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With small Higgs vev



Why is the Higgs mass small?
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Relaxion

2

a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that the
e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation, � will slow-roll, thereby scanning the physical
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‣ Stopping mechanism


‣ Dissipation



Relaxion: requires many e-foldings
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Relaxion

‣ Stopping mechanism: barrier depends on Higgs vev

‣ Tension with strong CP problem 

‣ Non-trivial to have barrier height larger than v 


(both solved)* 

‣ Dissipation mechanism: Hubble

‣ Super Planckian field excursions

‣ Requires many e-foldings

‣ Scanning must happen during inflation

* J. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolas and G. Servant, Phys.Rev.Lett. 115 (2015) no.25, 251803,  arxiv:1506.09217



Particle production: kill 2 birds with 1 stone

Stopping mechanism

Friction



Basic Mechanism

‣ Toy Model: Abelian Higgs + relaxion (static universe)
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Basic Mechanism

‣ Toy Model: Abelian Higgs + relaxion (static universe)

‣ EOM for gauge fields
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Basic Mechanism

Ä± +

 
k2 +m2

A ⌥ k
�̇

f

!
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‣ Tachyonic modes for: �̇

f
& mA

A(t) ⇠ e
�̇
f t



Basic Mechanism
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Basic Mechanism
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‣ Scans until


‣ When

hhi ⌧ ⇤

�̇

f
& hhi ⇠ O(100GeV)



Finite Temperature

Relaxion kinetic energy transferred to gauge fields


 

‣ Gauge symmetry restoration 


‣ Plasma effects (screening)

T ⇠
q

�̇

mA ⇠ 0

mD ⇠ T



Finite Temperature

!2 � k2 ± k�̇
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We are interested in the regime

! = i⌦, |⌦| ⌧ k ⌧ mD
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‣  


‣ Tachyonic mode for A:


‣ Temperature dilutes tachyon time-scale:

Quick Summary
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Particle Production relaxion in SM

‣ Relaxion does not couple to the photon!
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Relaxion setup

‣ Sub planckian:


‣ Many minima: 


‣ Fine scanning: 

µ4
s > ✏⇤2f 0
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Relaxion setup

ϕ

V(
ϕ)

� ˙� ⇠ const > µ2
s

‣ “Self-tune” to Weak Scale

�̇/f ⇠ v = 246 GeV

‣ Need to ensure energy loss is efficient



Energy Loss

‣ Not overshooting v

�m2
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Energy Loss

‣ Not overshooting v
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Possible realization



Initial Conditions

‣ Take this inflationary initial conditions
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Initial Conditions

‣ Take this inflationary initial conditions
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Relaxing during inflation
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Relaxing during inflation

⇤2

MP
< ✏ <

v5µ4
s

T 8

�Ne ⇠
✓
H

✏

◆2

T ⇠
q

�̇ ⇠
r

✏⇤2

H

⇤6 < v5MP�Ne

�Ne ⇠ 100

⇤ . 105 GeV



Inflation too brief
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‣ Can the scanning continue after inflation ends?



Inflation too brief

✓
H

✏

◆2

> Ne

‣ Can the scanning continue after inflation ends?
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Scanning after inflation

H / a�3/2

‣ Scanning very fast once:
 H . ✏
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Scanning after inflation
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Conlusions

‣ Particle production is an efficient mechanism to both 

dissipate energy and to select small Higgs mass


‣ Qualitatively new approach to relaxion


‣ It can work without super planckian field excursions 

and with normal amounts of inflation


‣ The scanning can happen after inflation


