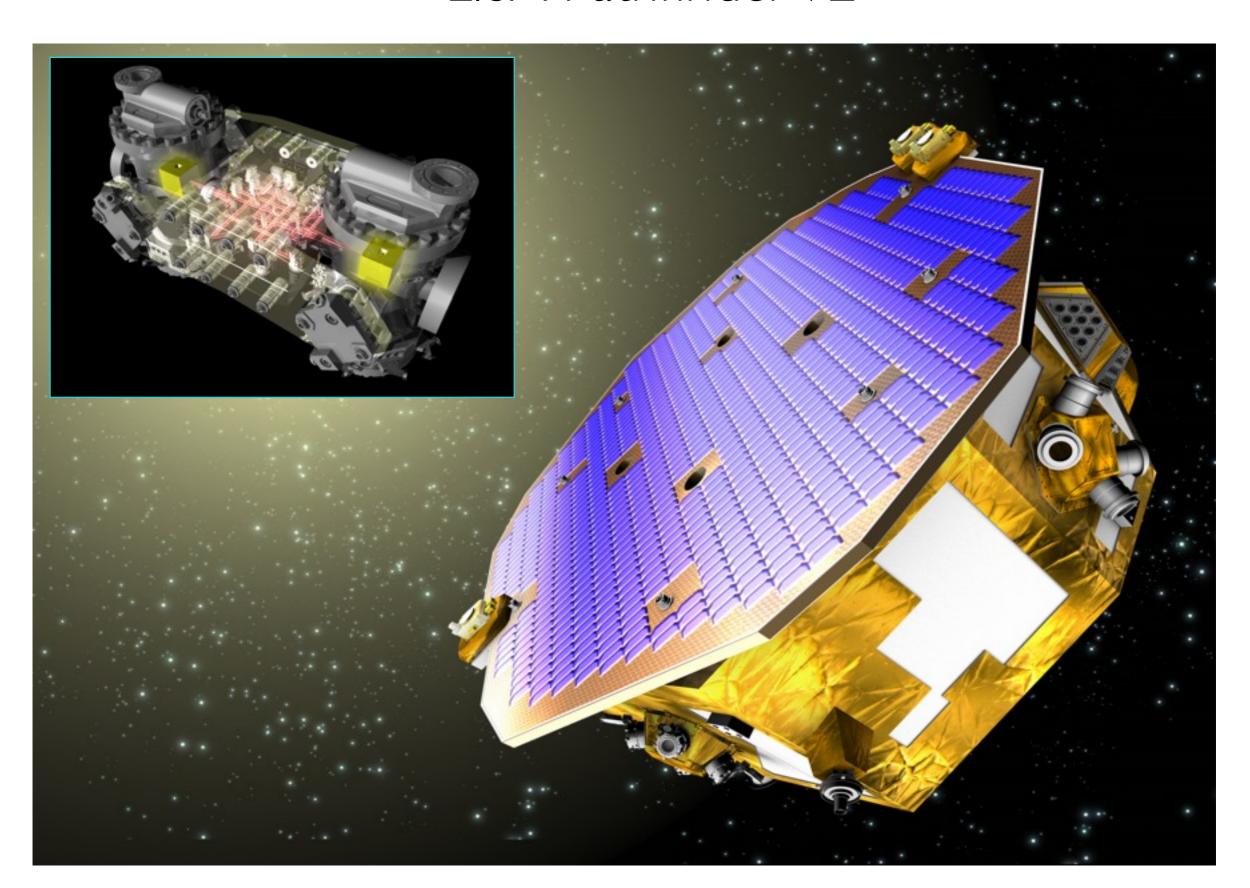
LISA sensitivity to alternative polarization states



(Tinto, da Silva Alves 2010)

Additional slides on estimating LISA noise

LISA Instrument Characterization = LISA Pathfinder V2



How well can we characterize the instrument noise?

Position Noise

- Easy to study since at high frequencies
- Enhance by lowering laser power
- Enhance by warming optical bench
- Enhance by increasing electronic noise in phase meter

Acceleration Noise

- Hard to study since at low frequency
- Many couplings to study/enhance

How well can we characterize the instrument noise?

Proof mass couplings to spacecraft

- viscous gas flow around the test mass
- patch fields coupling to changing charge on the TM and the electrode housing
- radiometer effect (needs thermal gradient)
- radiation pressure from the laser used in the TM-bench readout
- gravity noise due to thermo-elastic deformation of the spacecraft
- noise in the capacitive actuation
- residual magnetic fields
- readout noise coupled in via control system
- thruster noise coupled in via capacitive effects and gravity gradients