

Single layer mirrors and multilayer mirrors for current and next-generation light sources

Michael Störmer

GKSS-Forschungszentrum Geesthacht GmbH Max-Planck-Strasse 1 21502 Geesthacht

GKSS research centre

HGF Research Fields: Key Technologies Structure of Matter Health Earth and Environment

Core Programme:

Advanced Engineering Materials Research with Photons, Neutrons and Ions (PNI) Regenerative Medicine Coastal Dynamics and Causes of Changes

Department Nanotechnology Group: Thin film technology

- Research in the field of X-ray optics for different wavelengths
- Large number of experimental methods
- Characterization of thin films: single layer mirrors and multilayer mirrors
- Previous focus: mirrors for lab equipment => 2002: foundation of a company: Incoatec
- Now: development of new X-ray optics, for instance large FEL optics

wissen

schafft

nutzen

History of the

"GKSS carbon coatings"

FEL and FLASH Optics

Development of Mirrors for the "Light of the Future" successful Contract with Incoatec: collaboration in the field of nanostructures

Carbon Coatings: Energy-Dependent Reflectivity

wissen schafft

nutzen

After deposition: - mean rms roughness ≈ 0.4 nm - no difference in roughness over the whole length of the mirror precise deposition process for large X-ray optics

M. Störmer, D. Häußler, W. Jäger, R. Bormann,

Large X-ray Optics: Fabrication and Characterization of Single and Multilayer Mirrors,

2007 Sino-German High Level Expert Symposium on X-ray Optics,

Optics and Precision Engineering 15(12) (2007) 1869-1877. ISSN 1004-924X.

Cylindrical and toroidal substrates

(SPIE Proc. 5533, 2004)

Micro-roughness varied from 0.2- 0.4 nm (tolerance: 0.04 nm)
 It remained more or less unchanged

Thermal Stability I

Mirrors are cooled in the FEL

-> Good thermal stability under application conditions

- Roughness unchanged after film deposition
- Roughness increases during heating
- After 1000°C: surface roughness is still smaller than 0.5 nm \longrightarrow R(E) $\approx 87\%$

• After 1200°C: holes in the film *→* layer structure destroyed

wissen

schafft nutzen

Radiation Stability

Mirrors: stable under FLASH radiation:

1. incidence angle:2°2. photon energy:200 eV

=> irradiation under grazing incidence!
=> absorption is by two orders of magnitude lower!

HELMHOLTZ

510mm plane mirror for FEL-beamline at FLASH / DESY

wissen

schafft

nutzen

Measurement result for center line:

Residual slope - uncoated: 0.33 µrad rms

- coated: 0.33 µrad rms

- uncoated: > 450 km

- coated: > 800 km

Excellent stability of shape !!

510mm plane mirror at FLASH after 3 month in use

Micromap measurements: On Silicon:

Sq = 0.20 nm rms (20x) 0,28 nm rms (50x)

At C-Coating:

0.19-0.25 nm rms (20x) Sq = 0.18-0.27 nm rms (50x)

No significant damage is found !!!

F. Siewert

No Belay

\$20 years Phone 2100

51

Print: 192001 QUARTIC

50x

Single Layer Mirrors and Multilayer Mirrors

÷,

Deposition length of 1500mm

Why is a deposition length of 1.5m needed?

1. X-FE	L:		
total r	eflection of a single layer	=>	at 12.4 keV radiation
			critical angle of C and W: $\theta_{\rm C}$ = 2.4 and 6.3 mrad
		=>	incidence angle $\approx 0.05^{\circ}$
beam width a = 1mm incoming beam a = 1mm a = c mirror surface $\Rightarrow L > c = a / sin \theta = 1mm / sin 0.05^{\circ} \approx 1200mm$			
	XFEL	Linear accelerator in TESLA technology 200 200 3 FEL and 2 beamlines for 10 indepen	electron beam switchyard reference of the synchrotron radiation with dent experimental stations

New Sputtering System

Challenge:

Enlargement of the deposition length to manufacture

• Single layers and

Mirror length of 1.5 meters !

• Multilayers:

Simultaneous deposition of mirror pairs to achieve the same properties

M. Störmer, C. Horstmann, D. Häussler, E. Spiecker, F. Siewert, F. Scholze, F. Hertlein, W. Jäger, R. Bormann, *Single-layer and multilayer mirrors for current and next-generation light sources*, Proc. SPIE 7077 (2008) 707705. http://dx.doi.org/10.1117/12.798895

- XRR measurements with Cu radiation (lab)
- investigations in tangential direction
- thickness oscillations
- fringe orders at the same angles

IMD simulations: film thickness: 44nm, film roughness: 0.5nm, film density: 2.2 g/cm³.

High precision of the coating process over a deposition length of 1.5m

Variation in layer thickness

Energy-dependent reflectivity

BESSY II:

PTB soft x-ray radiometry beamline photon energy range: 35-400eV various incidence angles: 3°, 5° and 7°

Comparison of two carbon coatings: - former and new sputtering systems

No difference!

The development of this enlarged system is a success for single layer mirrors !

Micro-Roughness Measurements

measuring area: 94µm x 94µm

- RMS roughness: 0.2nm before and after the deposition
- Magnetron sputtering replicates the substrate roughness

HELMHOLTZ

Rougher Si-Substrates

Before deposition:

After carbon deposition:

substrate roughness: 0.4 nm

carbon film roughness: 0.35-0.46 nm

The micro-roughness remains the same over the whole deposition length of 1.5m.

Two flat substrates:

- 1. 630mm Quartz
- 2. 460mm Zerodur

After deposition: Both substrates are coated with a 45nm thick, amorphous carbon layer

(F. Hertlein, Incoatec)

2. Multilayer mirrors

Mo/B₄C: 10keV substrate length of 300mm 20 Pairs: 18 Kiessig fringes dominant Bragg-Peaks:

R > 50% (theor. 60%) 20 pairs

R > 70% (theor. 85%) 60 pairs

Percentage variation of the d-spacing over the whole mirror length: $\approx 3\%$

This demonstrates

- => Good uniformity of the multilayer
- => High precision
- => Excellent run-to-run stability

Deposition length of 1500 mm => coat two mirrors simultaneously (with identical properties!)

HR-TEM investigations of Mo/B₄C

(D. Häußler, CAU Kiel)

Comparison of two multilayers:

high-Z material Mo is dark (HRTEM image) In agreement with XRR measurements

Inner structure

 both layers are amorphous (absence of crystalline Bragg spots)

Interfaces

- intermetallic phases: no evidence!
- smooth and abrupt

X-Ray Reflectivity measurements (XRR) of a Multilayer Mirror

Former sputtering system (< 550mm)

- at Cu-radiation (8048eV)
- 100 pairs W/Si
- deposition length: ca. 380mm
- 3 Bragg-Peaks
- Second order suppressed \Rightarrow d_W = d_{Si}
- $\begin{array}{l} \mbox{Refsim simulations} \\ \mbox{reflectivity: } R \approx 66\% \\ \mbox{d-spacing } d \approx 3 \mbox{\AA} \\ \mbox{\Gamma} \approx 0.5 \end{array}$

M. Störmer, D. Häußler, W. Jäger, R. Bormann,
Large X-ray Optics: Fabrication and Characterization of Single and Multilayer Mirrors,
2007 Sino-German High Level Expert Symposium on X-ray Optics,
Optics and Precision Engineering 15(12) (2007) 1869-1877. ISSN 1004-924X.

Uniformity of the multilayer coating: d-spacing and reflectivity Precision of the multilayer process over a length of 400 mm

- perfect growth of the stack: low layer roughness
- Si-on-W interfaces look sharper than the W-on-Si
- ➡ no formation of a compound at the interface

wissen

schafft nutzen

W/Si multilayer mirror

surface roughness measurements at 6 positions on the whole mirror

before deposition: RMS roughness: 0.2 - 0.3 nm

after deposition:

 $\sigma = 0.18 \text{ nm RMS}$

RMS roughness: 0.2 - 0.4 nm

scan area: 1 μ m x 1 μ m

Replication of the substrate roughness: $\sigma < 0.3$ nm

wissen scha*ff*t

nutzen

Synchrotron beamline: monochromatic or white beam

- Single layers and multilayers
- Build up a new sputtering system:
 - Deposition over a length of 1500 mm => XFEL
 - Preparation of pairs simultaneously => IBL: DMM
- Properties of the mirrors:
 - high uniformity in thickness: 3%
 - film roughness of about 0.3 nm

Magnetron sputtering replicates the substrate roughness!

- high reflectivity: > 88% at 3° and 50-200 eV (C single layers) > 70% at 1° and 8 keV (Mo/B₄C multilayers)
- good layer quality of the stack:

layers: amorphous interfaces: abrupt and smooth intermetallic phases: no evidence

- D. Häußler, E. Spieker, W. Jäger (CAU University of Kiel)
- S. Jacobi, V. Küstner, H. Hagen, C. Horstmann, and R. Bormann (GKSS)
- B. Steeg, J. Feldhaus (HASYLAB)
- F. Hertlein, J. Wiesmann and C. Michaelsen (Incoatec GmbH)
- F. Felten (TU-Hamburg)
- A. Liard-Cloup (Jobin-Yvon SAS)
- R. Mitzner, F. Siewert (BESSY)
- F. Scholze (PTB)
- L. Juha (Laser Plasma Department, Prague)

• ...

Thank you very much for your attention!

e-mail: michael.stoermer@gkss.de

S. Jacobi, B. Steeg, J. Wiesmann, M. Störmer, J. Feldhaus, R. Bormann und C. Michaelsen, *Characterization of amorphous carbon films as total-reflection mirrors for the XUV free electron lasers*, SPIE Proc. 4782 (2002) 113-121.

M. Störmer, A. Liard-Cloup, F. Felten, S. Jacobi, B. Steeg, J. Feldhaus und R. Bormann, Investigations of large x-ray optics for free electron lasers, SPIE Proc. 5533 (2004) 58-65.

L. Juha, M. Störmer et al., Radiation damage to amorphous-carbon optical coatings, Proc. SPIE 5917 (2005) 91-96.

D. Häußler, E. Spieker, S. Yang, W. Jäger, M. Störmer, C. Michaelsen, R. Bormann, G. Zwicker, *TEM characterization of La/B4C multilayer systems by geometric phase method*, phys. stat. sol. (a) 202(12) (2005) 2299-2308.

M. Störmer, C. Michaelsen, J. Wiesmann, P. Ricardo und R. Bormann, *Nanostructured Multi-layers for applications in X-ray optics*, The Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker Inc., New York, (2006). ISBN: 0-8247-5055-1 (paper) 0-8247-5046-2 (electronic). http://www.dekker.com/sdek/abstract~db=enc~content=a713626845

D. Häußler, E. Spieker, W. Jäger, M. Störmer, R. Bormann, C. Michaelsen, J. Wiesmann, G. Zwicker, R. Benbalagh, J.-M. Andre, P. Jonnard, *Quantitative TEM characterizations of La/B4C and Mo/B₄C ultrathin multilayer gratings by geometric phase method*, Microelectronic Engineering, 84 (2007) 454-459. DOI:10.1016/j.mee.2006.10.060

J. Wiesmann, C. Michaelsen, F. Hertlein, M. Störmer, A. Seifert, State-of-the-art Thin Film X-ray Optics for Conventional Synchrotrons and FEL sources, AIP conference proceedings 879 (2007) 774-777.

L. Juha, V. Hájková, J. Chalupsky, V. Vorlicek, A. Ritucci, A. Reale, P. Zuppella, M. Störmer, *Capillary-discharge 46.9-nm laser-induced damage to a-C thin films exposed to multiple laser shots below single-shot damage threshold*, Proc. SPIE 6586 (2007) 65860D.

F. Hertlein, J. Wiesmann, C. Michaelsen, M. Störmer, A. Seifert, State-of-the-art Thin Film X-ray Optics For Synchrotrons And FEL Sources, Proc. SPIE 6586 (2007) 658608.

M Störmer, J-M André, C Michaelsen, R Benbalagh, P Jonnard, X-ray scattering from etched and coated multilayer gratings, J. Phys. D: Appl. Phys. 40 (2007) 4253–4258.

M. Störmer, D. Häußler, W. Jäger, R. Bormann, Large X-ray Optics: Fabrication and Characterization of Single and Multilayer Mirrors, 2007 Sino-German High Level Expert Symposium on X-ray Optics, Optics and Precision Engineering 15(12) (2007) 1869-1877. ISSN 1004-924X.

M. Störmer, C. Horstmann, D. Häussler, E. Spiecker, F. Siewert, F. Scholze, F. Hertlein, W. Jäger, R. Bormann, Single-layer and multilayer mirrors for current and next-generation light sources, Proc. SPIE 7077 (2008) 707705. http://dx.doi.org/10.1117/12.798895

