Hunting the Flavon

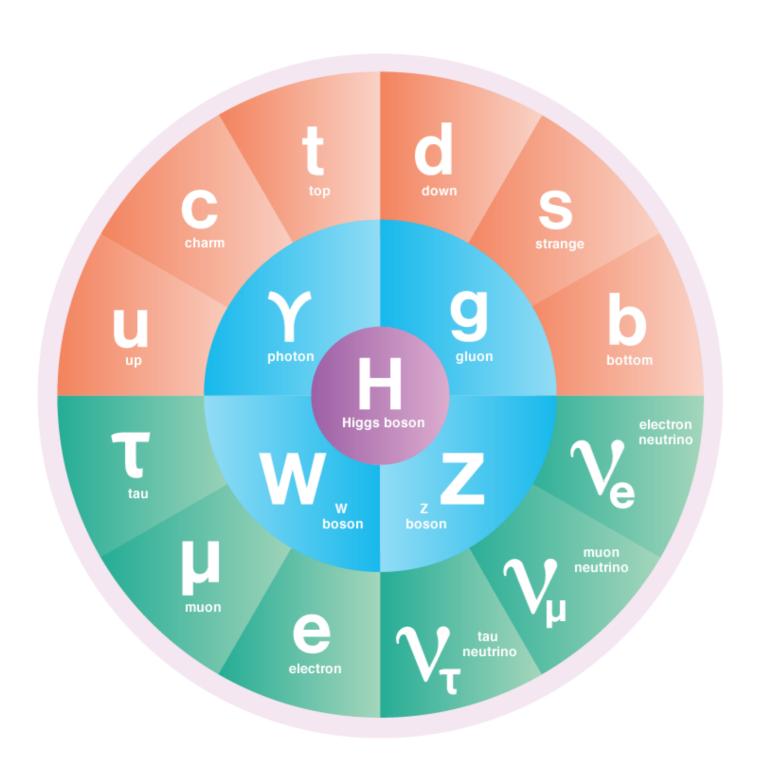
Martin Bauer

Based on

[MB, Gemmler, Carena, JHEP 1511, 016 (2015)] [MB, Gemmler, Carena, 1512.03458]

[MB, Schell, Plehn, 1603.06950]

The Standard Model of Particle Physics



Quarks

Spin 1/2

Charge 2/3: Up type

Charge -1/3: Down type

Leptons

Spin 1/2

Charge -1: e, μ , τ

Charge 0: Neutrinos

Gauge Bosons

Spin 1

Charge 0 : g, γ , Z

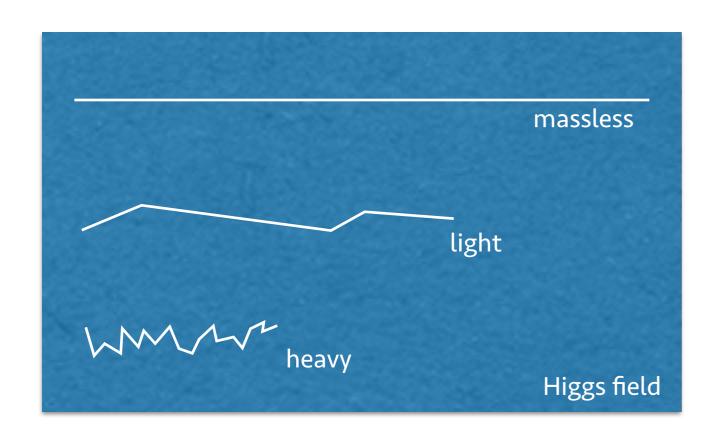
Charge ±1: W

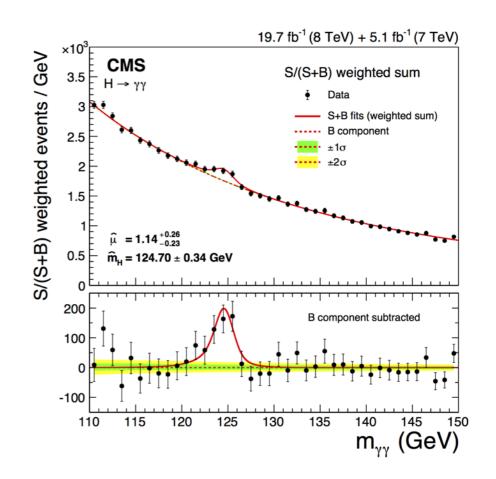
Higgs Boson

Spin 0 Charge 0

Why are elementary particles massive?

The Higgs mechanism explains why fundamental particles are massive.





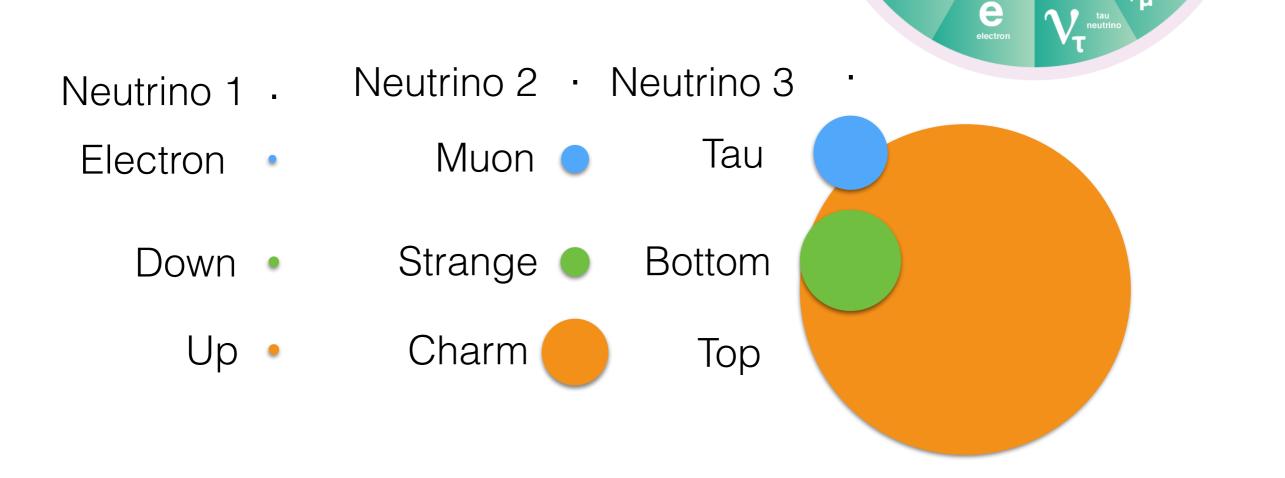
Why are elementary particles massive?

The Higgs mechanism explains why fundamental particles are The Nobel Prize in Physics 2013 was awarded massive. jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) the predicted fundamental particle, by the ATLAS S/(S+B) weighted sum and CMS experiments at CERN's Large Hadron S+B fits (weighted sum) Collider" S/(S+B) weight = 1.14 ^{+0.26}_{-0.23} light Higgs field m_{γγ} (GeV)

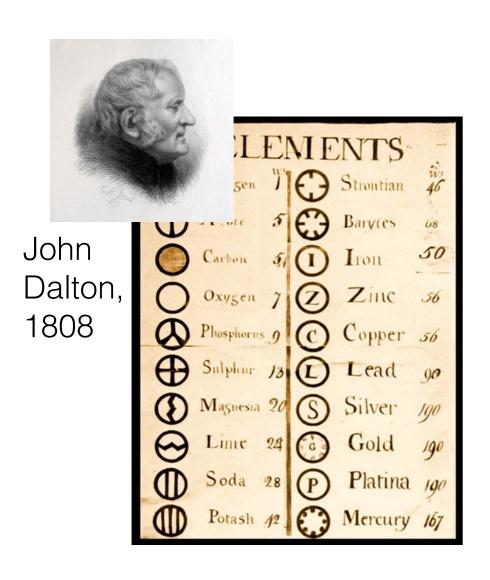
Why are fermion masses so different?

Fermion mass hierarchy: At least 6 orders of magnitude

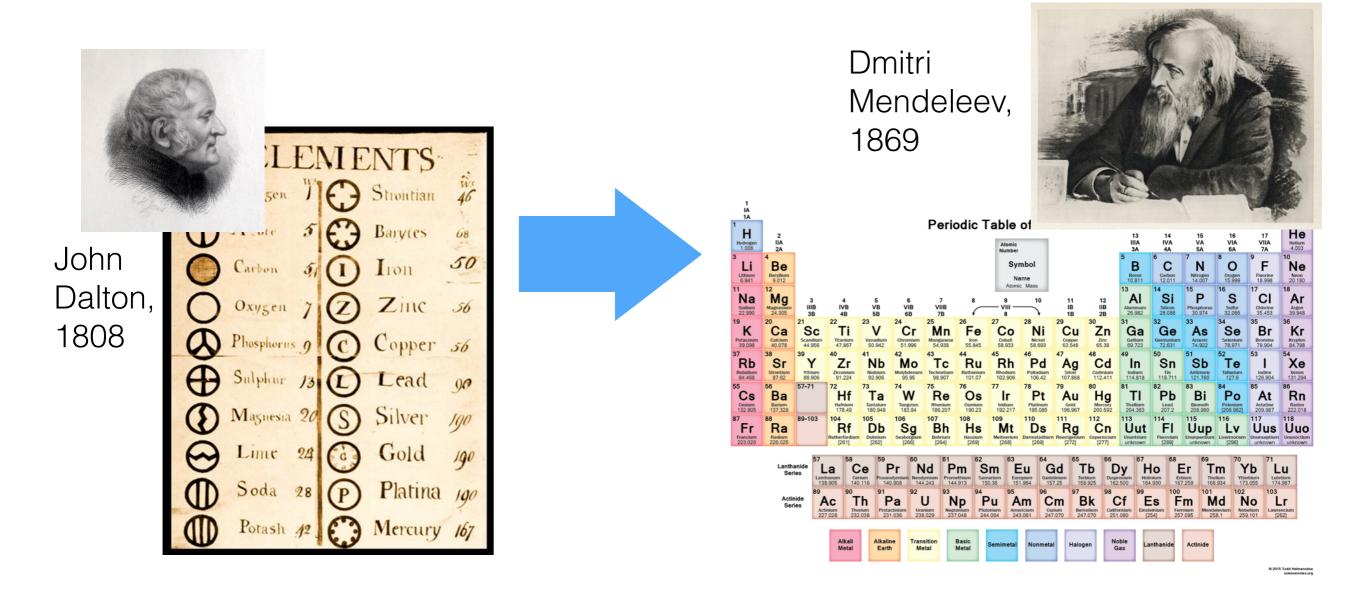
top mass = $170.000 \times up \text{ mass}$



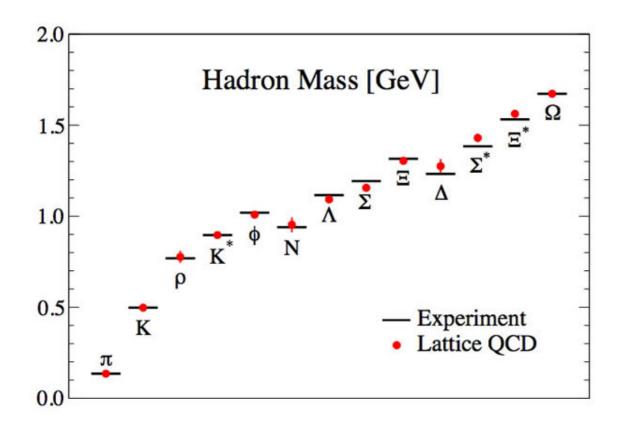
Hierarchies — Fundamental Structure



Hierarchies — Fundamental Structure

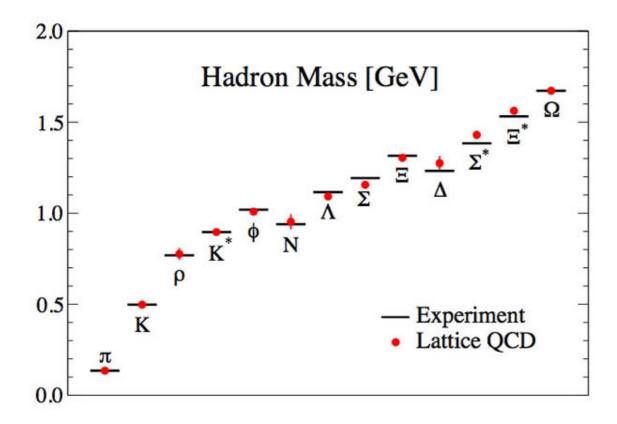


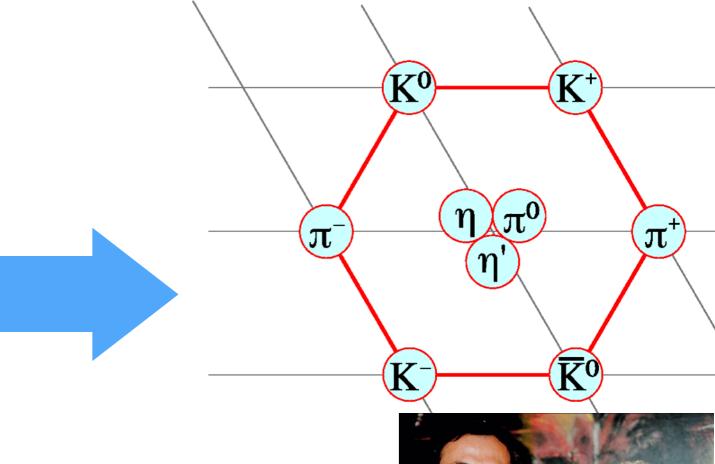
Hierarchies — Fundamental Structure



Hierarchies ----

Fundamental Structure



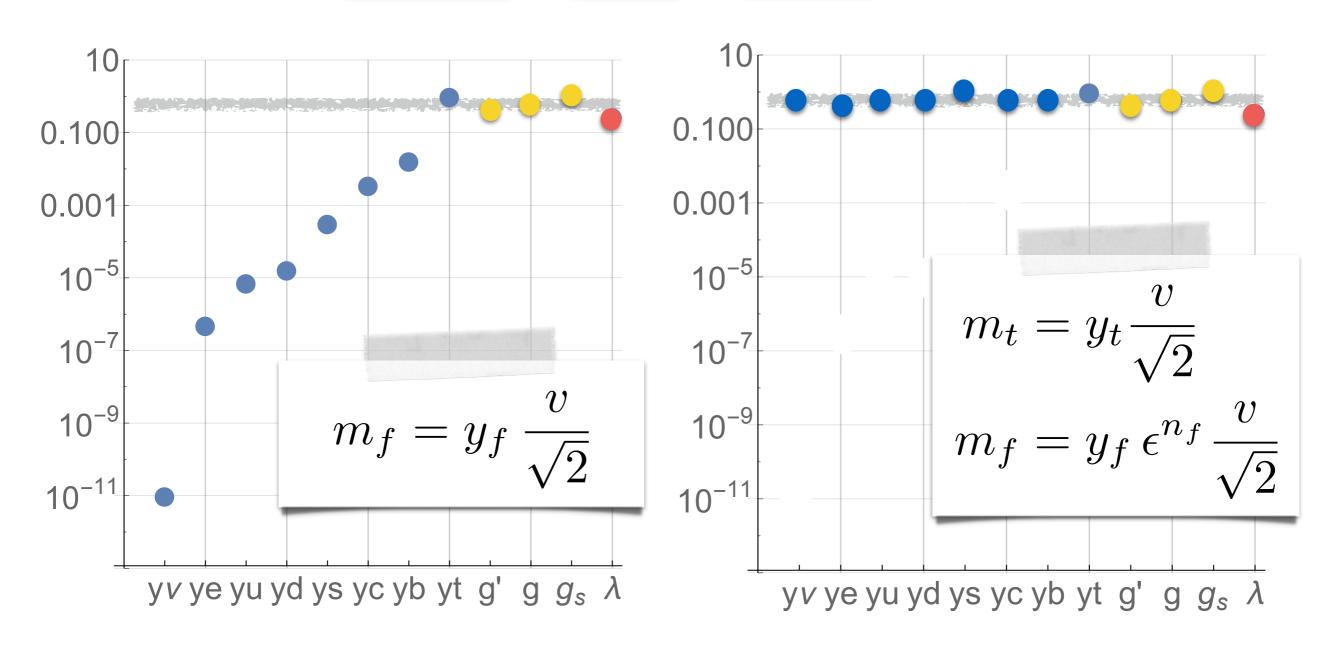


The eightfold way

Ne'eman

Why are elementary particles so different?

$$\mathcal{L} = \mu_h^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 + \mathcal{L}_{gauge} + \mathcal{L}_{Yukawa} + \frac{\mathcal{L}_5}{\Lambda} + \frac{\mathcal{L}_6}{\Lambda^2} + \cdots$$



Theories of Flavor

1. Loop Induced

[Georgi, Glashow '72]

$$\epsilon pprox rac{1}{16\pi^2} \ln\left(rac{m_s^2}{\Lambda^2}
ight)$$

2. Extra Dimensions

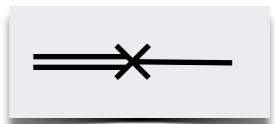
[Grossmann, Neubert 9912408]

[Gherghetta, Pomarol 0003129]

$$\epsilon^n \approx e^{(c_L - c_R) \ln \frac{\Lambda_{\rm IR}}{\Lambda_{\rm UV}}}$$

3. Partial Compositeness

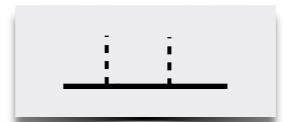
[Kaplan '91]



$$\epsilon^{\gamma} = \left(\frac{m}{M_B}\right)^{\gamma}$$

4. Froggatt Nielsen

[Froggatt, Nielsen '79]



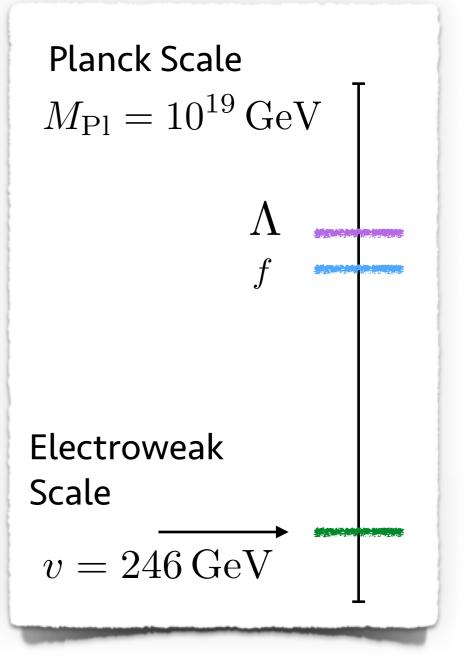
$$\epsilon pprox rac{f}{\Lambda}$$

Can we discover this mechanism?

Illustration:
$$y_t \bar{t}Ht + y_f \left(\frac{S}{\Lambda}\right)^1 \bar{b}Hb + \dots$$

$$\langle S \rangle = f \qquad \Rightarrow \qquad y_b = \epsilon \, y_f$$
 and $\epsilon = \frac{f}{\Lambda} = 0.23$

In general, the flavor scale can be arbitrarily high!



Why should the flavor scale be low?

- Why not?
- A link to Baryogenesis?
- A link to Dark Matter?
- It could be related to the electroweak scale

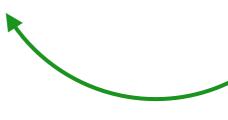
Why should the flavor scale be low?

- Why not?
- A link to Baryogenesis?
- A link to Dark Matter?
- It could be related to the electroweak scale

Flavon Potential

Scalar potential leads to a flavor breaking minimum

$$-\mathcal{L}_{\text{potential}} = -\mu_S^2 S^{\dagger} S + \lambda_S (S^{\dagger} S)^2 + b (S^2 + S^{\dagger 2}) + \lambda_{HS} (S^{\dagger} S) (H^{\dagger} H) + V(H) .$$



Breaks the flavor symmetry

Two degrees of freedom

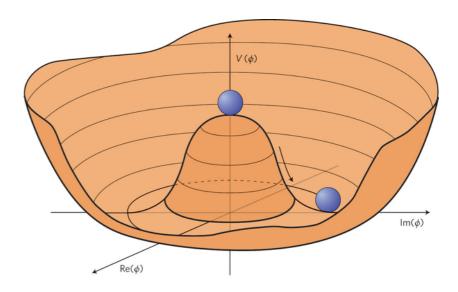
$$S(x) = \frac{f + s(x) + i a(x)}{\sqrt{2}}$$

With masses

$$m_s = \sqrt{2\lambda_S} f$$

$$m_a = 2\sqrt{b}$$

$$m_a < m_s \approx f < \Lambda$$



Yukawa Couplings

Yukawa couplings for quarks and leptons

$$\mathcal{L}_{\text{Yukawa}} = y_{ij}^d \left(\frac{S}{\Lambda}\right)^{n_{ij}^d} \overline{Q}_i H d_{R_j} + y_{ij}^u \left(\frac{S}{\Lambda}\right)^{n_{ij}^u} \overline{Q}_i \widetilde{H} u_{R_j}$$
$$+ y_{ij}^\ell \left(\frac{S}{\Lambda}\right)^{n_{ij}^\ell} \overline{L}_i H \ell_{R_j} + y_{ij}^\nu \left(\frac{S}{\Lambda}\right)^{n_{ij}^\nu} \overline{L}_i \widetilde{H} \nu_{R_j} + \text{h.c.}$$

Exponents are fixed by U(1) flavor charges.

$$n_{ij}^{d} = a_{Q_i} - a_{d_j} - a_H$$
$$n_{ij}^{u} = a_{Q_i} - a_{u_j} + a_H$$

Masses and Mixings

$$\epsilon = \frac{f}{\Lambda} \equiv \frac{\langle S \rangle}{\Lambda} \equiv (V_{\text{CKM}})_{12} \approx 0.23$$

Quark and Lepton Masses

$$m_t \approx \frac{v}{\sqrt{2}}$$
 $\frac{m_b}{m_t} \approx \epsilon^3$ $\frac{m_c}{m_t} \approx \epsilon^4$ $\frac{m_s}{m_t} \approx \epsilon^5$ $\frac{m_d}{m_t} \approx \epsilon^7$ $\frac{m_u}{m_t} \approx \epsilon^8$ $\frac{m_{\tau}}{m_t} \approx \epsilon^3$ $\frac{m_{\mu}}{m_t} \approx \epsilon^5$ $\frac{m_e}{m_t} \approx \epsilon^8$ $\frac{m_{\nu_1}}{m_t} \approx \epsilon^{24}$ $\frac{m_{\nu_2}}{m_t} \approx \epsilon^{21}$ $\frac{m_{\nu_3}}{m_t} \approx \epsilon^{20}$

and Mixings

$$V_{\rm CKM} pprox egin{pmatrix} 1 & \epsilon & \epsilon^3 \\ \epsilon & 1 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix} \qquad U_{\rm PMNS} pprox egin{pmatrix} 1 & \epsilon & \epsilon \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix}$$

Masses and Mixings

$$\epsilon = \frac{f}{\Lambda} \equiv \frac{\langle S \rangle}{\Lambda} \equiv (V_{\text{CKM}})_{12} \approx 0.23$$

Quark and Lepton Masses

$$m_t \approx \frac{v}{\sqrt{2}}$$
 $\frac{m_b}{m_t} \approx \epsilon^3$ $\frac{m_c}{m_t} \approx \epsilon^4$ $\frac{m_s}{m_t} \approx \epsilon^5$ $\frac{m_d}{m_t} \approx \epsilon^7$ $\frac{m_u}{m_t} \approx \epsilon^8$ $\frac{m_{\tau}}{m_t} \approx \epsilon^3$ $\frac{m_{\mu}}{m_t} \approx \epsilon^5$ $\frac{m_e}{m_t} \approx \epsilon^8$ $\frac{m_{\nu_1}}{m_t} \approx \epsilon^{24}$ $\frac{m_{\nu_2}}{m_t} \approx \epsilon^{21}$ $\frac{m_{\nu_3}}{m_t} \approx \epsilon^{20}$

and Mixings

After fixing the ratio of scales there are 2 free parameters: m_a and f

Flavon Couplings are dictated by this structure

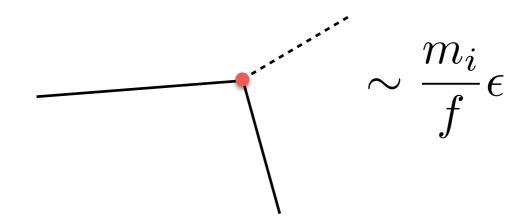
$$S(x) = \frac{f + s(x) + i a(x)}{\sqrt{2}}$$

$$g_{aij}^{u} = \frac{1}{f} \begin{pmatrix} 8m_{u} & \epsilon m_{c} & \epsilon^{3}m_{t} \\ \epsilon^{3}m_{c} & 4m_{c} & \epsilon^{2}m_{t} \\ \epsilon^{5}m_{t} & \epsilon^{2}m_{t} & 0 \end{pmatrix} \qquad g_{aij}^{d} = \frac{1}{f} \begin{pmatrix} 7m_{d} & \epsilon m_{s} & \epsilon^{3}m_{b} \\ \epsilon m_{s} & 5m_{s} & \epsilon^{2}m_{b} \\ \epsilon m_{b} & \epsilon^{2}m_{b} & 3m_{b} \end{pmatrix}$$

$$g_{aij}^{d} = \frac{1}{f} \begin{pmatrix} 7m_d & \epsilon m_s & \epsilon^3 m_b \\ \epsilon m_s & 5m_s & \epsilon^2 m_b \\ \epsilon m_b & \epsilon^2 m_b & 3m_b \end{pmatrix}$$

$$g_{aij}^{\ell} = \frac{1}{f} \begin{pmatrix} 9m_e & \epsilon m_{\mu} & \epsilon m_{\tau} \\ \epsilon^3 m_{\mu}^3 & 5m_{\mu} & \epsilon^2 m_{\tau} \\ \epsilon^5 m_{\tau} & \epsilon^2 m_{\tau} & 3m_{\tau} \end{pmatrix}$$

small....potentially very small!



Flavon Couplings are dictated by this structure

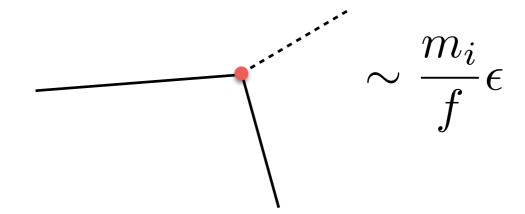
$$S(x) = \frac{f + s(x) + i a(x)}{\sqrt{2}}$$

$$g_{aij}^{u} = \frac{1}{f} \begin{pmatrix} 8m_{u} & \epsilon m_{c} & \epsilon^{3}m_{t} \\ \epsilon^{3}m_{c} & 4m_{c} & \epsilon^{2}m_{t} \\ \epsilon^{5}m_{t} & \epsilon^{2}m_{t} \end{pmatrix} \qquad g_{aij}^{d} = \frac{1}{f} \begin{pmatrix} 7m_{d} & \epsilon m_{s} & \epsilon^{3}m_{b} \\ \epsilon m_{s} & 5m_{s} & \epsilon^{2}m_{b} \\ \epsilon m_{b} & \epsilon^{2}m_{b} & 3m_{b} \end{pmatrix}$$

$$g_{aij}^{d} = \frac{1}{f} \begin{pmatrix} 7m_d & \epsilon m_s & \epsilon^3 m_b \\ \epsilon m_s & 5m_s & \epsilon^2 m_b \\ \epsilon m_b & \epsilon^2 m_b & 3m_b \end{pmatrix}$$

$$g_{aij}^{\ell} = \frac{1}{f} \begin{pmatrix} 9m_e & \epsilon m_{\mu} & \epsilon m_{\tau} \\ \epsilon^3 m_{\mu}^3 & 5m_{\mu} & \epsilon^2 m_{\tau} \\ \epsilon^5 m_{\tau} & \epsilon^2 m_{\tau} & 3m_{\tau} \end{pmatrix}$$

$$g_{act} = \frac{1}{3\epsilon} g_{abb}$$



Effects from flavon interactions lead to

- Quark Flavor Constraints
- Lepton Flavor Constraints
- Future Collider Constraints

Generate fundamental Yukawa couplings at the high scale and reproduce fermion masses and mixings in agreement with the SM.

$$m_{u_i} = (0.00138, 0.563, 150.1) \text{ GeV}$$

 $m_{d_i} = (0.00342, 0.054, 2.29) \text{ GeV}$ $|V_{\text{ckm}}| = \begin{pmatrix} 0.974 & 0.226 & 0.0035 \\ 0.226 & 0.974 & 0.0388 \\ 0.011 & 0.037 & 0.999 \end{pmatrix}$

Demand $|y_{ij}| \in [0.5, 1.5]$ with arbitrary phase.

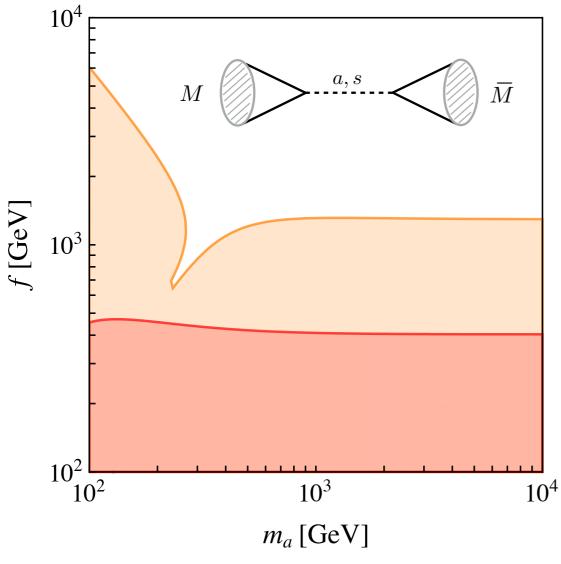
$$Y_u = \begin{pmatrix} 0.34 + 0.82i & -0.23 + 0.69i & 0.41 - 0.43i \\ -0.84 + 0.26i & -0.64 + 0.32i & 1.35 - 0.24i \\ 0.98 - 0.90i & -0.84 - 1.20i & 0.75 + 0.65i \end{pmatrix}$$

$$Y_d = \begin{pmatrix} 0.53 + 0.72i & 0.50 - 0.34i & 0.65 - 0.10i \\ 1.12 - 0.14i & 0.93 - 0.54i & -0.31 - 0.65i \\ -0.16 + 0.6i & -0.73 + 0.34i & 0.84 + 0.61i \end{pmatrix}$$

Quark Flavor constraints

$$\epsilon_K, \Delta m_K$$

$$\mathcal{H}_{NP}^{\Delta F=2} = C_1^{ij} (\bar{q}_L^i \gamma_\mu q_L^j)^2 + \tilde{C}_1^{ij} (\bar{q}_R^i \gamma_\mu q_R^j)^2 + C_2^{ij} (\bar{q}_R^i q_L^j)^2 + \tilde{C}_2^{ij} (\bar{q}_L^i q_R^j)^2 + C_4^{ij} (\bar{q}_R^i q_L^j) (\bar{q}_L^i q_R^j)^2 + C_5^{ij} (\bar{q$$



$$C_{2}^{sd} = -(g_{ds}^{*})_{1}^{2} \underbrace{-\frac{1}{a,s}}_{m_{a}^{2}} \underbrace{-\frac{1}{m_{a}^{2}}}_{\mu}$$

$$\tilde{C}_{2}^{sd} = -g_{sd}^{2} \left(\frac{1}{m_{s}^{2}} - \frac{1}{m_{a}^{2}}\right),$$

$$C_{4}^{sd} = -\frac{g_{sd}g_{ds}}{2} \left(\frac{1}{m_{s}^{2}} + \frac{1}{m_{a}^{2}}\right).$$

Run down and match

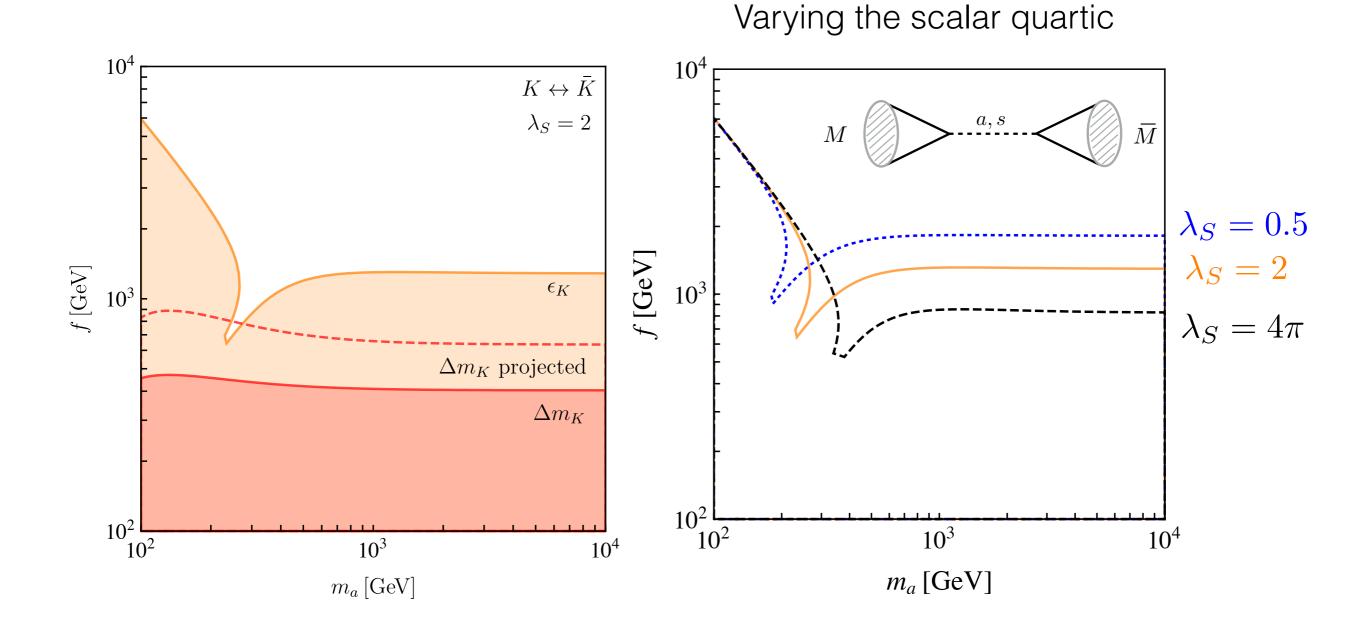
$$C_{\epsilon_K} = \frac{\operatorname{Im}\langle K^0 | \mathcal{H}^{\Delta F = 2} | \bar{K}^0 \rangle}{\operatorname{Im}\langle K^0 | \mathcal{H}_{SM}^{\Delta F = 2} | \bar{K}^0 \rangle}$$

UTFIT

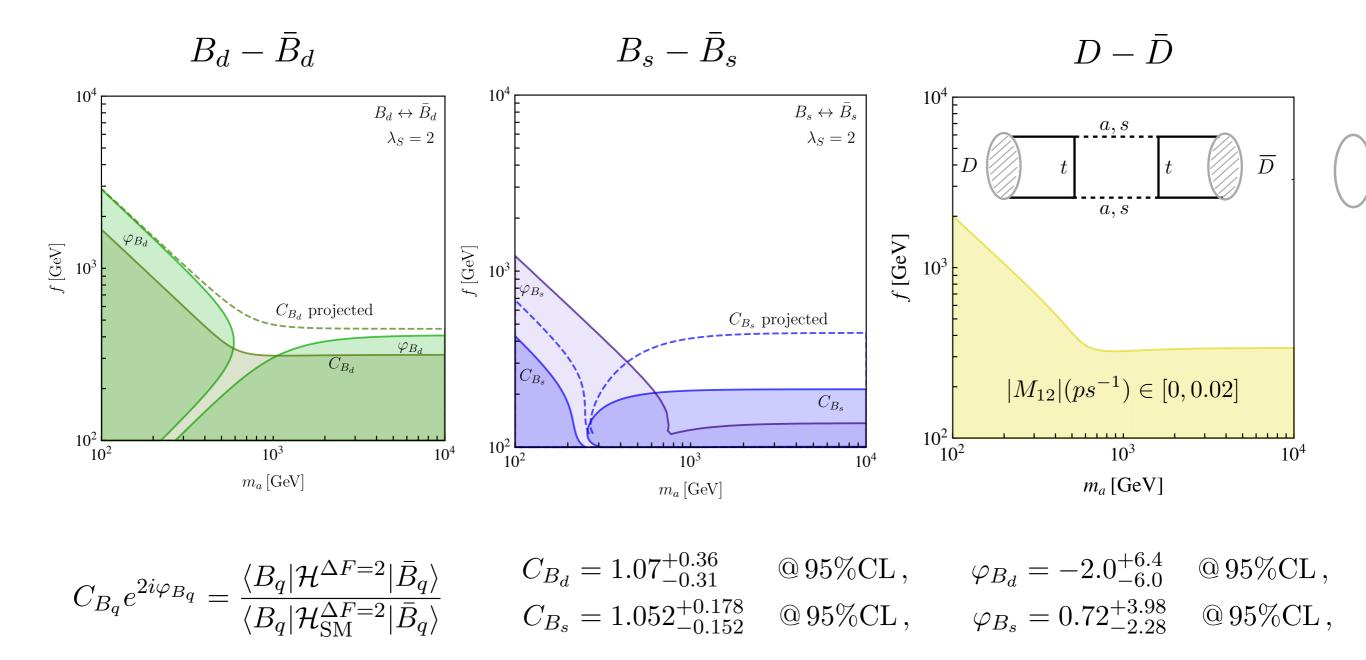
 $C_{\epsilon_K} = 1.05^{+0.36}_{-0.28} \quad @95\% \ CL, \qquad C_{\Delta_{m_K}} = 0.93^{+1.14}_{-0.42} \quad @95\% \ CL$

Quark Flavor constraints

$$\epsilon_K, \Delta m_K$$



Quark Flavor constraints

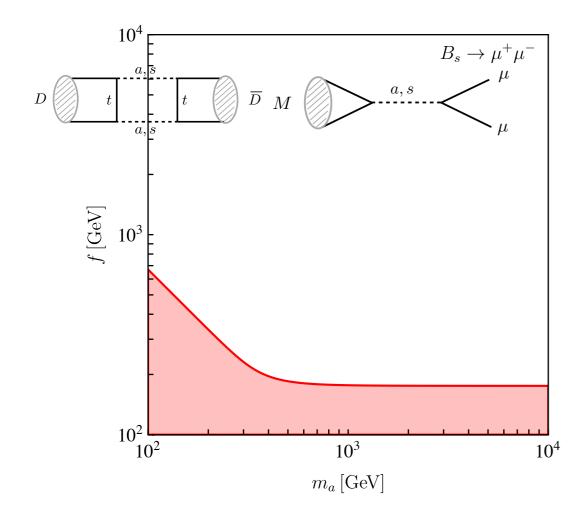


$$BR(M \to \ell\ell) = \frac{G_F^4 M_W^4}{8\pi^5} \beta \left(\frac{m_\ell}{M_M}\right) M_M f_M^2 m_\ell^2 \tau_M \left\{ \left| \frac{M_M^2 (C_P^{ij} - \tilde{C}_P^{ij})}{2m_\ell (m_i + m_j)} - C_A^{SM} \right|^2 + \left| \frac{M_M^2 (C_S^{ij} - \tilde{C}_S^{ij})}{2m_\ell (m_i^2 + m_j)} \right|^2 \beta^2 \left(\frac{m_\ell}{M_M}\right) \right\}$$

$$BR(B_s \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$$

LHCb&CMS

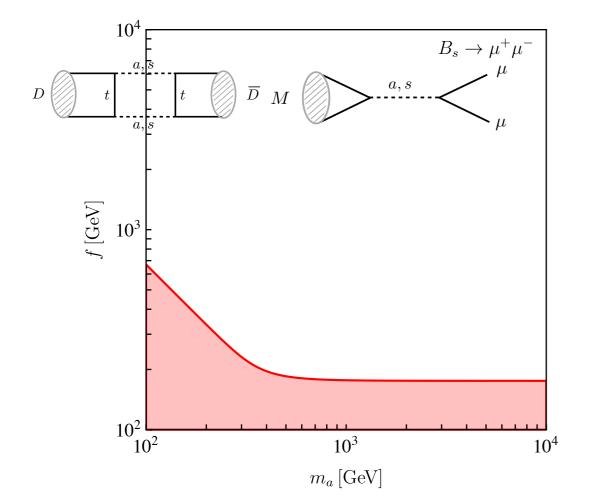
$$BR(B_d \to \mu^+ \mu^-) = 3.6 \pm 1.6 \times 10^{-10}$$



$$\begin{split} e & e \\ C_S^{ij} = \frac{\pi^2}{2G_F^2 M_W^2} \frac{2g_{\ell\ell}g_{ji}}{m_s^2} \,, \qquad \tilde{C}_S^{ij} = \frac{\pi^2}{2G_F^2 M_W^2} \frac{2g_{\ell\ell}g_{ij}}{m_s^2} \,, \\ C_P^{ij} = \frac{\pi^2}{2G_F^2 M_W^2} \frac{2g_{\ell\ell}g_{ji}}{m_s^2} \,, \qquad \tilde{C}_P^{ij} = \frac{\pi^2}{2G_F^2 M_W^2} \frac{2g_{\ell\ell}g_{ij}}{m_s^2} \,. \end{split}$$

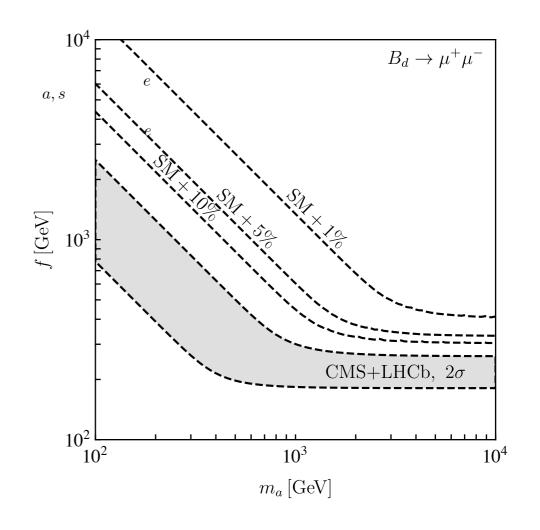
$$BR(M \to \ell\ell) = \frac{G_F^4 M_W^4}{8\pi^5} \beta \left(\frac{m_\ell}{M_M}\right) M_M f_M^2 m_\ell^2 \tau_M \left\{ \left| \frac{M_M^2 (C_P^{ij} - \tilde{C}_P^{ij})}{2m_\ell (m_i + m_j)} - C_A^{SM} \right|^2 + \left| \frac{M_M^2 (C_S^{ij} - \tilde{C}_S^{ij})}{2m_\ell (m_i^2 + m_j)} \right|^2 \beta^2 \left(\frac{m_\ell}{M_M}\right) \right\}$$

$$BR(B_s \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$$



LHCb&CMS

$$BR(B_d \to \mu^+ \mu^-) = 3.6 \pm 1.6 \times 10^{-10}$$

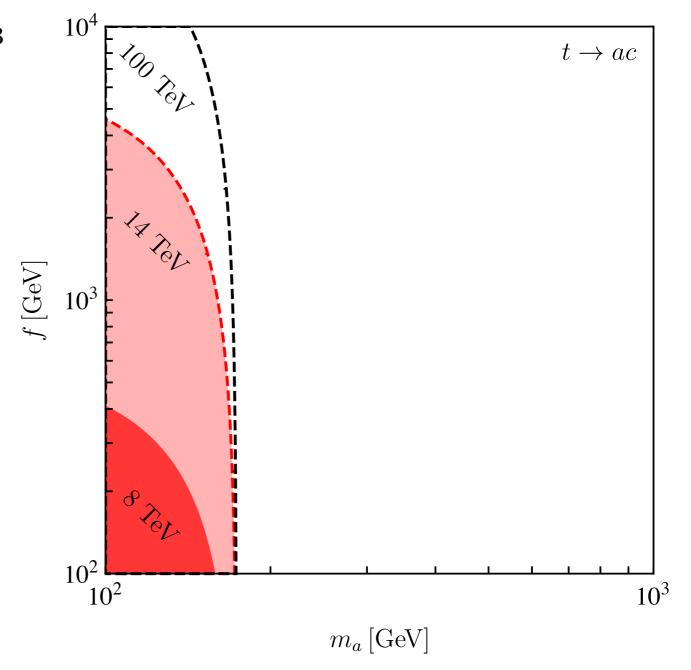


Top decays

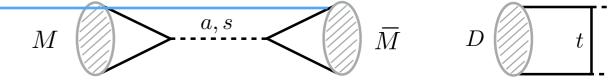
LHC 8 BR $(t \to ac) < 5.6 \times 10^{-3}$

LHC 14 BR $(t \to ac) < 4.5 \times 10^{-5}$

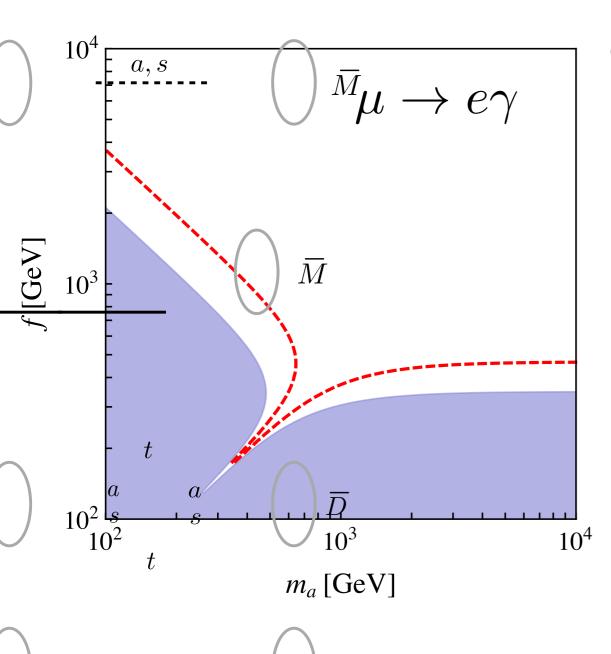
100TeV BR $(t \to ac) < 1.5 \times 10^{-6}$



Lepton Flavor constraints



$$\mathcal{L}_{\text{eff}} = m_{\ell'} C_T^L \, \bar{\ell} \sigma^{\rho \lambda} P_L \, \ell' \, F_{\rho \lambda} + m_{\ell'} \, C_T^R \, \bar{\ell} \sigma^{\rho \lambda} P_R \, \ell' \, F_{\rho \lambda}$$

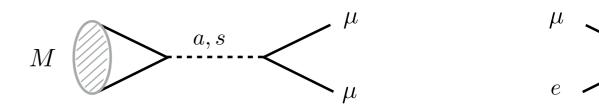


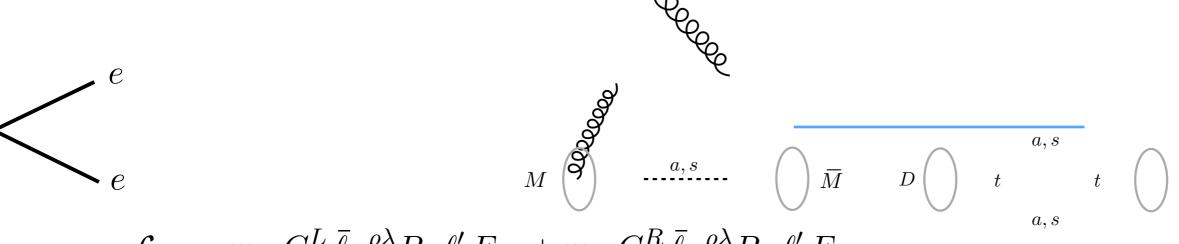
$$C_{T}^{L} = \frac{g}{32\pi^{2}} \sum_{k=e,\mu,\tau} \left[\frac{1}{6} \left(g_{\ell k}^{*} g_{\ell' k} + \frac{m_{\ell}}{m_{k}} g_{k\ell}^{*} g_{k\ell'} \right) \left(\frac{1}{m_{s}^{2}} - \frac{1}{m_{a}^{2}} \right) - g_{\ell k} g_{k \ell'} \frac{m_{k}}{m_{\ell'}} \left\{ \frac{1}{m_{s}^{2}} \left(\frac{3}{2} + \log \frac{m_{\ell'}^{2}}{m_{s}^{2}} \right) - \frac{1}{m_{a}^{2}} \left(\frac{3}{2} + \log \frac{m_{\ell'}^{2}}{m_{a}^{2}} \right) \right\} \right]$$

$$u, d, s$$

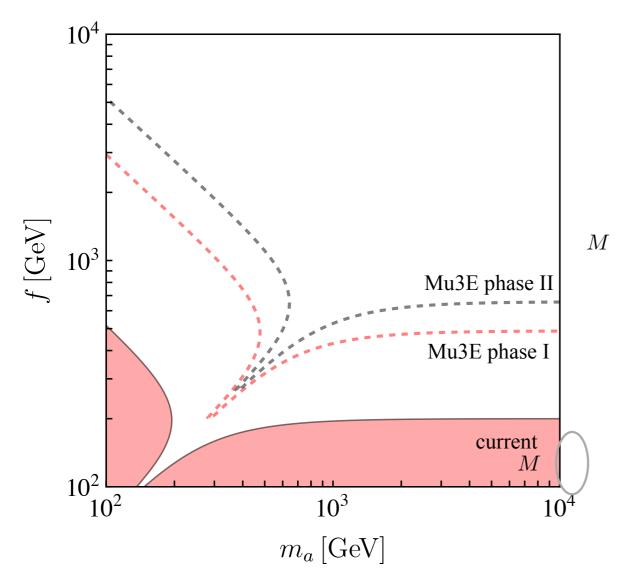
$$\text{MEG} \qquad \text{BR}(\mu \to e \gamma) < 5.7 \times 10^{-13}$$

$$\mu$$
 —



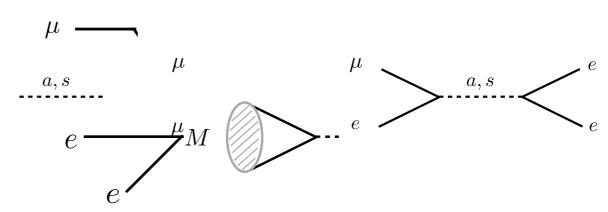


$$\mathcal{L}_{\text{eff}} = m_{\ell'} C_T^L \, \bar{\ell} \sigma^{\rho \lambda} P_L \, \ell' \, F_{\rho \lambda} + m_{\ell'} \, C_T^R \, \bar{\ell} \sigma^{\rho \lambda} P_R \, \ell' \, F_{\rho \lambda} \,.$$



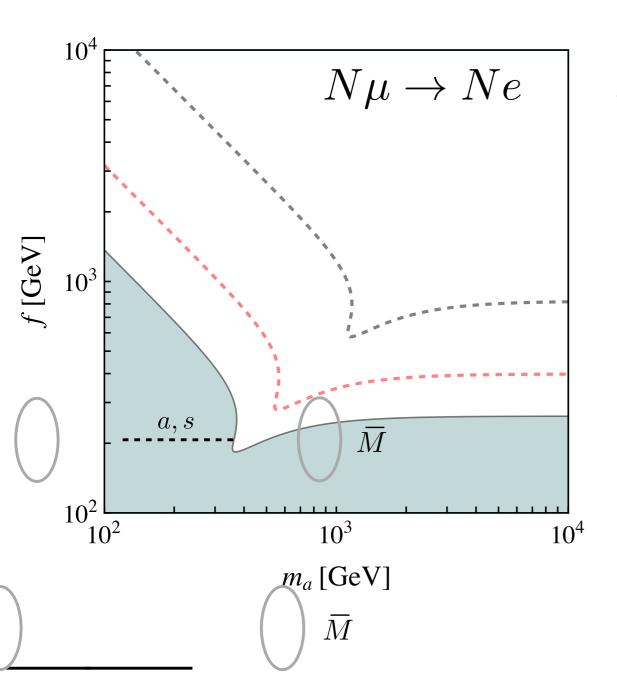
BR(
$$\tau \to 3\mu$$
) < 2.1 · 10⁻⁸,
BR($\tau \to 3e$) < 2.7 · 10⁻⁸,
BR($\mu \to 3e$) < 1.0 · 10⁻¹².

Mu3E will improve this by 3-4 orders of magnitude!



Lepton Flavor constraints

$$\mathcal{L}_{\text{eff}} = C_{qq}^{VL} \,\bar{e} \gamma^{\nu} P_L \mu \,\bar{q} \gamma_{\nu} q + m_{\mu} m_q \, C_{qq}^{SL} \bar{e} P_R \mu \,\bar{q} q + m_{\mu} \alpha_s C_{gg}^L \,\bar{e} P_R \mu \, G_{\rho\nu} G^{\rho\nu} \, + R \leftrightarrow L,$$



Sindrum II $BR(\mu -$

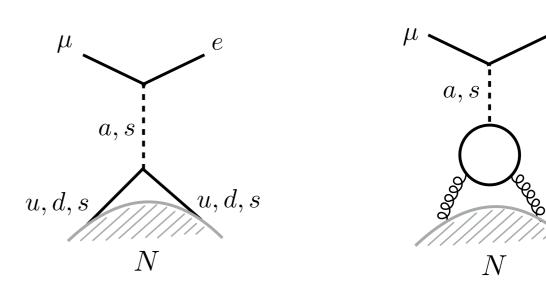
 $BR(\mu \to e)^{Au} < 7 \times 10^{-13}$

DeeMe

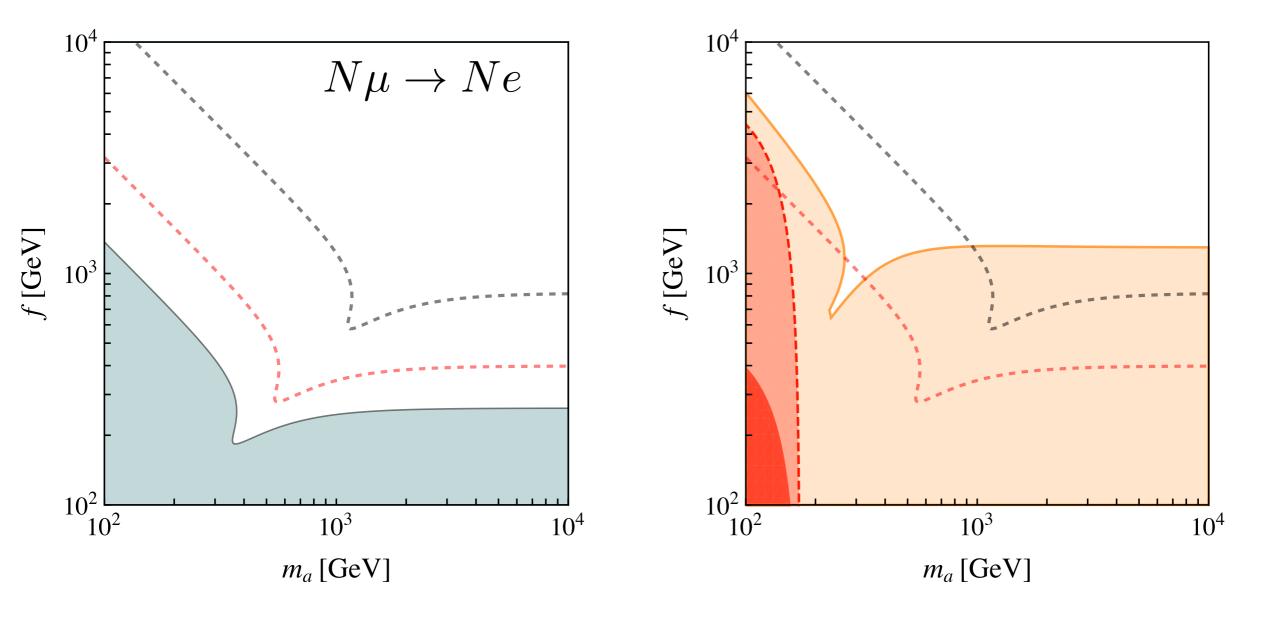
 $BR(\mu \to e)^{Si} < 2 \times 10^{-14}$

COMET

$$BR(\mu \to e)^{Al} < 6 \times 10^{-17}$$

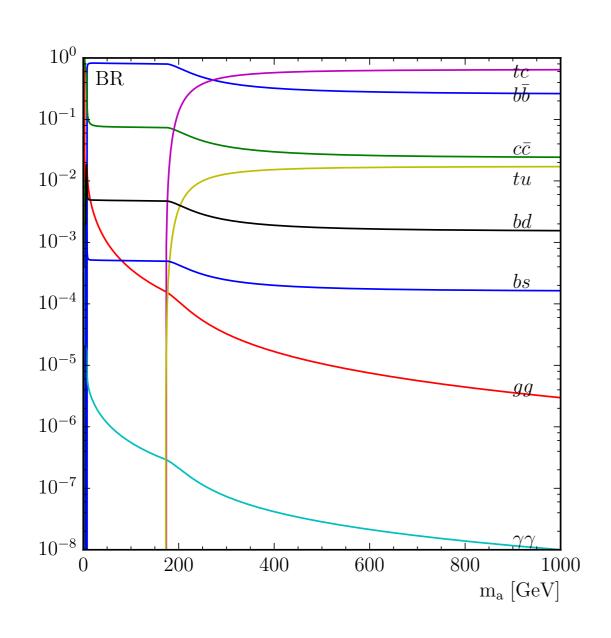


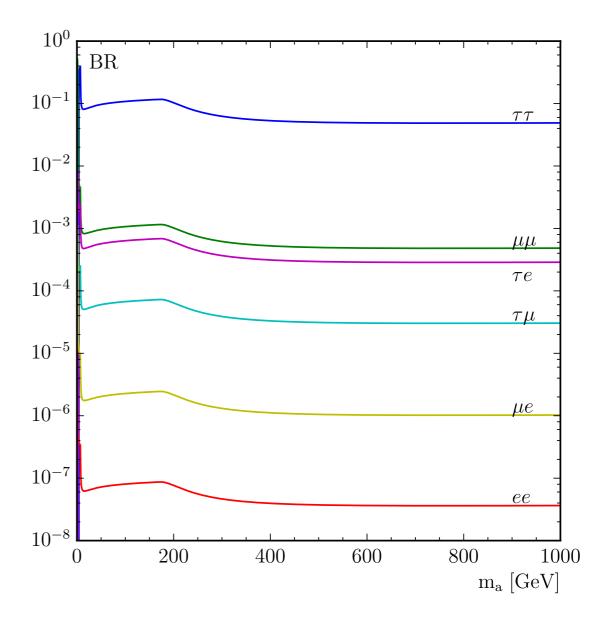
Lepton Flavor constraints



Future Collider Searches

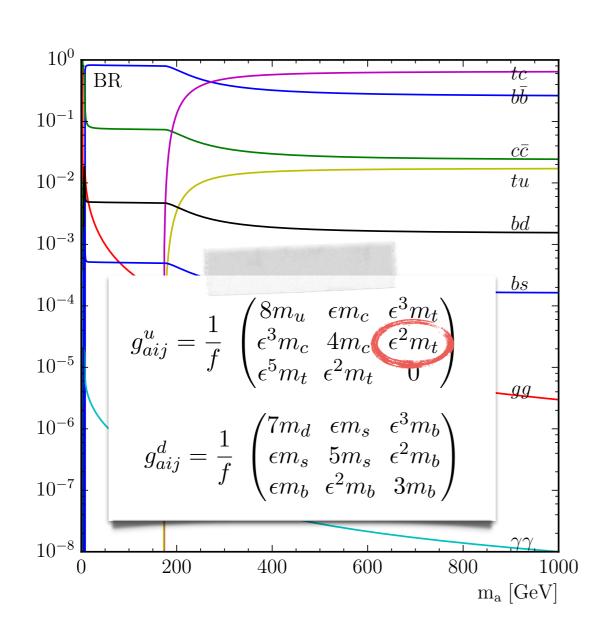
Branching Ratios

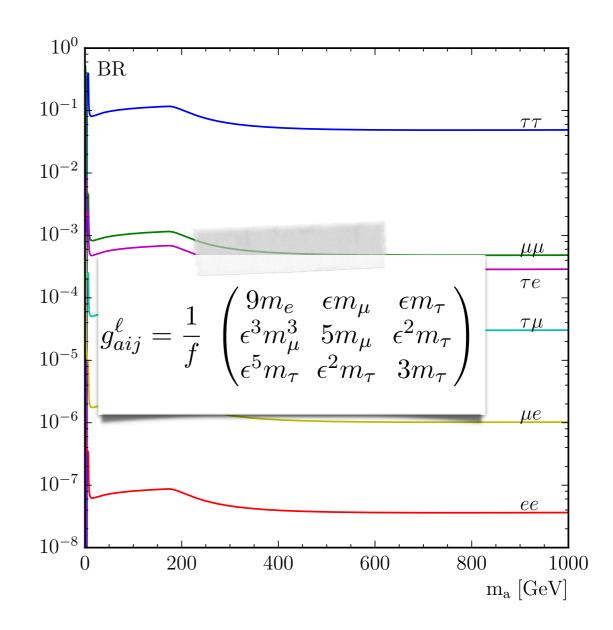




Future Collider Searches

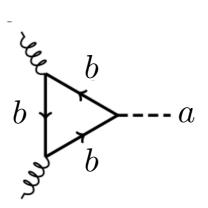
Branching Ratios

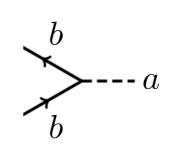


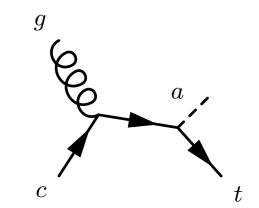


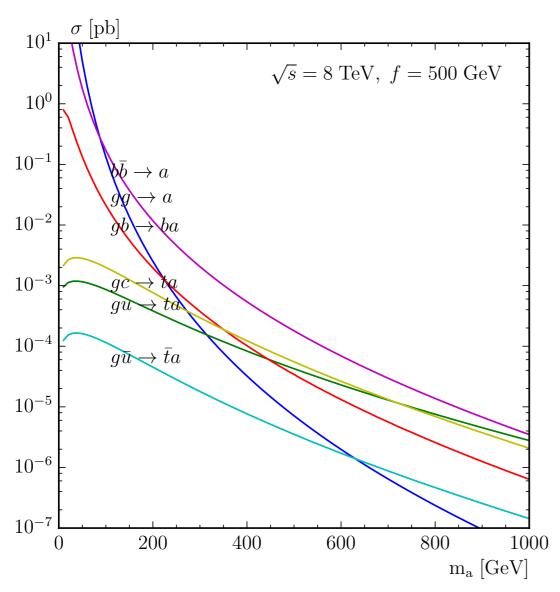
(Future) Collider Searches

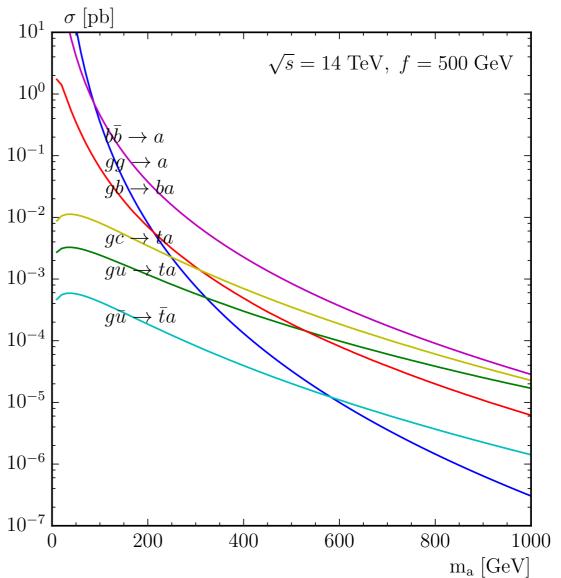
Production Cross Sections at LHC







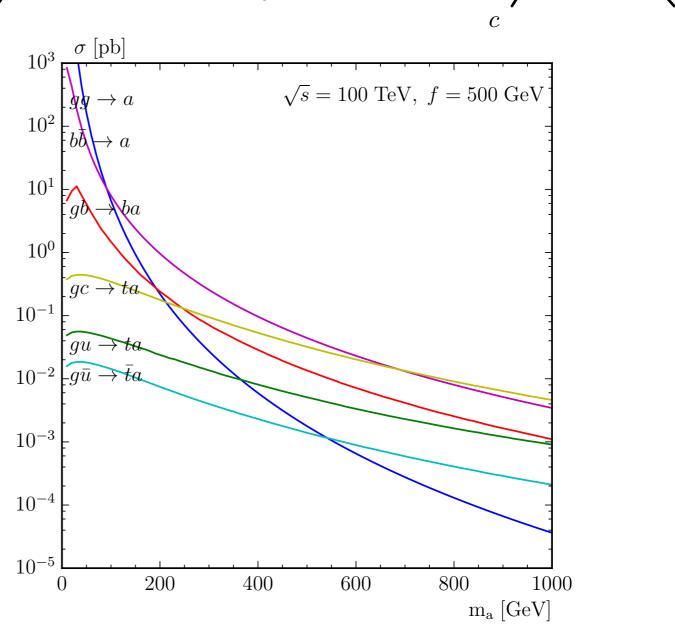


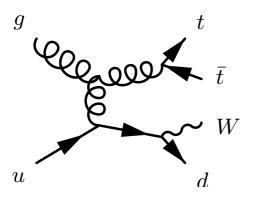


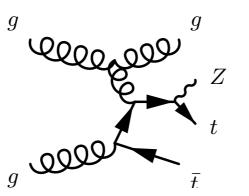
Future Collider Searches

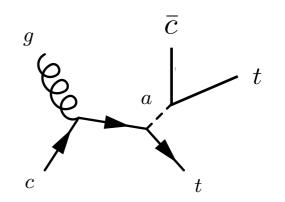
Production Cross Sections at 100 TeV $b \longrightarrow b \longrightarrow a$ $b \longrightarrow b$ $c \longrightarrow t$ $10^{3} \bigcap_{[pb]} [pb]$

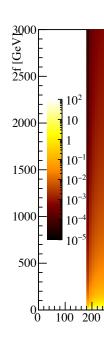
The huge background and the BRs make decays into taus and bs hopeless!











- 2 same-sign leptons(+) (2 hardest ones) with $p_T > 10$ GeV, $|\eta| < 2.5$ $R_{\rm iso} = 0.2$
- if there is a 3rd lepton of different sign, veto events with $|m_{\ell_i^{(ss)}\ell^{(ds)}} m_Z| < 15 \text{ GeV}$
- require for hardest jet $p_T > 100 \text{ GeV}$
- b-tagging: partonlevel b within R < 0.3, assumed efficiency 50 %
- require for the remaining jets $N_b \ge 2$
- $p_T > 50 \text{ GeV}$
- minimize $R_{\ell_1 b_i} + R_{\ell_2 b_j}$ to define $(\ell b)_1$ and $(\ell b)_2$
- minimize $\Delta y((\ell b)_i, j)$ to define (ℓbj) and (ℓb)
- calculate m_{T2}

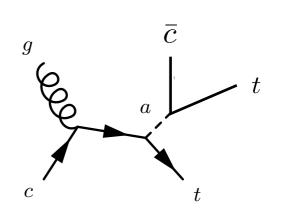
• b- \bar{b} distinction

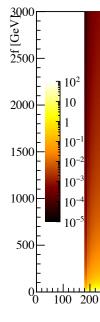
conservative

$$\epsilon_b = 0.2, \epsilon_{\bar{b}} = 0.06$$

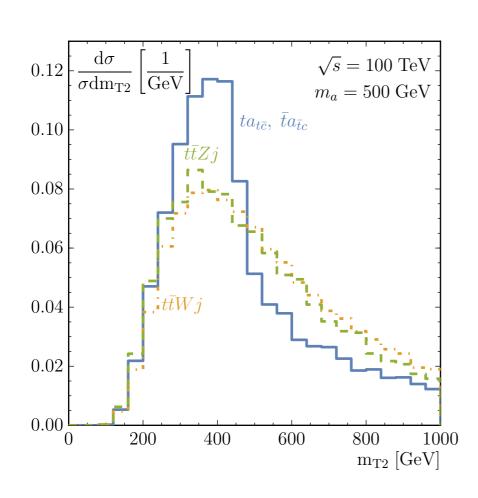
optimistic

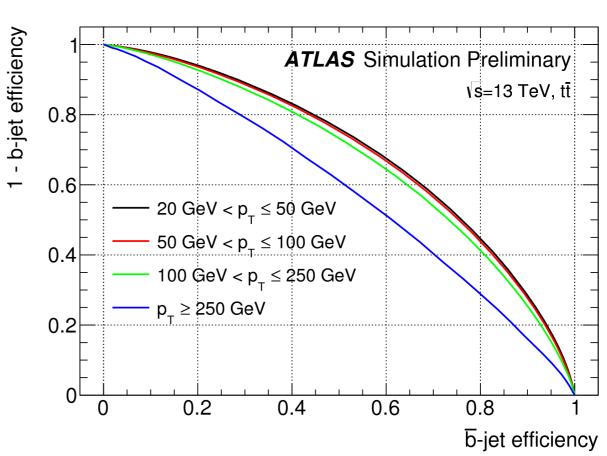
$$\epsilon_b = 0.2, \epsilon_{\bar{b}} = 0.01$$





ATL-PHYS-PUB-2015-040

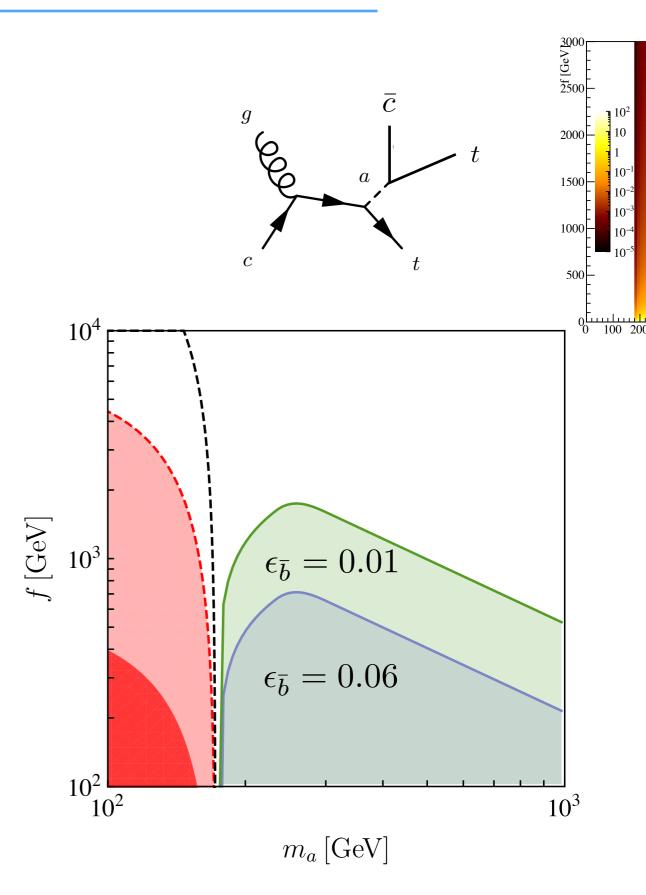




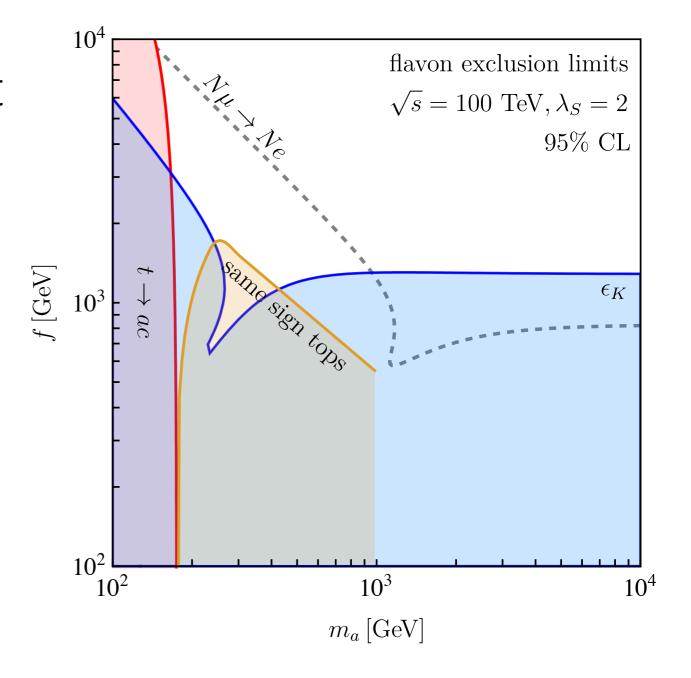
• $b - \overline{b}$ distinction

conservative $\epsilon_b = 0.2, \epsilon_{\bar{b}} = 0.06$

optimistic $\epsilon_b = 0.2, \epsilon_{\bar{b}} = 0.01$



- Next generation lepton flavor experiments will cut deep into the parameter space
- A 100 TeV collider is our first semi-realistic shot at discovering a flavon



Why should the flavor scale be low?

- Why not?
- A link to Baryogenesis?
- A link to Dark Matter?
- It could be related to the electroweak scale

Why should the flavor scale be low?

- Why not?
- A link to Baryogenesis?
- A link to Dark Matter?

Planck Scale $M_{
m Pl}=10^{19}\,{
m GeV}$ ${
m I}$

It could be related to the electroweak scale

$$y_b \left(\frac{S}{\Lambda} \right)^{n_b} \bar{Q}_L H b_R \rightarrow y_b \left(\frac{H^\dagger H}{\Lambda^2} \right)^{n_b} \bar{Q}_L H b_R$$
 with $\epsilon = \frac{v^2}{2\Lambda^2} = \frac{m_b}{m_t} \Rightarrow \Lambda pprox (5-6) v$

Two drawbacks:

- The flavon is a flavor singlet
- The coupling to b quarks is

[Babu 033002]

[Giudice, Lebedev 0804.1753]

$$g_{hbb} \propto 3 \frac{m_b}{v} \qquad \Gamma(h \to b\bar{b}) \approx 9 \times \Gamma(h \to b\bar{b})_{\rm SM}$$

$$y_b \left(\frac{S}{\Lambda}\right)^{n_b} \bar{Q}_L H b_R \rightarrow y_b \left(\frac{H_u H_d}{\Lambda^2}\right)^{n_b} \bar{Q}_L H_d b_R$$

with
$$\epsilon = \frac{v_u v_d}{\Lambda^2} = \frac{m_b}{m_t} \Rightarrow \Lambda \approx (5-6) v \sqrt{\frac{\tan \beta}{1 + \tan^2 \beta}}$$

$$\tan \beta = \mathcal{O}(1), \quad \Lambda \approx 1 \text{TeV}$$

$$\mathcal{L}_{\text{Yuk}} = y_{ij}^u \left(\frac{H_u H_d}{\Lambda^2}\right)^{a_i - a_{u_j} - a_{H_u}} \bar{Q}_i H_u u_{Rj} + y_{ij}^d \left(\frac{H_u H_d}{\Lambda^2}\right)^{a_i - a_{d_j} - a_{H_d}} \bar{Q}_i H_d d_{Rj} + h.c.$$

11 Flavour charges, 8 + 2 conditions

$$m_t \approx \frac{v_u}{\sqrt{2}}, \quad \frac{m_b}{m_t} \approx \frac{m_c}{m_t} \approx \varepsilon^1, \quad \frac{m_s}{m_t} \approx \varepsilon^2, \quad \frac{m_d}{m_t} \approx \frac{m_u}{m_t} \approx \varepsilon^3.$$

$$V_{
m CKM} pprox egin{pmatrix} 1 & 1 & \epsilon \ 1 & 1 & \epsilon \ \epsilon & \epsilon & 1 \end{pmatrix}$$

A rescaling freedom remains

$$a_{H_u} = 1,$$
 $a_1 = 2,$ $a_u = -2,$ $a_d = -1,$ $a_{H_d} = 0,$ $a_1 = 2,$ $a_2 = 2,$ $a_2 = 0,$ $a_3 = 1,$ $a_1 = 0,$ $a_2 = 0,$ $a_3 = 0,$ $a_4 = 0,$ $a_5 = 0.$

$$m_t = 172 \, \mathrm{GeV}$$
 $m_b \approx m_c \approx 2.9 \, \mathrm{GeV}$
 $m_s = 50 \, \mathrm{MeV}$
 $m_u = m_d \approx 1 \, \mathrm{MeV}$

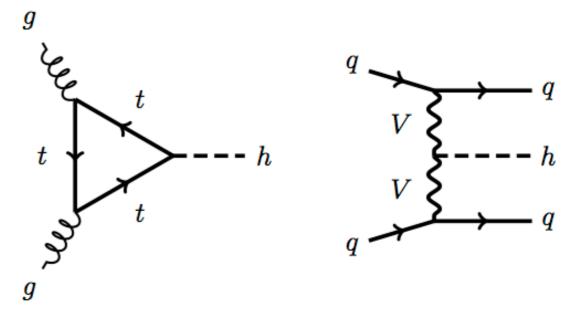
Higgs Couplings

- Couplings are rescaled $g_{hVV} = \kappa_V \, g_{hVV}^{\rm SM}$ $g_{hff} = \kappa_f \, g_{hff}^{\rm SM}$
- To W^{\pm}, Z fixed by gauge symmetry:

$$\kappa_V = \sin(\beta - \alpha)$$

• To the top: $\kappa_t = \kappa_t^{\rm II\, HDM} = \frac{\cos \alpha}{\sin \beta}$

Higgs Production like in a 2HDM of type II



Higgs Couplings

• To the bottom:

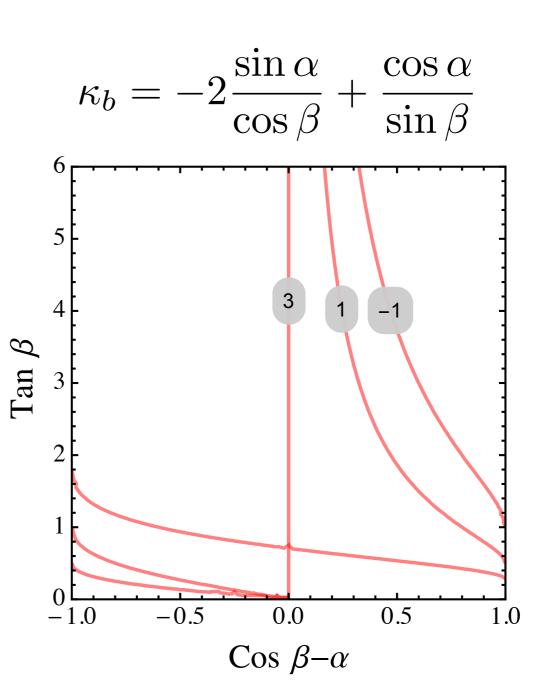
$$\kappa_b^{\mathrm{II}\,\mathrm{HDM}} = -\frac{\sin\alpha}{\cos\beta}$$

$$\frac{6}{5}$$

$$\frac{4}{2}$$

$$\frac{3}{2}$$

$$\frac{1}{2}$$



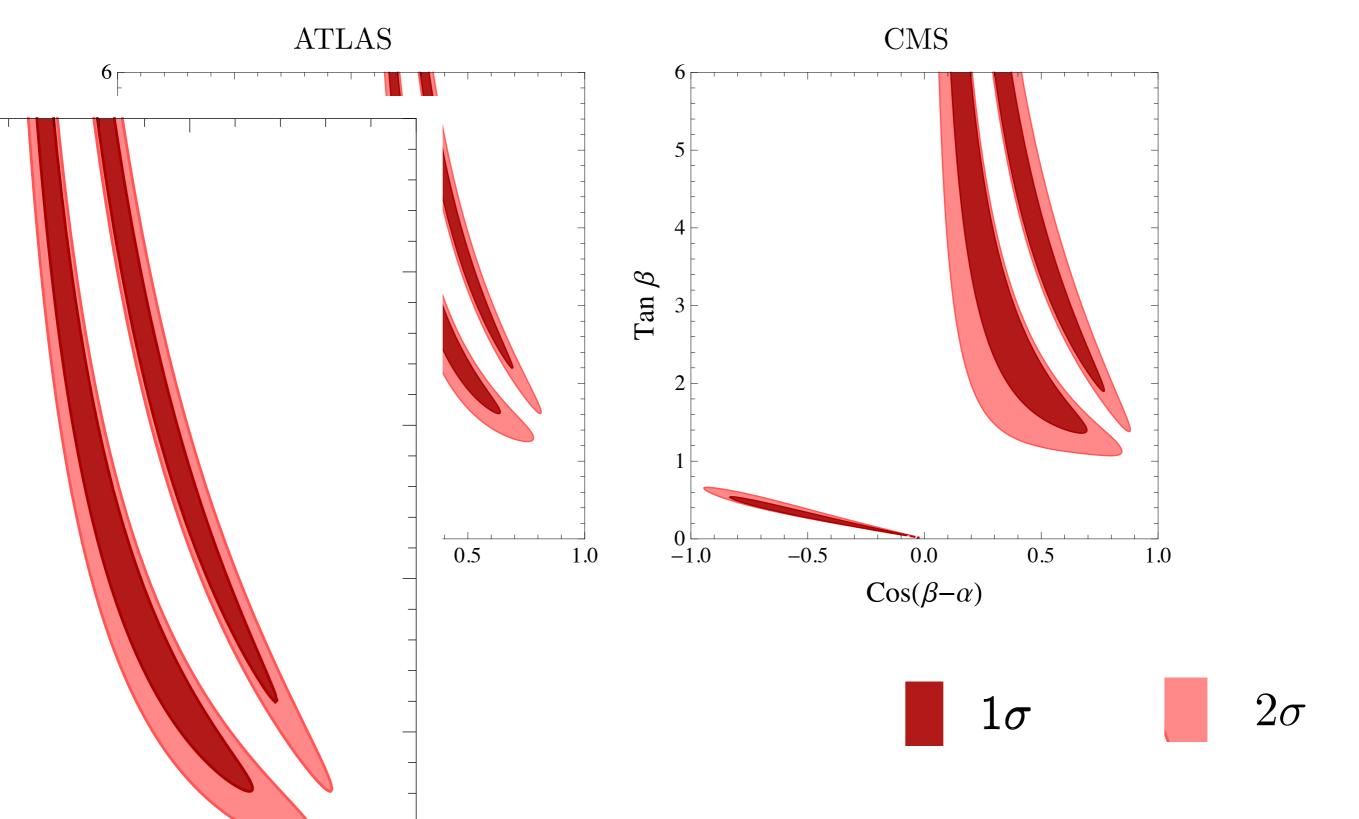
Global Higgs Fit

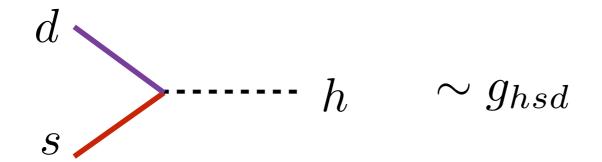
We performed a global Higgs fit to 8 different channels at ATLAS & CMS

$$\mu_X = \frac{\sigma_{\text{prod}}}{\sigma_{\text{prod}}^{\text{SM}}} \frac{\Gamma_{h \to X}}{\Gamma_{h \to X}^{\text{SM}}} \frac{\Gamma_{h, \text{tot}}^{\text{SM}}}{\Gamma_h}$$

Decay Mode	Production Channels	Production Channels	Experiment
	$\sigma_{gg o h}, \sigma_{t\bar{t} o h}$	σ_{VBF},σ_{VH}	
$h \to WW^*$	$\mu_W = 1.02^{+0.29}_{-0.26} [17]$	$\mu_W = 1.27^{+0.53}_{-0.45} \ [17]$	ATLAS
	$\mu_W \simeq 0.75 \pm 0.35 \ [18]$	$\mu_W \simeq 0.7 \pm 0.85 \ [18]$	CMS
$h o ZZ^*$	$\mu_Z = 1.7^{+0.5}_{-0.4} [19]$	$\mu_Z = 0.3^{+1.6}_{-0.9} [19]$	ATLAS
	$\mu_Z = 0.8^{+0.46}_{-0.36} [20]$	$\mu_Z = 1.7^{+2.2}_{-2.1} [20]$	CMS
$h \to \gamma \gamma$	$\mu_{\gamma} = 1.32 \pm 0.38 \ [21]$	$\mu_{\gamma} = 0.8 \pm 0.7 \ [21]$	ATLAS
	$\mu_{\gamma} = 1.13^{+0.37}_{-0.31} [22]$	$\mu_{\gamma} = 1.16^{+0.63}_{-0.58} [22]$	CMS
$h o \bar{b}b$	$\mu_b = 1.5 \pm 1.1 \ [23]$	$\mu_b = 0.52 \pm 0.32 \pm 0.24$ [24]	ATLAS
	$\mu_b = 0.67^{+1.35}_{-1.33} [25]$	$\mu_b = 1.0 \pm 0.5 \ [26]$	CMS
h o au au	$\mu_{\tau} = 2.0 \pm 0.8^{+1.2}_{-0.8} \pm 0.3$ [27]	$\mu_{\tau} = 1.24^{+0.49}_{-0.45}{}^{+0.31}_{-0.29} \pm 0.08$ [27]	ATLAS
	$\mu_{\tau} \simeq 0.5^{+0.8}_{-0.7} [28]$	$\mu_{\tau} \simeq 1.1^{+0.7}_{-0.5} [28]$	CMS

Global Higgs Fit





$$g_{hd_id_i} = \left(\frac{c_\alpha}{s_\alpha} + n_{d_i} f^h(\alpha, \beta)\right) \frac{m_{d_i}}{v}$$

$$g_{hd_id_j} = \left(Q_{ij}\frac{m_{d_j}}{v} - \frac{m_{d_i}}{v}\mathcal{D}_{ij}\right)f^h(\alpha,\beta)$$

$$\mathcal{Q}^{u} \sim \mathcal{Q}^{d} \sim \begin{pmatrix} 2 & \varepsilon^{2} & \varepsilon \\ \varepsilon^{2} & 2 & \varepsilon \\ \varepsilon & \varepsilon & 1 \end{pmatrix}, \qquad \mathcal{U} \sim \begin{pmatrix} -2 & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon^{2} & \varepsilon^{2} & \varepsilon^{4} \\ \varepsilon^{2} & \varepsilon^{4} & \varepsilon^{4} \end{pmatrix}, \qquad \mathcal{D} \sim \begin{pmatrix} -1 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon & \varepsilon^{2} & \varepsilon^{2} \end{pmatrix}$$

Universal function

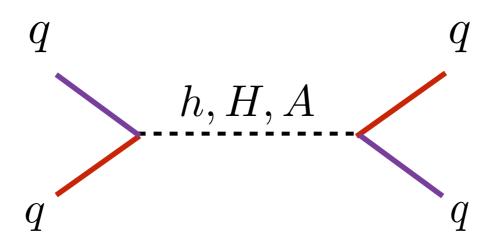
$$f^h(\alpha,\beta) = \frac{c_\alpha}{s_\beta} - \frac{s_\alpha}{c_\beta}$$

$$h \sim \frac{m_s}{v} \epsilon f^h(\alpha, \beta) \approx 3 \times 10^{-6} \times f^h(\alpha, \beta)$$

$$g_{hd_id_i} = \left(\frac{c_\alpha}{s_\alpha} + n_{d_i}f^h(\alpha, \beta)\right) \frac{m_{d_i}}{v}$$

$$g_{hd_id_j} = \left(Q_{ij}\frac{m_{d_j}}{v} - \frac{m_{d_i}}{v}\mathcal{D}_{ij}\right)f^h(\alpha,\beta)$$

$$Q^{u} \sim Q^{d} \sim \begin{pmatrix} 2 & \varepsilon^{2} & \varepsilon \\ \varepsilon^{2} & 2 & \varepsilon \\ \varepsilon & \varepsilon & 1 \end{pmatrix}, \qquad \mathcal{U} \sim \begin{pmatrix} -2 & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon^{2} & \varepsilon^{2} & \varepsilon^{4} \\ \varepsilon^{2} & \varepsilon^{4} & \varepsilon^{4} \end{pmatrix}, \qquad \mathcal{D} \sim \begin{pmatrix} -1 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon & \varepsilon^{2} & \varepsilon^{2} \end{pmatrix}$$

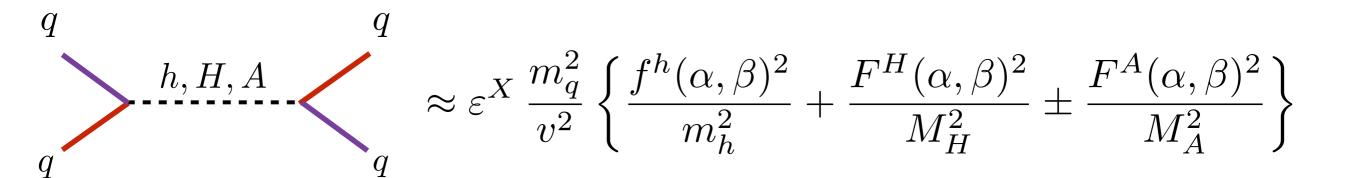


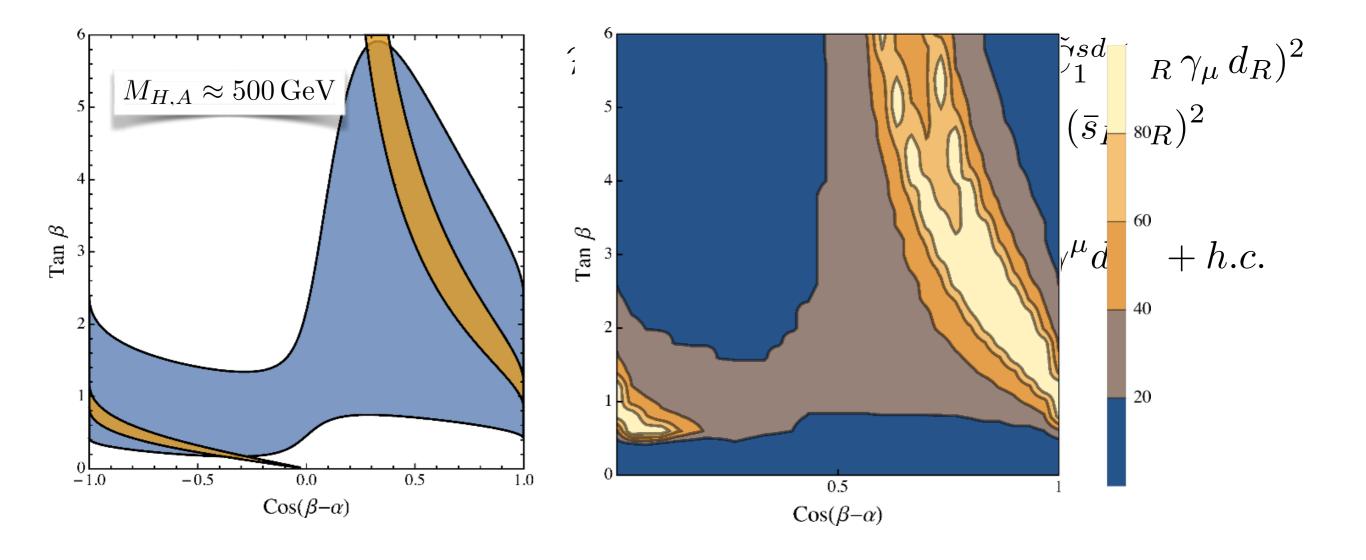
$$g_{hd_{i}d_{j}} = g^{h}(\alpha, \beta) \left(\frac{m_{d}}{v}\right)_{ij} + f^{h}(\alpha, \beta) \left[\mathcal{Q}_{ij}^{d} \left(\frac{m_{d}}{v}\right)_{jj} - \left(\frac{m_{d}}{v}\right)_{ii} \mathcal{D}_{ij}\right]$$

$$g_{Hd_{i}d_{j}} = G^{H}(\alpha, \beta) \left(\frac{m_{d}}{v}\right)_{ij} + F^{H}(\alpha, \beta) \left[\mathcal{Q}_{ij}^{d} \left(\frac{m_{d}}{v}\right)_{jj} - \left(\frac{m_{d}}{v}\right)_{ii} \mathcal{D}_{ij}^{d}\right]$$

$$g_{Ad_{i}d_{j}} = G^{A}(\alpha, \beta) \left(\frac{m_{d}}{v}\right)_{ij} + F^{A}(\alpha, \beta) \left[\mathcal{Q}_{ij}^{d} \left(\frac{m_{d}}{v}\right)_{ji} - \left(\frac{m_{d}}{v}\right)_{ii} \mathcal{D}_{ij}^{d}\right]$$

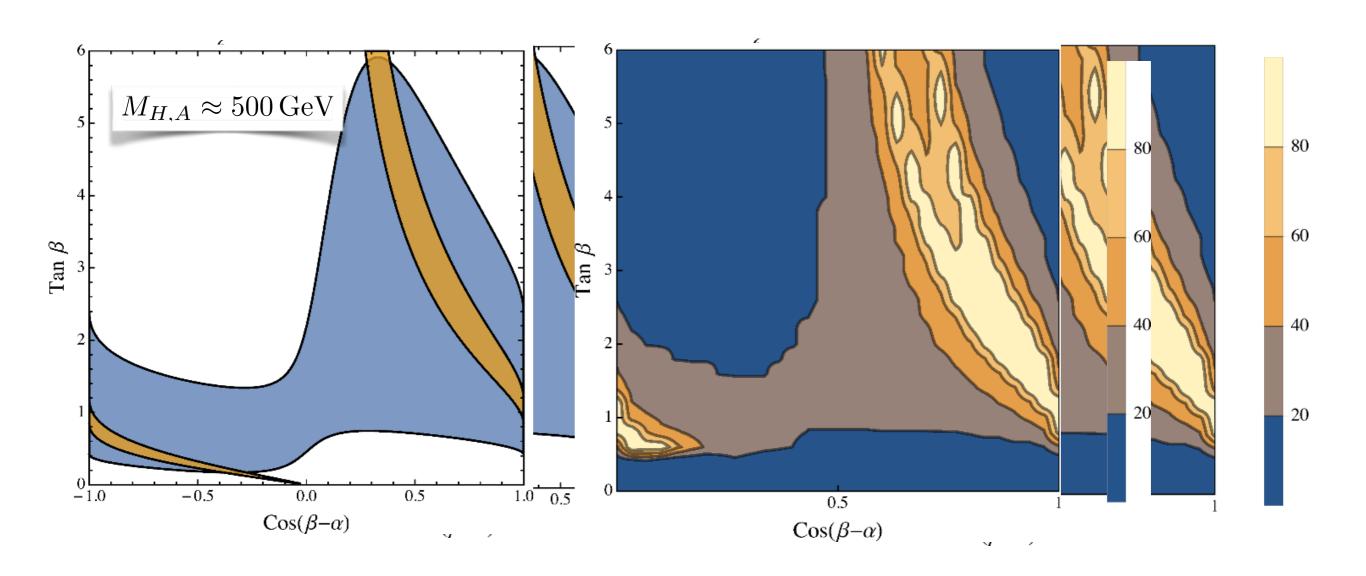
Constraints from Meson Mixing



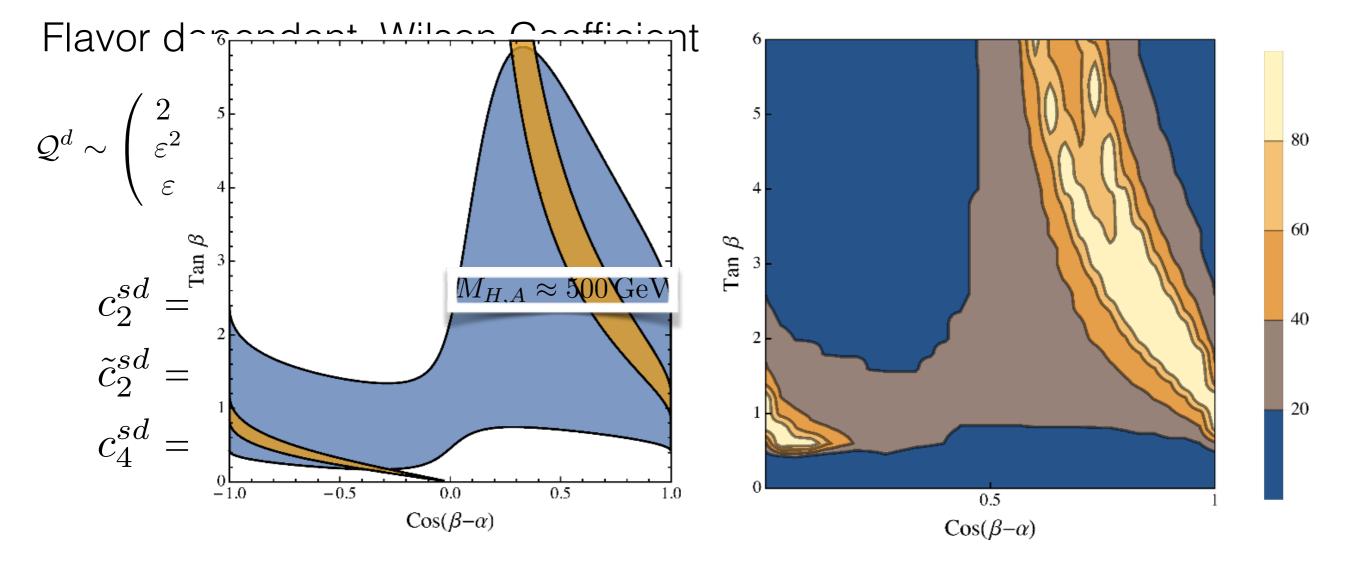


$K^0 - \bar{K}^0$ Mixing

$$\begin{array}{c}
q \\
h,H,A \\
a
\end{array}
\approx \varepsilon^{X} \frac{m_q^2}{v^2} \left\{ \frac{f^h(\alpha,\beta)^2}{m_h^2} + \frac{F^H(\alpha,\beta)^2}{M_H^2} \pm \frac{F^A(\alpha,\beta)^2}{M_A^2} \right\}$$



$K^0 - \bar{K}^0$ Mixing



$B_s^0 - \bar{B}_s^0$ Mixing

Flavor dependent Wilson Coefficient

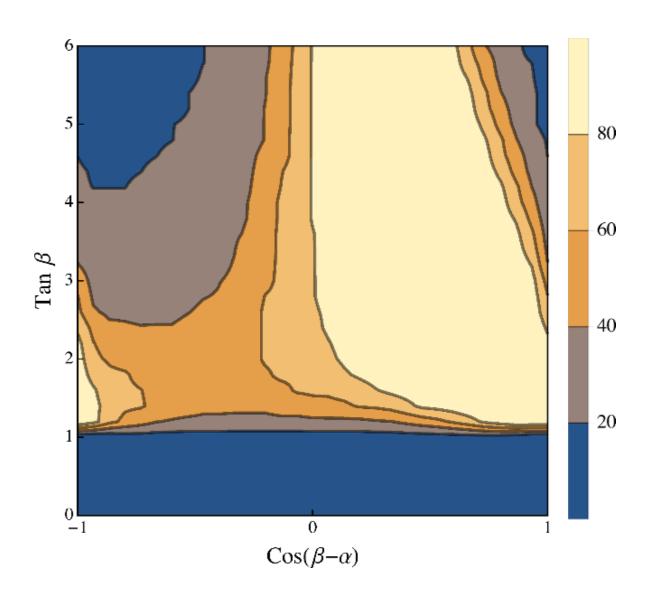
$$\mathcal{Q}^{d} \sim \begin{pmatrix} 2 & \varepsilon^{2} & \varepsilon \\ \varepsilon^{2} & 2 & \varepsilon \\ \varepsilon & \varepsilon & 1 \end{pmatrix} \quad \mathcal{D} \sim \begin{pmatrix} -1 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon & \varepsilon^{2} & \varepsilon^{2} \end{pmatrix}$$

$$c_2^{bs} = \varepsilon^2 m_b^2$$

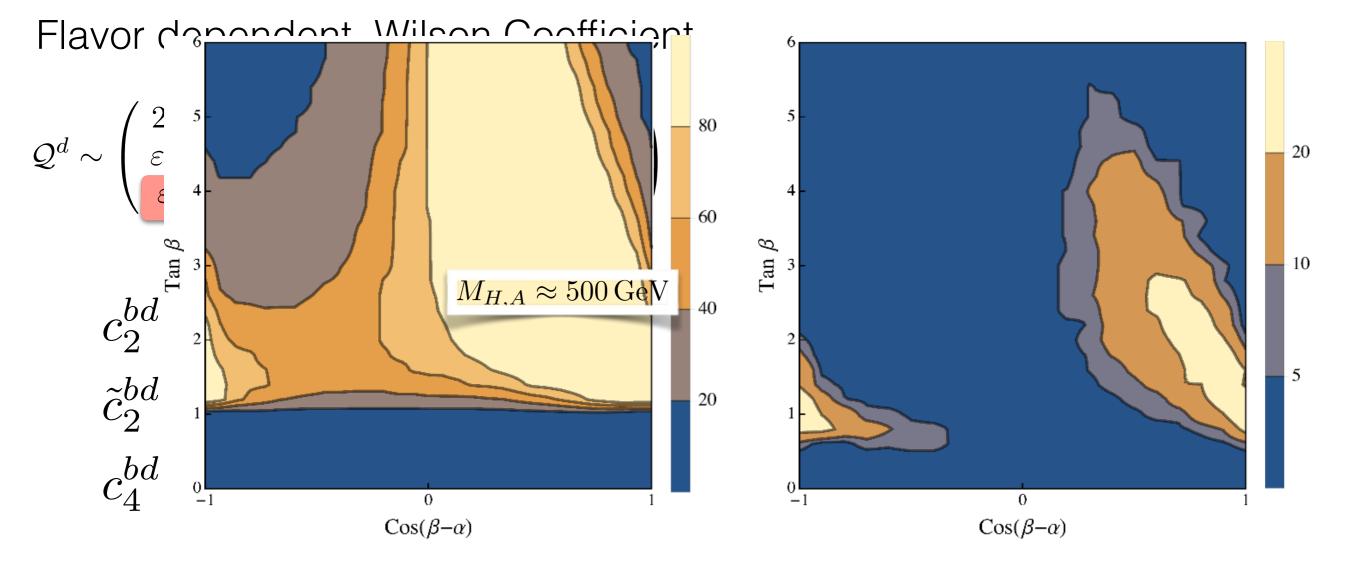
$$\tilde{c}_2^{bs} = \varepsilon^4 m_b^2$$

$$c_4^{bs} = \varepsilon^3 m_b^2$$

 $M_{H,A} \approx 500 \, \mathrm{GeV}$



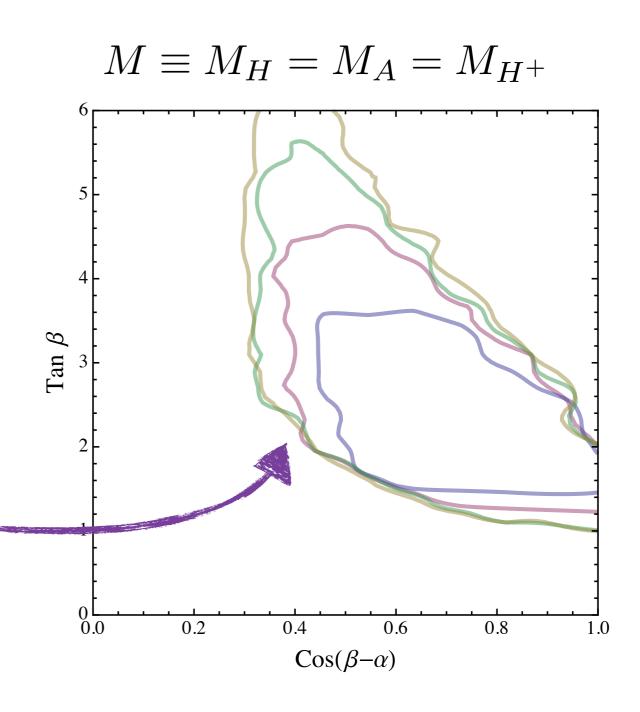
$B_d^0 - \bar{B}_d^0$ Mixing



Flavor Bounds

$$M = 700 \,\mathrm{GeV}$$
 $M = 600 \,\mathrm{GeV}$
 $M = 500 \,\mathrm{GeV}$
 $M = 400 \,\mathrm{GeV}$

10% Contours



Flavor Bounds

- Contributions to rare leptonic decays depend on the lepton flavor sector
- Bounds from Loop induced processes like $b \to s \gamma$ put constraints on the mass of the charged scalar

$$M_{H^\pm} \gtrsim 358\,(480)\,{
m GeV}$$
 @ $99\%(95\%)\,{
m CL}$ [Misiak et al. 1503.01789]

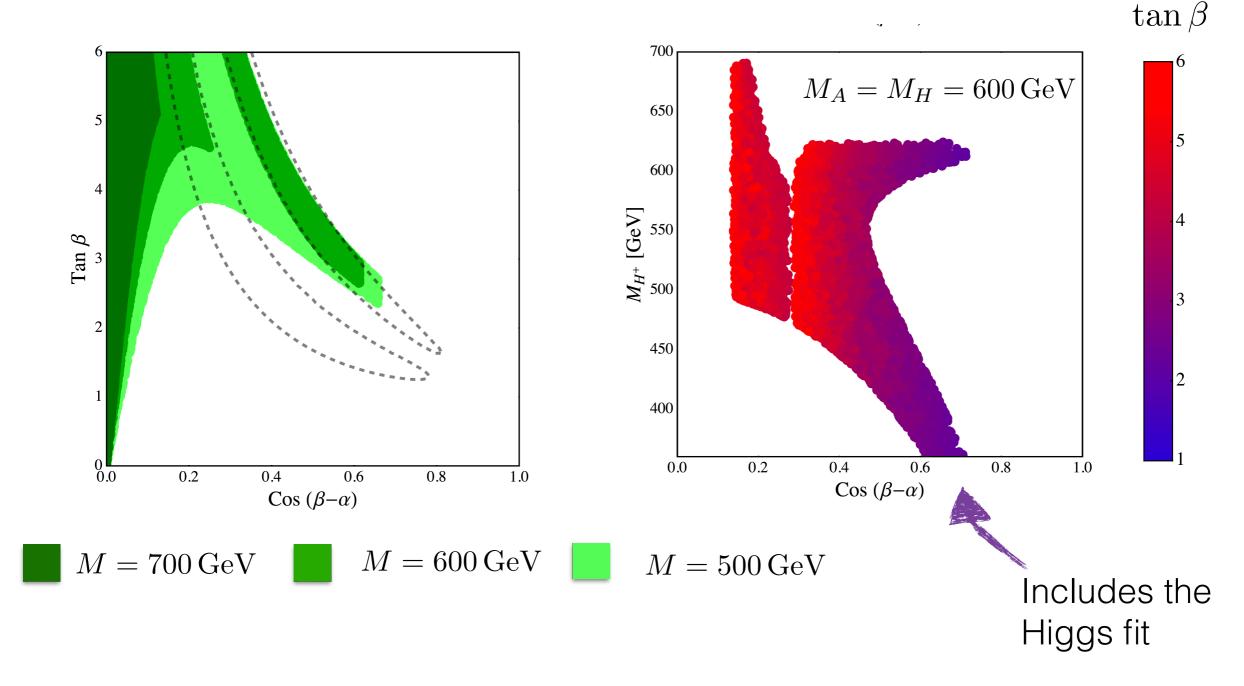
Neutral Scalar contributions are typically much smaller

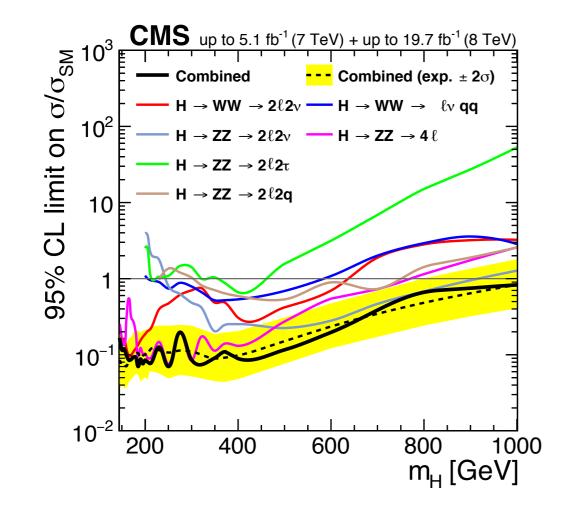
$$\frac{m_t V_{tb} V_{ts}^*}{m_b f(\alpha, \beta) \varepsilon} \approx \mathcal{O}(10^2 - 10^3)$$

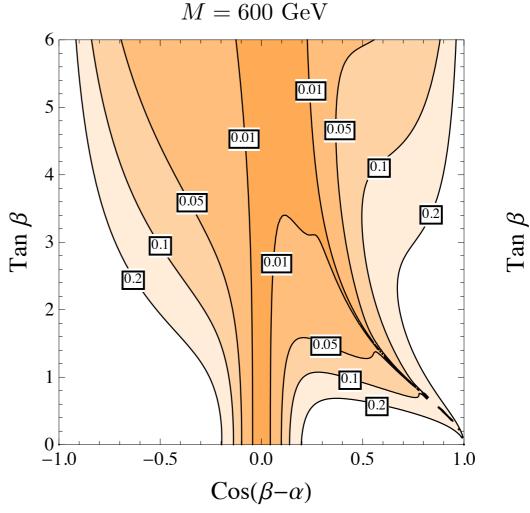
Decoupling and EWPM

• The global Higgs fit (and Flavor bounds) demand sizable $\cos(\beta - \alpha)$

Flavor bounds demand heavy extra scalars





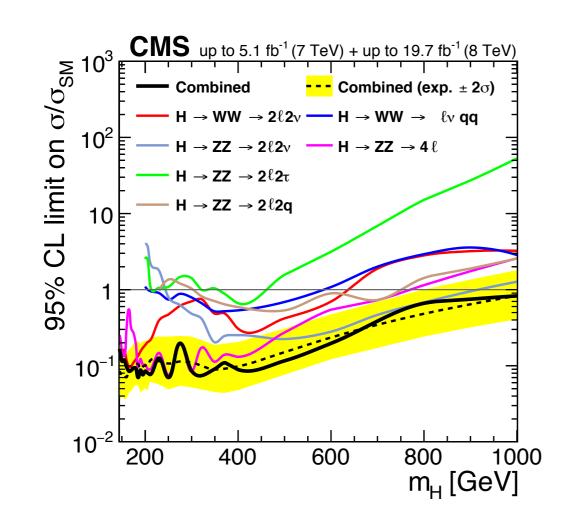


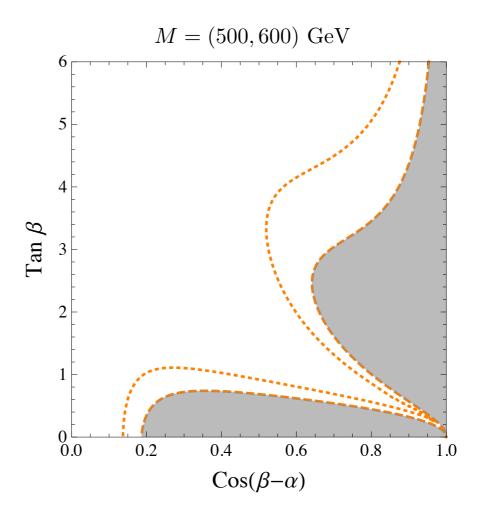
2

-1.0

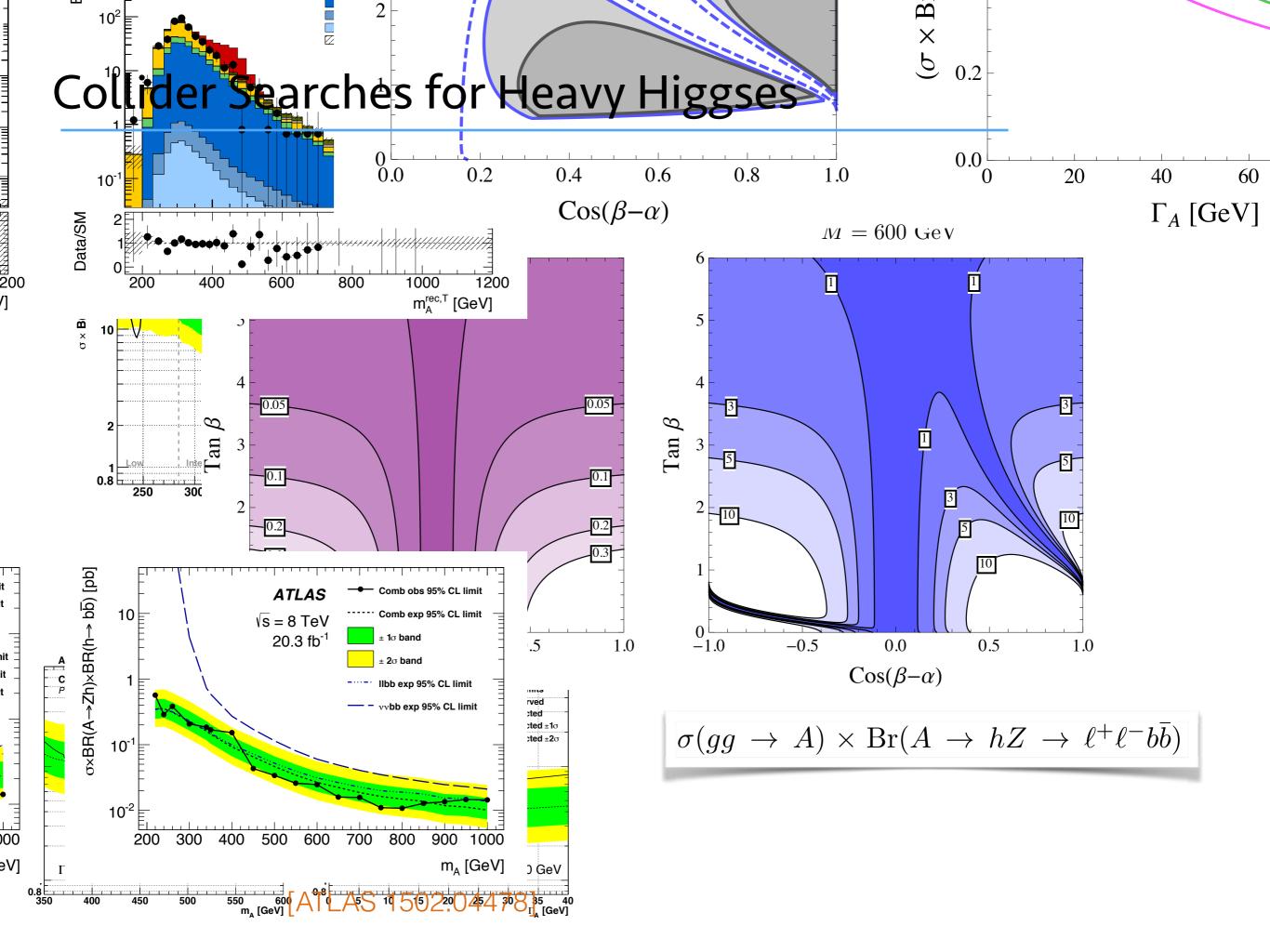
$$\frac{\sigma(gg \to H) \times \text{Br}(H \to VV)}{(\sigma(gg \to H) \times \text{Br}(H \to VV))_{\text{SM}}} = (\kappa_t^H)^2 \left(1 + \xi_b^H \frac{\kappa_b^H}{\kappa_t^H}\right)^2 (\kappa_V^H)^2 \frac{\Gamma_H^{\text{SM}}}{\Gamma_H},$$
$$\frac{\sigma(pp \to qqH) \times \text{Br}(H \to VV)}{(\sigma(pp \to qqH) \times \text{Br}(H \to VV))_{\text{SM}}} = (\kappa_V^H)^4 \frac{\Gamma_H^{\text{SM}}}{\Gamma_H},$$

[CMS 1504.00936]

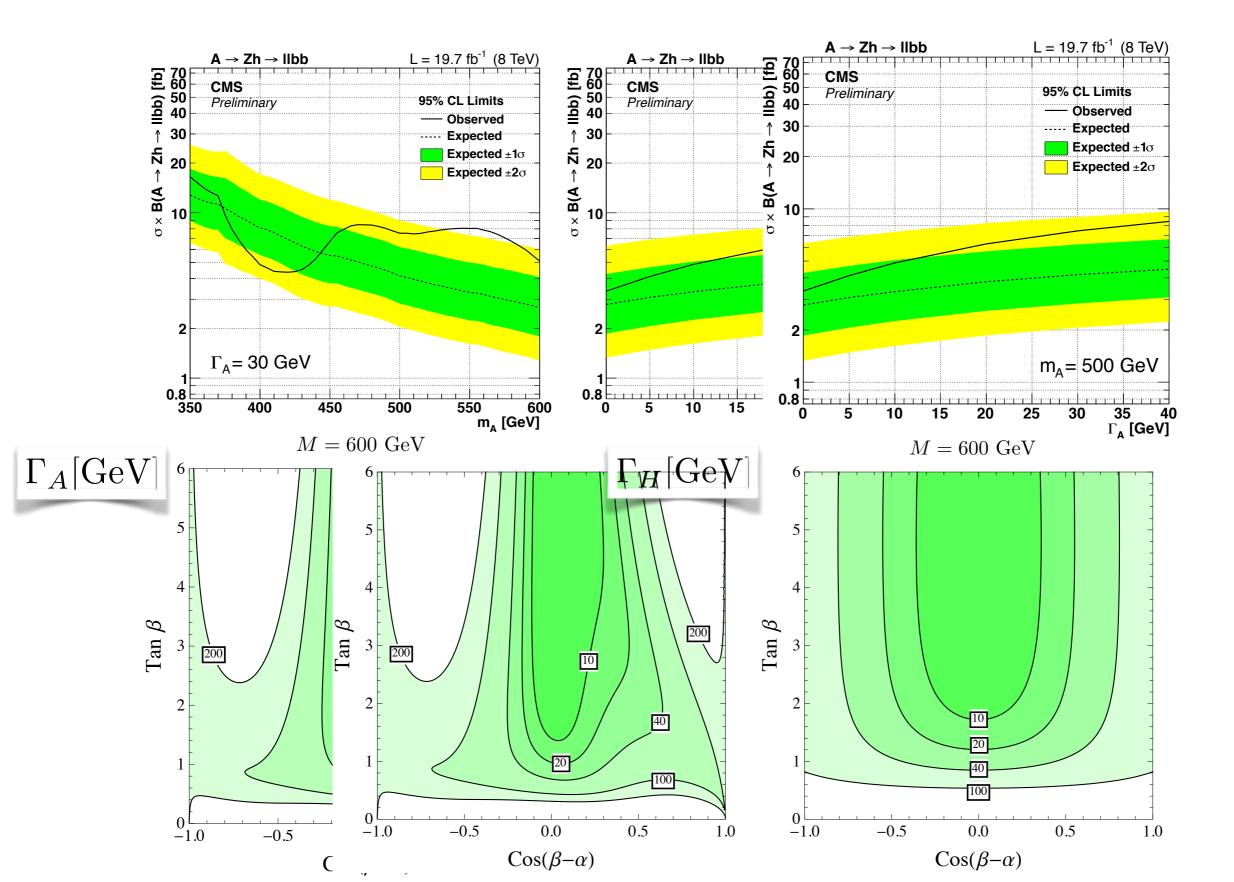




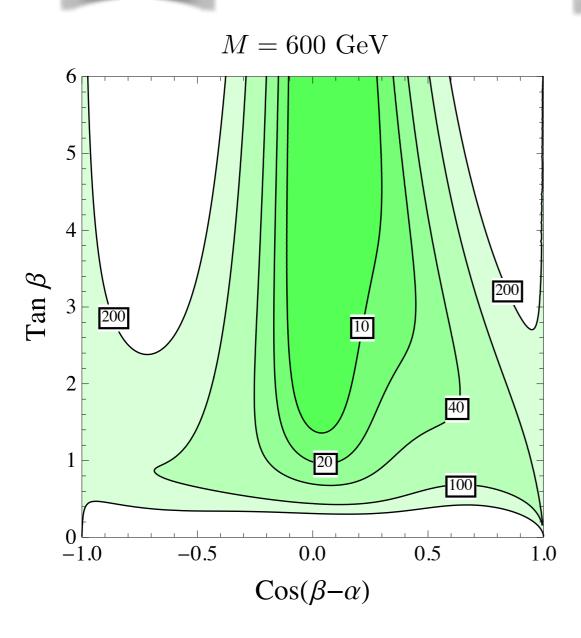
$$\begin{split} \frac{\sigma(gg \to H) \times \text{Br}(H \to VV)}{(\sigma(gg \to H) \times \text{Br}(H \to VV))_{\text{SM}}} &= (\kappa_t^H)^2 \left(1 + \xi_b^H \frac{\kappa_b^H}{\kappa_t^H}\right)^2 \left(\kappa_V^H\right)^2 \frac{\Gamma_H^{\text{SM}}}{\Gamma_H} \,, \\ \frac{\sigma(pp \to qqH) \times \text{Br}(H \to VV)}{(\sigma(pp \to qqH) \times \text{Br}(H \to VV))_{\text{SM}}} &= \left(\kappa_V^H\right)^4 \frac{\Gamma_H^{\text{SM}}}{\Gamma_H} \,, \end{split}$$



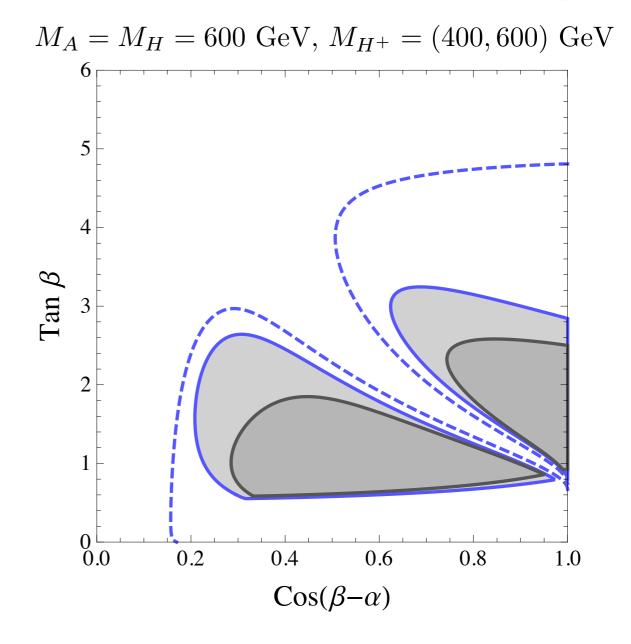
Finite Width Effects



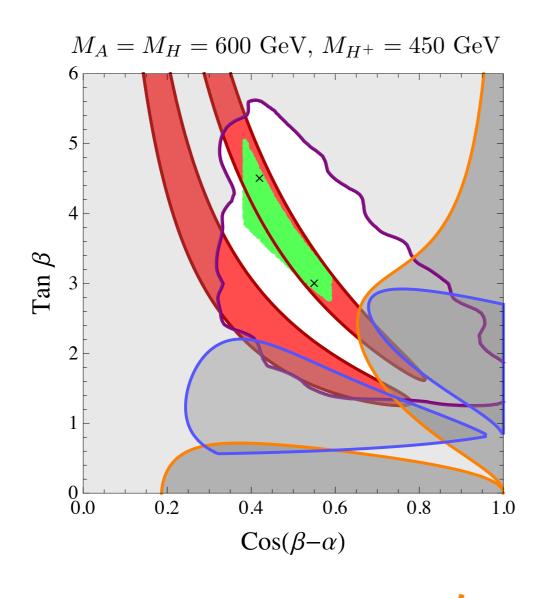
Finite Width Effects

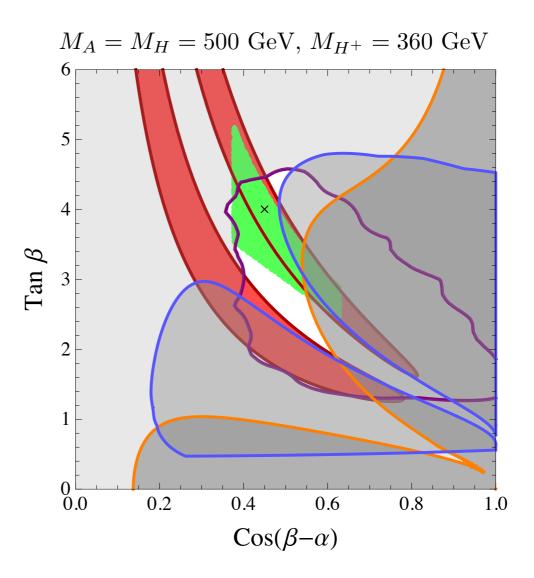


$$\sigma(gg \to A) \times \text{Br}(A \to hZ \to \ell^+\ell^-b\bar{b})$$



Final Plots





Flavour constraint

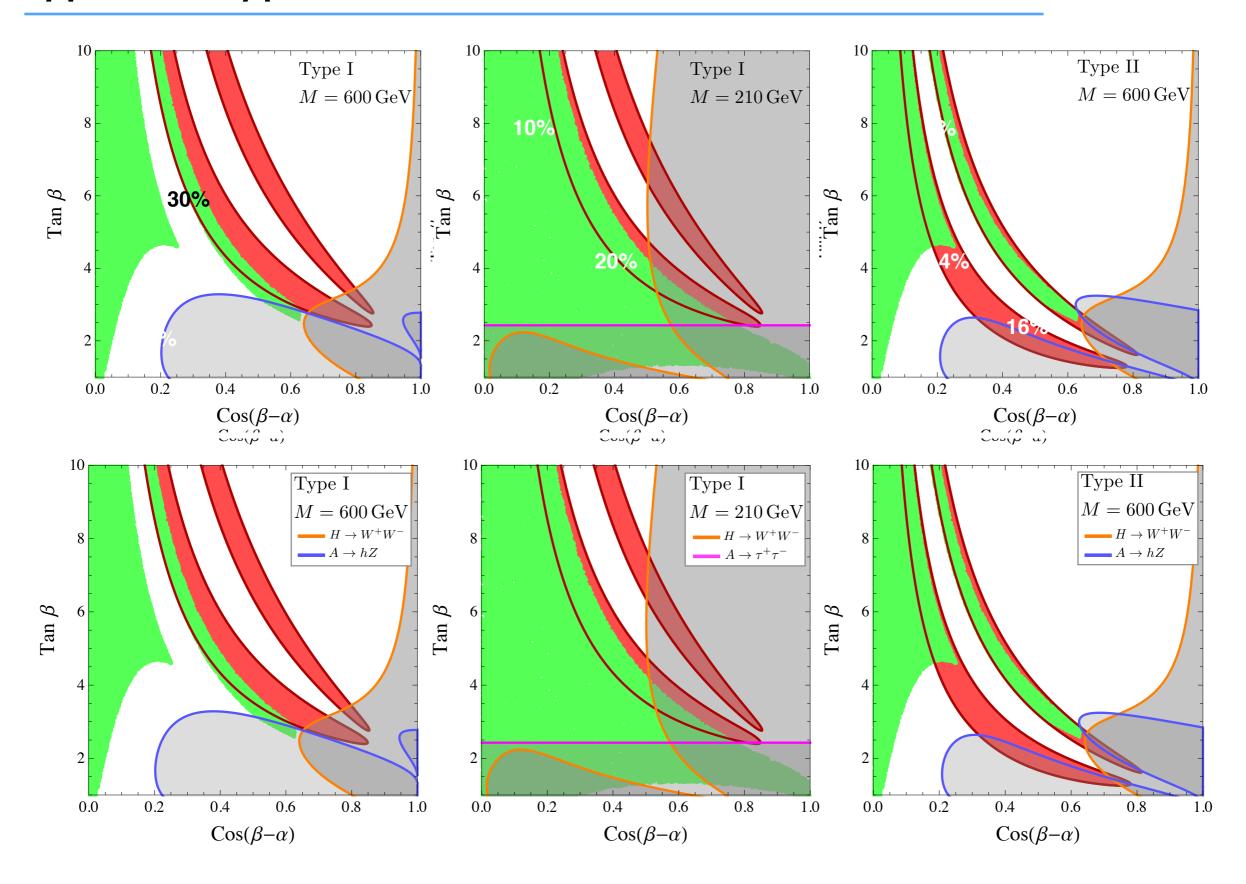
Pseudoscalar into

Heavy scalar into gauge bosons

EWPB

Global Higgs fit

Type I vs Type II



Conclusions

- Electroweak scale flavor symmetries will be discovered or excluded by the LHC.
- A generic flavon is very hard to discover. A 100 TeV collider would be the first machine in history with a realistic shot.
- The upcoming golden age of Lepton flavor will test the flavor structure in the lepton sector and improve on the bounds in the quark sector