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Standard siren

GW from a compact binary can be a cosmological tool to measure
distance to a source.
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Standard siren as a probe
of cosmic expansion and beyond

e With a standard siren, one can measure luminosity distance
to a source directly without any distance ladder.

e Combining the luminosity distance with redshift information,
cosmic expansion is measured.

e Even without redshifts, GW source clustering allows
us to extract cosmological information.

In this talk, | will focus more on GW and large scale structure,
and its cosmological applications.



Gravitational lensing of GW
[ Wang, Stebbins & Turner 1996, Holz & Wald 1998 ]

 GW traces its null geodesic
and is lensed by galaxies and
galaxy clusters.

e Source is a compact binary.
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No shear (too small image),
but “brightness” of GW is
magnified or demagnified.

o Apparent luminosity distance

D(x) = D {1+ k(x)}

"magnification”



Standard siren
at cosmological distance
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» impact on GW observations

current ground-based detectors
NS: < ~300 Mpc, BH: < z~0.1 «—> |ocal universe

ET, LISA, DECIGO z~1-10 «—>» cosmological distance
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The determination
accuracy is limited
by lensing error
at almost all z.

Random error can be
reduced by observing
a large # of binaries,
but

may still contribute.



Beyond background cosmology

» Lensing is not noise but signal  [Cutler & Holz 2009 ]

Variance in luminosity distance carries information about
cosmic expansion and matter clustering, depending on
cosmological parameters.

» models for cosmic accelerating expansion

dark energy (scalar field etc.) vs modification of gravity

Current observational data (SNe + BAO + CMB + ... ) are
consistent with the cosmological constant.

The problem is that most models can mimic the LCDM
as a special case by tuning their model parameters.

!

To discriminate the models, need to go to a perturbative level.
(growth of matter power spectrum, gravitational lensing, etc.)



GW lensing cosmology
with redshift information



1D cosmology from lensing PDF

Lensing magnification PDF depends on cosmological parameters.

[ Hirata, Holz, & Cutler 2010 ] LISA case
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solid: CMB + (SN or WL or BAO) [ DETF stage-lil ]
dashed: adding 10 SMBH GW events with LISA
dotted: adding 30 SMBH GW events with LISA



Brief summary of 2D method
[Cutler & Holz 2009, Camera & AN 2013 ]

1. For each NS binary,

(D))= D {1+ r(x)}
GW observation N z from EM observations

—> K is given as a function of cosmo. parameters.

U

2. Combining all NS binaries, construct magnification sky map

U

3. Compute a magnification angular power spectrum
and estimate cosmological parameters
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Magnification angular power spectrum
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e 5 redshift bins in the
range z = (.1 — 2

Az = 0.38

» power spectrum from
each redshift bin can be
measured with
tomographic method.



Sensitivity to EOS of dark energy

3yr observation, FoM ~ (AwgAw,) ™"
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Other cosmological parameters
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« GW observations can also
extract information about

matter inhomogeneities.

« What can be measured is
Ns, 08, growth rate etc.

e useful to distinguish DE and
modified gravity

only if nearly complete
redshift identification
IS assumed



Redshifts are really obtained?

» using galaxy catalog

Future galaxy surveys (JDEM, WFIRST, Euclid etc.) will observe
10° galaxies at 0.5 < z < 2. But these are a part of host galaxies
for GW events.

a ~ 1074 with DECIGO, < 10™* with ET and LISA

The method to treat redshift distribution statistically may be
biased too much. More careful study is necessary.

If GW sources are limited to NS binaries
> using short GRB - NS binary association

Given the half-opening angle of a jetis 10 deg, o ~ 2 x 107

> narrow distribution of NS mass

> tidal deformation of NS with known EOS



GW cosmology
without redshift information



anisotropy of luminosity distance

[ Namikawa, AN, Taruya 2016 (PRL) ] V_Ilﬁvv

deviation of luminosity distance
from the averaged one
in i-th distance bin
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clustering weak lensing




angular power spectrum
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Clustering spectrum
dominates the signal.

Lensing spectrum is
a small contribution.

Angular resolution of
GW observation
limits maximally
observable f .



cosmological implications

non-Gaussianity of large-scale structure with ET

~ comparable or better
O(fNL) 0.54 than Euclid

cross-correlation of clustering

GW (ET) x Planck S/N~31
GW (ET) x CMB stage IV S/N~43

cross-correlation of weak lensing
GW (ET) x Euclid S/N~16

A lot of applications of GW observations to cosmology



galaxy cross-correlation

Cgigj :[nggj] _|_{CZ"’93J [ Oguri 2016 ]
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GW (ET) x galaxy survey (Euclid)
Tonsnagw = 3 X 107°A3Mpe ™2 including BH-BH & NS-NS
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Summary

» Lensing is not noise but signal

Variance in luminosity distance carries information about
cosmic expansion and matter clustering.

» QW lensing cosmology with redshift information

Not only cosmic expansion but matter clustering are
sensitively probed. However, redshifts would be problematic.

» GW cosmology without redshift information

Redshift information is unnecessary.
The measurement of would be one of most

powerful applications. By :
a lot of cosmology would be possible. Need more investigations.



