Exploiting jet binning to identify the initial state of high-mass resonances.

Markus Ebert

In collaboration with Stefan Liebler, Ian Moult, Iain Stewart, Frank Tackmann, Kerstin Tackmann, Lisa Zeune

arXiv:1605.06114

Deutsches Elektronen-Synchrotron

B9 Higgs Meeting

20. June 2016

Outline

Introduction

2 Theoretical setup

3 Results

< 🗇 >

< @ >

New physics searches at the LHC:

- ullet Increased sensitivity to new physics at $\sqrt{s}=13~{\rm TeV}$
- Ideal scenario: Discovery of new resonances
 - Ex.: Possible resonance in diphoton mass spectrum?
- Crucial: Identification of particle properties of resonance
 - Mass
 - Width
 - Spin
 - Couplings
 - Quantum numbers
 - • •

Minimum bias 1.2 W(ln) 1.6 Z(11) 2.0 t (s-channel) 2.2 t (t-channel) 2.5 2.0 WH H (ggF) 2.3 2.4 H (VBF) 33 tt 3.6 ttZ ttH A(0.5 TeV, ggF+bbA) 4.0 stop pair (0.7 TeV) gluino pair (1.5 TeV) 46 10 Z' SSM (3 TeV) Q* (4 Tev) 56 370 OBH (5 TeV)

100

1000

10

13 TeV / 8 TeV inclusive pp cross-section ratio

• Challenge: Limited data shortly after discovery (Maybe even at 3000 fb^{-1})

Goal:

Need methods viable with small statistics to infer particle properties.

OBH (6 TeV)

10000

Example: The diphoton excess

- Both CMS and ATLAS have seen deviations from the SM background.
- Hint for a new particle at the LHC?
 - Discovery yet to be made
 - We assume a discovery as a test case
- Mass can be measured from mass spectrum √
- Production mechanism: gg, qar q or $\gamma\gamma$?

Proposals to measure initial state

- Transverse momentum / rapidity distribution of resonance [Gao,Zhang,Zhu '15]
- Kinematic distributions of hadronic jets [Bernon et al '15]
- Additional jets at high p_T [Bernon et al '15; Franceschini et al '16; Grojean et al '13]
- o . . .
- Common drawback: Requires precise measurement of distributions

Jet binning for initial state discrimination

- Proposal: Divide data into bins with and without hadronic jets, $p_T^{\rm jet} < p_T^{\rm cut}$ (According to some jet algorithm)
- Idea: Ratio $\frac{\sigma_0(p_2^{\rm cut})}{\sigma_{\geq 1}(p_2^{\rm cut})}$ is very sensitive to ISR
 - Provides strong discrimination of initial state
- Events split with only a single cut on $p_T^{\rm jet} < p_T^{\rm cut}$ on hadronic jets
 - Suitable for small event samples
- ullet Feasible cut: $p_T^{ ext{cut}}\gtrsim 25~ ext{GeV}$
 - \blacktriangleright Feasible for high-mass resonances $m_X\gtrsim 300~{
 m GeV}$
- Theoretically very clean
 - Insensitive to details of final state (e.g. two-body vs three-body decay)
 - p_T^{cut} -dependence known precisely
 - Theoretical uncertainties well under control

Theoretical setup.

20.06.2016 3 / 21

< @ >

The 0-jet cross section.

• Singular piece:

- Large logarithms $L = \ln \frac{p_T^{ext}}{m_X}$ spoil perturbation theory
- Logs L are universal: Resummation to all orders possible
- Dominates for $p_T^{\mathsf{cut}} \ll m_X$
- Non-singular piece:
 - Power corrections $\sigma^{\text{non-sing}}(p_T^{\text{cut}}) = \mathcal{O}((p_T^{\text{cut}}/m_X)^2)$
 - \blacktriangleright Relevant only for $p_T^{ ext{cut}} \sim m_X$
 - Are model-dependent

0-jet spectrum *model-independent* for $p_T^{ ext{cut}} \ll m_X$

Scale overview: Inclusive cross section.

Scale overview: $\sigma_0(p_T^{ ext{cut}})$.

Jet veto freezes parton type at scale $p_T^{
m cut}$ and evolves it to scale m_X

Low energy dynamics.

The low energy Lagrangian:

ullet QCD dynamics for $\mu \sim p_T^{ ext{cut}} \ll m_X$ universally described

$$\mathcal{L}_{ ext{eff}}(p_T^{ ext{cut}}) = \mathcal{L}_{ ext{SCET}} + egin{array}{c} c_{ggF}^{\lambda_1\lambda_2} & \mathcal{B}_n^{\lambda_1}\mathcal{B}_{ar{n}}^{\lambda_2} & \mathcal{F} + \sum_{q} egin{array}{c} c_{qar{q}F}^{\lambda_1\lambda_2} & ar{\chi}_{qn}^{\lambda_1}\chi_{qar{n}}^{\lambda_2} & \mathcal{F} \end{array}$$

- ► SCET-Lagrangian *L*_{SCET}: Universal soft-collinear dynamics of QCD
- Annihilation of energetic gluons or quarks along the beam
- F: All fields required to produce final state F
- $c_{ijF}^{\lambda_1\lambda_2}$: Wilson coefficients
- ullet All hard degrees of freedom, $\mu \sim m_X$, are integrated out
- Power corrections suppressed by $\mathcal{O}((p_T^{ ext{cut}}/m_X)^2)$
- 0-jet cross section at leading power *completely* determined by

$$H \sim |c_{ijF}|^2 = \int \mathrm{d} \phi_F \sum_{\lambda_1,\lambda_2} |c_{ijF}^{\lambda_1\lambda_2}(\phi_F)|^2$$

- Valid for any color-singlet final state X
- Independent of spin of X

Low energy dynamics.

Resummation of large logs:

• Singular cross section plagued by large logarithms $L = \ln \frac{p_T^m}{m_X}$:

$$\sigma_0^{ ext{sing}}(p_T^{ ext{cut}}) = \sigma_{ ext{LO}}\left(1 - rac{lpha_s C_{F,A}}{\pi} 2 \ln^2 rac{p_T^{ ext{cut}}}{m_X} + \cdots
ight)$$

• Factorization: $\sigma_0^{\text{sing}}(p_T^{\text{cut}}) = H(m_X,\mu)B(p_T^{\text{cut}},\mu,\nu)^2 S(p_T^{\text{cut}},\mu,\nu)$

(See [Tackmann, Walsh, Zuberi, '12] for details)

High energy dynamics.

The high energy Lagrangian:

- ullet QCD dynamics for $\mu \sim m_X$ carries the full model-dependence
- Concrete case (spin 0):

$$\mathcal{L}_{ ext{eff}}(m_X) = \mathcal{L}_{ ext{SM}} - rac{oldsymbol{C_g}}{1 ext{ TeV}} lpha_s G^{\mu
u} G_{\mu
u} X - \sum_q oldsymbol{C_q} oldsymbol{ar{q}} q X + \cdots$$

- C_i : Wilson coefficients defined at $\mu = m_X$
- C_i are the quantities to be measured
- Different choice $\mathcal{L}_{ ext{eff}}$ (e.g. spin 2) will only yield differences $\mathcal{O}(lpha_s(m_X))$

Matching the Lagrangians:

$$egin{aligned} H(m_X,\mu) &\sim \mathcal{B}(X o F) |C_q(\mu)(1+\cdots)|^2 \ H(m_X,\mu) &\sim \mathcal{B}(X o F) |lpha_s C_g(\mu)(1+\cdots)|^2 \end{aligned}$$

- ullet Dependency on branching ratios $\mathcal{B}(X \to F)$ will drop out
- All dynamics completely specified by C_i

Cross sections.

• Recall: BSM physics parameterized as

$$\mathcal{L}_{ ext{eff}}(m_X) = \mathcal{L}_{ ext{SM}} - rac{C_g}{1 ext{ TeV}} lpha_s G^{\mu
u} G_{\mu
u} X - \sum_q C_q ar q q X + \cdots$$

• All cross sections can be expressed as functions of C_i:

Inclusive: $\sigma_{\geq 0} = |C_g|^2 \sigma_{\geq 0}^g + \sum_q |C_q|^2 \sigma_{\geq 0}^q$

Determined from $\mathcal{L}_{ ext{eff}}(m_X)$ with SusHi

► 0-jet: $\sigma_0(p_T^{\text{cut}}) = |C_g|^2 \sigma_0^g(p_T^{\text{cut}}) + \sum_q |C_q|^2 \sigma_0^q(p_T^{\text{cut}})$

Determined from $\mathcal{L}_{ ext{eff}}(p_T^{ ext{cut}})$ (non-singulars with <code>SusHi/MCFM</code>)

$$> \geq 1 \text{-jet:} \quad \sigma_{\geq 1}(p_T^{\text{cut}}) = |C_g|^2 \sigma_{\geq 1}^g(p_T^{\text{cut}}) + \sum_q |C_q|^2 \sigma_{\geq 1}^q(p_T^{\text{cut}})$$

Determined from $\sigma_{\geq 1}(p_T^{\text{cut}}) = \sigma_{\geq 0} - \sigma_0(p_T^{\text{cut}})$

ullet Initial state discrimination achieved by measuring C_g, C_q

Theory uncertainties.

Covariance matrix: (Following [Stewart, Tackmann, Walsh, Zuberi '13])

$$\mathcal{C}_{th} = \mathcal{C}_{FO} + \mathcal{C}_{resum} + \mathcal{C}_{PDF}$$

 $\bullet~\mathcal{C}_{\text{FO}}$: Collective overall scale variation

Fully correlated between different bins (yield uncertainty)

$$\mathcal{C}_{ extsf{FO}}(\sigma_0,\sigma_{\geq 1}) = egin{pmatrix} (\Delta_0^{ extsf{FO}})^2 & \Delta_0^{ extsf{FO}}\Delta_{\geq 1}^{ extsf{FO}}\ \Delta_0^{ extsf{FO}}\Delta_{\geq 1}^{ extsf{FO}} & (\Delta_{\geq 1}^{ extsf{FO}})^2 \end{pmatrix}$$

• $\mathcal{C}_{\text{resum}}$: Resummation scale variation

- Implemented through variation of profiles
- Directly probes $\ln \frac{p_{mx}^{cm}}{m_{x}}$ and hence the jet binning
- Fully anticorrelated between different bins (migration uncertainty)

$$\mathcal{C}_{\mathsf{resum}}(\sigma_0,\sigma_{\geq 1}) = egin{pmatrix} \Delta^2_{\mathsf{cut}} & -\Delta^2_{\mathsf{cut}} \ -\Delta^2_{\mathsf{cut}} & \Delta^2_{\mathsf{cut}} \end{pmatrix}$$

• \mathcal{C}_{PDF} : Variation of all 25 MMHT2014nnlo68cl eigenvectors

Found to be subdominant

Theoretical setup.

Summary

• Effective couplings defined through effective Lagrangian

$$\mathcal{L}_{ ext{eff}}(m_X) = \mathcal{L}_{ ext{SM}} - rac{C_g}{1 ext{ TeV}} lpha_s G^{\mu
u} G_{\mu
u} X - \sum_q C_q ar q q X + \cdots$$

• Cross sections are given by

$$\sigma_i = |C_g|^2 \sigma_i^g + \sum_q |C_q|^2 \sigma_i^q \,, \hspace{1em} i \in \{0, \geq 0, \geq 1\}$$

- 0-jet cross section dominated by universal large logarithms
 - Resummation of logarithms $\ln \frac{p_{T}^{cut}}{m_{T}}$ is crucial
 - Model-independent for $p_T^{\text{cut}} \ll m_X^2$
- Cross sections implemented at
 - Quark initial state: NLO + NLL'
 - ► Gluon initial state: NNLO + NNLL'
- Theory uncertainties have to be treated carefully
 - Correlations between bins and flavors are taken into account

< @ >

Sensitivity of 0-jet cross section on ISR.

• Gluons radiate stronger than quarks $(C_A = 3 > C_F = 4/3)$

- Small fraction of events in 0-jet bins for gluons
- Large fraction of events in 0-jet bins for quark
- Sea quarks partially result from gluon splittings
 - Smaller faction of events in 0-jet bin than for valence quarks
 - Effect grows with quark mass m_q

Optimizing p_T^{cut} .

• Best statistics uncertainties: events split $\sim 1:1$

• Can optimize p_T^{cut} according to measurement

- ullet Split events at most 1:2 for reasonable statistics with small data samples
- In practice: Observe little sensitivity to precise value $p_T^{\mathsf{cut}} \in [25, 65] \; \mathrm{GeV}$
- For illustration: Choose $p_T^{ ext{cut}} = 40 \,\, ext{GeV}$

Markus Ebert (DESY)

Example 1: gluon-like signal.

Normalization

- Can only constrain $C_i \sqrt{\mathcal{B}}$
- Only one decay channel: Normalize results to

$$C_i^{
m incl}\sqrt{B}=\sqrt{\sigma^{
m meas}_{\geq 0}/\sigma^i_{\geq 0}}$$

$$ullet$$
 C_i/C_i^{incl} independent of $\mathcal B$

- Assume only $C_g
 eq 0$ $\Rightarrow rac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 0.52$
- Only consider theoretical uncertainties first

Example 1: gluon-like signal.

Normalization

- Can only constrain $C_i \sqrt{\mathcal{B}}$
- Only one decay channel: Normalize results to

$$C_i^{
m incl} \sqrt{B} = \sqrt{\sigma^{
m meas}_{\geq 0}/\sigma^i_{\geq 0}}$$

$$ullet$$
 C_i/C_i^{incl} independent of $\mathcal B$

• Assume only
$$C_g \neq 0$$

 $\Rightarrow rac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 0.52$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$\frac{\Delta \sigma_0^{\text{meas}}}{\Delta \sigma_{\geq 1}^{\text{meas}}} = \sqrt{\frac{\sigma_{\geq 1}^{\text{meas}}}{\sigma_0^{\text{meas}}}}$$

Example 1: gluon-like signal.

Normalization

- Can only constrain $C_i \sqrt{\mathcal{B}}$
- Only one decay channel: Normalize results to

$$C_i^{
m incl} \sqrt{B} = \sqrt{\sigma^{
m meas}_{\geq 0}/\sigma^i_{\geq 0}}$$

$$ullet$$
 C_i/C_i^{incl} independent of $\mathcal B$

• Assume only
$$C_g \neq 0$$

 $\Rightarrow rac{\sigma_0^{meas}}{\sigma_{\geq 1}^{meas}} = 0.52$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$\frac{\Delta \sigma_0^{\text{meas}}}{\Delta \sigma_{\geq 1}^{\text{meas}}} = \sqrt{\frac{\sigma_{\geq 1}^{\text{meas}}}{\sigma_0^{\text{meas}}}}$$

• Assume only
$$C_u
eq 0$$

 $\Rightarrow rac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 1.57$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$\frac{\Delta \sigma_0^{\text{meas}}}{\Delta \sigma_{\geq 1}^{\text{meas}}} = \sqrt{\frac{\sigma_{\geq 1}^{\text{meas}}}{\sigma_0^{\text{meas}}}}$$

Example 3: Mixed *u*-quark / gluon signal.

• Assume only
$$C_u, C_g \neq 0$$

s.t. $\frac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 1.00$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$\frac{\Delta \sigma_0^{\text{meas}}}{\Delta \sigma_{\geq 1}^{\text{meas}}} = \sqrt{\frac{\sigma_{\geq 1}^{\text{meas}}}{\sigma_0^{\text{meas}}}}$$

• Assume only
$$C_b \neq 0$$

 $\Rightarrow \frac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 0.66$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$\frac{\Delta \sigma_0^{\text{meas}}}{\Delta \sigma_{\geq 1}^{\text{meas}}} = \sqrt{\frac{\sigma_{\geq 1}^{\text{meas}}}{\sigma_0^{\text{meas}}}}$$

• Assume only
$$C_c \neq 0$$

 $\Rightarrow \frac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 1.12$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$rac{\Delta\sigma_0^{ ext{meas}}}{\Delta\sigma_{\geq 1}^{ ext{meas}}} = \sqrt{rac{\sigma_{\geq 1}^{ ext{meas}}}{\sigma_0^{ ext{meas}}}}$$

• Assume only
$$C_g \neq 0$$

 $\Rightarrow rac{\sigma_0^{\text{meas}}}{\sigma_{\geq 1}^{\text{meas}}} = 0.52$

• Assume
$$\Delta \sigma^{ ext{meas}}_{\geq 0} = 20\%$$

• Split
$$rac{\Delta\sigma_0^{\text{meas}}}{\Delta\sigma_{\geq 1}^{\text{meas}}} = \sqrt{rac{\sigma_{\geq 1}^{\text{meas}}}{\sigma_0^{\text{meas}}}}$$

20.06.2016 20 / 21

< @ >

Conclusion.

Jet binning to identify the initial state of high-mass resonances

- Model-independent technique
- Theoretically clean
 - Uncertainties well under control
- Requires only small data sets
 - Applicable in the early discovery phase
- Can reliably distinguish (depending on measurement)
 - \blacktriangleright light quarks from gluons \checkmark
 - \blacktriangleright light quarks from heavy quarks \checkmark
 - b-quarks from gluons X

Outlook

- Readily applicable if the 750 GeV resonance manifests into a discovery
- Measurements should be reported fiducially
- ullet Method works for $m_{oldsymbol{X}}\gtrsim 300~{
 m GeV}$
- Could be extended to also include photon-initiated processes

Conclusion.

Jet binning to identify the initial state of high-mass resonances

- Model-independent technique
- Theoretically clean
 - Uncertainties well under control
- Requires only small data sets
 - Applicable in the early discovery phase
- Can reliably distinguish (depending on measurement)
 - \blacktriangleright light quarks from gluons \checkmark
 - \blacktriangleright light quarks from heavy quarks \checkmark
 - b-quarks from gluons X

Outlook

- Readily applicable if the 750 GeV resonance manifests into a discovery
- Measurements should be reported fiducially
- ullet Method works for $m_{oldsymbol{X}}\gtrsim 300~{
 m GeV}$
- Could be extended to also include photon-initiated processes

Thank you for your attention!

Backup slides.

< @ >

Overview of results.

Resummation uncertainties.

• Large cancellations between singular and non-singular contributions for large $p_{T}^{\rm cut} \sim m_X$

- Resummation must be turned off
- Achieved using profiles: Smooth matching onto fixed order using $\mu_i = \mu_i(p_T^{cut})$, $\nu_i = \nu_i(p_T^{cut})$
- Ambiguity is a scale uncertainty
 - Leaves $\sigma_{>0}$ invariant
 - Anticorrelated between σ_0 and $\sigma_{>1}$

 p_T^{cut} [GeV] [Stewart,Tackmann,Walsh,Zuberi '13]

40

50

20

(for $m_H = 125 \text{ GeV}$

80

100

60