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The promise of multi-band
gravitational wave astronomy

Alberto Sesana
(University of Birmingham)



>Gravitational waves across the frequency spectrum
>GW150914: a gift from LIGO

* >Stellar BHs In the eLISA band: multi-band GW astronomy
with eLISA and ground based interferometers
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We want compact accelerating systems
Consider a BH binary of mass M, and semimajor axis a

h ~ ~

a r ctr

In astrophysical scales

M Mpc

h~10"%
2 Jﬂ-l_lzl _D

10 M_ binary at 100 Mpc: h~10%, f<10°
10° M _ binary at 10 Gpc: h~10%, <10
10° M binary at 1Gpc: h~10*, f<10°
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characteristic amplitude
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(AS 2016, PRL 116, 1102)
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BHB will be detected by eLISA and cross to the LIGO band,
assuming a 5 year operation of eLISA.




The idea was already around in the literature

Poplll seeds merging at late
times (z~2) could be seen both in
LISA and aLIGO/ET (AS et al. 2009)
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Inspiral

M ergér

Ringdown

IMBH binaries formed in star
cluster can also cross from LISA
to LIGOI/ET in a short timescale
(Amaro-Seoane & Santamaria 2010)
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(Kyutoku & Seto 2016)
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Reach of eLISA for GW150915.
Up to z~0.1 at f~0.01Hz

-Almost stationary at f<0.02 Hz
-Evolving to the LIGO band for
f>0.02 Hz

P merging

(L0

frequency at the start of observation (Hz)

g merging Number of observable sources
N2A] ' (SIN>8) is a strong function of

N1AZ A freq uency*.
MNi1Al ! * 1
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*that is the main reason of rather
pessimistic initial estimates about the
observability of these sources by eLISA
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Implied BHB mass
distributions and merger
rates higher than previously
thought and BHs are more
massive

Flat
Event Based

S/N=>8, L <10yr
Power Law
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eLISA will detect up to
thousands of BHBs with S/IN>8
up to few hundreds crossing to
the aLIGO band in 5yr
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Unresolved sources will form a confusion noise
detectable with high S/IN




>Detector cross-band calibration and validation (eLISA aLIGO)

>Multiband GW astronomy:
-alert aLIGO to ensure multiple GW detectors are on
-inform aLIGO with source parameters: makes
detection easier

>Multimessenger astronomy:
-point EM probes at the right location before the
merger

>Enhanced tests of GR: e.g. strongest limits on deviations from GR
>Astrophysics:

-independent measure of spins

-measure of eccentricity

>Cosmology:
-new population of standard sirens?



>Masses have the largest impact on the
phase modulation

>Eccentricity impacts the waveform and the
phase modulation

>Spins impact the waveform and the phase
modulation (but weaker effect)

Depend on the number of cycles and SNR,
can be easily measured with high precision
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GW150914
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>SKky location essentially measured through triangulation:
two detectors ——» poor information

>Distance impacts the waveform amplitude (degenerate with
masses, and sky location, inclination)

Depend on number of detection, polarization disentanglement, SNR.
Measurement is more difficult.




Imitial GW Initial Updated GCN Circular Final
Burst Recovery GCIN Circular (identified as BBH candidate) sky map
] x n

Fermi GBM, LAT, MAXI. Swift y W Fermi LAT,
IPMN, INTEGRAL (archival) XRT XRT MAXI (ongoing)

Swift UVOT, SkyMapper, MASTER, TOROS, TAROT, V5T, iPTF, Keck, Pan-STARRSI1
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GW150914: huge error box!

Nevertheless everybody
jumped on the event for
follow-ups

Those campaigns are
however very unlikely to
succeed because of:

1-wide error box

2-delay wrt the coalescence

1 will improve with more
detectors, 2 is bound to
remain a limitation (extension
to lower f will help though)
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System crossing to the
aLIGO band can be
located with sub deg2
precision (Klein et al. In

prep.)

Merger time can be
predicted within 10
seconds (but see Bonvin et
al. 2016)

Make possible to pre-
point all instruments:
open the era of
coincident GW-EM
astronomy (even though
a counterpart is not
expected).
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Binaries

Complications
-common envelope
-kicks

-metallicity
-rotation

190 - &

] DIRECT BH .

Features:
-Preferentially high,
aligned spins?
ML K  -small formation
eccentricity

He star 34,6 M:

He scar 321,

BH 0,6 M.

(Belczynski et al. 2016)
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Complications

-mass segregation
-winds

-ejections

-multiple interactions
-resonant dynamics
(Kozai-Lidov)
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Features:
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(Nishizawa et al. 2016)

>aLlGO can only place upper
bounds on e, but eLISA can

measure e if >10-3

>GW circularization implies
much higher eccentricities
In the eLISA band

Different formation channel imply different e distributions.
Too small to be measured by LIGO but accessible to LISA

Proof of concept: three BHB formation

scenarios
-field binaries (Kowalska et al 2011)
-dynamical formation in Gc¢s (Rodriguez et
al. 2016)
-Kozai resonances around a MBH
(Antonini & Perets 2012)
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field(A) vs cluster{B)

field(A) va cluster(B)

10 20 30 40 50 60 70 80 90 100

MBH(A) vs field(B) MBH(A) vs cluster(B)

10 0 10 20 30

number of BHBs

MBH(A) ve fleld(B)

Different formation channels result T -
Iin different e distributions in the
eLISA band, (see also Breivik et al.
2016)

. . i ¥ 0.4 0.8 0.8
eLISA can tell formation scenarios confidence (p)
apart with few tens of observations
(Nishizawa et al. 2016)

Can be complemented to aLIGO spin measurements.



Example of possible eLISA cosmological data

EMRIS

LIGO-like
BHBs

:__ i |:|_;| :
LY ¢ T
b il B
3 | L)

! il
i ! |||| v
l|| il
Ilu I[” E |I||' ”I l o
|Ii ll I

¢

(Courtesy of N. Tamanini)

Different GW sources will allow an independent assessment of
the geometry of the Universe at all redshifts.




number of galaxies
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No counterpart required
(McLeod & Hogan 2008, 0 0
Petiteau et. al 2011) 0.01 0.1 1 2llll 100 1 10 ;DOIGGD]D‘
-Many sources at z<0.1 0 dce]
-small errorbox consider all possible hosts within the errorbox
assuming a broad prior on h
-combine statistically the likelihood of the hosts in each errorbox to
determine h

Work in progress, h determined to up to...
AstroBonus: few local events have 1 galaxy in the errorbox



2Gm
h determined at ~5%

T
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5Gm
h determined at ~2%

90% credible region

=073 1, =0.25
h=0.727302 , =0.55738

90% credible region
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, | GW150914 provides the most stringent
o e tests of gravity in the strong field regime:

NO EVIDENCE FOR DEVIATIONS FROM GR
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BH dipole emission will cause a de-phase
observable over several decades in frequency

MBH=

s CWIS0914

& CWIS0914-like
IMREIs

& EMRIs

constraint on |H‘|

(Barausse et al. 2016)



>eLISA will enable GW physics and astrophysics at all
scales

>GW150914 is the prototype of eLISA/aLIGO multi-band GW
sources

>number of sources very uncertain but vast scientific potential
(most of it yet to be explore)
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