DESY • BSM faces LHC run-2 realities • 16 Sep 2016

Top-quark samples as not just background

Yevgeny Kats CERN

Top-quark samples

... as calibrators of *s*, *c*, *b* polarization measurements

arXiv:1505.02771 [JHEP 1511, 067 (2015)] with Galanti, Giammanco, Grossman, Stamou, Zupan arXiv:1505.06731 [PRD 92, 071503 (2015)]

... as a hiding place for new physics

arXiv:1602.08819 [JHEP 1605 (2016) 092] with Strassler

work in progress with McCullough, Perez, Soreq, Thaler

work in progress with Giammanco, Schlaffer, Shlomi -> talk by Schlaffer

DESY • BSM faces LHC run-2 realities • 16 Sep 2016

Top-quark samples as not just background

Yevgeny Kats CERN

Top-quark samples

... as calibrators of *s*, *c*, *b* polarization measurements

arXiv:1505.02771 [JHEP 1511, 067 (2015)] with Galanti, Giammanco, Grossman, Stamou, Zupan arXiv:1505.06731 [PRD 92, 071503 (2015)]

... as a hiding place for new kind of top partners arXiv:1602.08819 [JHEP 1605 (2016) 092] with Strassler work in progress with McCullough, Perez, Soreq, Thaler work in progress with Giammanco, Schlaffer, Shlomi → talk by Schlaffer

Part 1

Top-quark samples as calibrators of *s*, *c*, *b* polarization measurements

Commonly, information about new physics is encoded in the produced Standard Model particles.

9

Particle carries information in its **momentum** and **spin**.

e

U

0

 \mathcal{V}_{e}

С

S

1)

U

b

 \mathcal{V}_{τ}

τ

For quarks, momentum is easily reconstructed.

Is it possible to measure also their spin state (polarization)?

Top quark polarization measurements are now standard.

 $P_t = 0.82 \pm 0.12(stat.) \pm 0.32(syst.)$

EW process \rightarrow polarized

Top quark polarization measurements are now standard.

 $P_t = 0.82 \pm 0.12(stat.) \pm 0.32(syst.)$

EW process \rightarrow polarized

top pair production

QCD process \rightarrow unpolarized

Top quark polarization measurements are now standard.

EW process \rightarrow polarized

QCD process → unpolarized

Polarization of tops from **new physics** processes will teach us about their production mechanism!

Top quark polarization measurements are now standard.

EW process \rightarrow polarized

QCD process \rightarrow unpolarized

Polarization of tops from **new physics** processes will teach us about their production mechanism! Can we do analogous measurements for the **other quarks**?

Quarks produce jets of hadrons.

Quark's momentum reconstructed from tracks, calorimeter deposits.

How can one reconstruct quark's **spin state (polarization)**?

Heavy quarks (b, c)

For heavy quarks, $m_q \gg \Lambda_{
m QCD}$

- The jet contains a very energetic heavy-flavored hadron.
- When it is a **baryon**, O(1) fraction of the polarization is expected to be retained.
 Falk and Peskin PRD 49, 3320 (1994)

[hep-ph/9308241]

Heavy quarks (b, c)

For heavy quarks, $m_q \gg \Lambda_{
m QCD}$

- The jet contains a very energetic heavy-flavored hadron.
- When it is a baryon, O(1) fraction of the polarization is expected to be retained.
 Falk and Peskin PRD 49, 3320 (1994) [hep-ph/9308241]

Evidence observed at LEP via Λ_b ($\approx bud$) baryons in $Z \rightarrow b\overline{b}$.

 $\mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20} {}^{+0.08}_{-0.07}$ (ALEPH)PLB 365, 437 (1996) $\mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17$ (DELPHI)PLB 474, 205 (2000) $\mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09$ (OPAL)PLB 444, 539 (1998) [hep-ex/9808006]

s quark

Cannot argue for polarization retention using heavy-quark limit.
Cannot argue for polarization loss either!

s quark

- Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
- $\succ \Lambda$ polarization studies were already done at LEP, in Z decays.

s quark

- Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
- > Λ polarization studies were already done at LEP, in Z decays. For z > 0.3:

 $\mathcal{P}(\Lambda) = -0.31 \pm 0.05$ ALEPH, CERN-OPEN-99-328

 $\mathcal{P}(\Lambda) = -0.33 \pm 0.08$ OPAL, EPJC 2, 49 (1998) [hep-ex/9708027]

Contributions from all quark flavors are included.

For strange quarks only (non-negligible modeling uncertainty):

 $-0.65 \lesssim \mathcal{P}(\Lambda) \lesssim -0.49$

Sizable polarization retention!

 $\succ t \rightarrow W^+b$ produces polarized b quarks.

 $\hookrightarrow c\bar{s}$ produces polarized *c*, *s* quarks.

- $\succ t \rightarrow W^+b$ produces polarized b quarks.
 - $\hookrightarrow c\bar{s}$ produces polarized *c*, *s* quarks.
- Already in Run 2, statistics in tt as large as in Z decays at LEP.
 Kinematic reconstruction and charm tagging enable studying the different flavors separately.

- $\succ t \rightarrow W^+b$ produces polarized b quarks.
 - $\hookrightarrow c\bar{s}$ produces polarized *c*, *s* quarks.
- Already in Run 2, statistics in tt as large as in Z decays at LEP.
 Kinematic reconstruction and charm tagging enable studying the different flavors separately.
- > $\mathcal{O}(10\%)$ precisions on *s*, *c*, *b* polarizations possible in Run 2.

- $\succ t \rightarrow W^+b$ produces polarized b quarks.
 - $\hookrightarrow c\bar{s}$ produces polarized *c*, *s* quarks.
- Already in Run 2, statistics in tt as large as in Z decays at LEP.
 Kinematic reconstruction and charm tagging enable studying the different flavors separately.
- > O(10%) precisions on s, c, b polarizations possible in Run 2.
- > Calibration on $t\overline{t}$ will be useful for future measurements on new physics samples.

- $\succ t \rightarrow W^+b$ produces polarized b quarks.
 - $\hookrightarrow c\overline{s}$ produces polarized *c*, *s* quarks.
- Already in Run 2, statistics in tt as large as in Z decays at LEP.
 Kinematic reconstruction and charm tagging enable studying the different flavors separately.
- > O(10%) precisions on s, c, b polarizations possible in Run 2.
- > Calibration on $t\overline{t}$ will be useful for future measurements on new physics samples.
- Interplay with HQET, models of QCD, lattice QCD, LEP, LHCb, polarized DIS, polarized pp collisions.

Measurement of s polarization in $t\bar{t}$

Main steps:

- > Typical single-lepton $t\bar{t}$ selection
- > Typical kinematic reconstruction and global event interpretation
- Charm tagging
- $\succ \Lambda$ reconstruction and polarization measurement

Measurement of s polarization in $t\bar{t}$

Statistical precision of roughly 16% possible at ATLAS/CMS in Run 2 (with 100/fb of data)

Measurement of c polarization in $t\bar{t}$

Main steps:

- > Typical single-lepton $t\overline{t}$ selection
- > Typical kinematic reconstruction and global event interpretation
- $\succ \Lambda_c$ reconstruction and polarization measurement

Measurement of c polarization in $t\bar{t}$

Statistical precision of order 10% possible at ATLAS/CMS in Run 2 (with 100/fb of data) $\alpha_i r_L = 0.6$

Selection	Expected events	Purity (example)	$\Delta \mathcal{A}_{FB} / \mathcal{A}_{FB}$
Baseline	$1.7 \times 10^6 t\bar{t} + \mathcal{O}(10^5)$ bkg		
$\Lambda_c^+ \to p K^- \pi^+$	$810 \times (\epsilon_{\Lambda_c}/25\%)$	20%	26%
		100%	11%

Measurement of b polarization in $t\bar{t}$

Main steps:

- > Typical single-lepton $t\bar{t}$ selection (w/soft-muon b tag)
- > Typical kinematic reconstruction and global event interpretation
- > Λ_b reconstruction (using inclusive, semi-inclusive or exclusive approach) and polarization measurement

Measurement of *b* polarization in $t\bar{t}$

Selection	Expected events		
Baseline	$3 \times 10^6 t\bar{t} + \mathcal{O}(10^6)$ bkg		
Soft-muon b tagging	$5 \times 10^5 t\bar{t} + \mathcal{O}(10^4)$ bkg		$r_L = 0.6$
Signal events $(t \to b \to \Lambda_b \to \mu \nu X_c)$		Purity (example)	$\Delta \mathcal{A}_{FB}/\mathcal{A}_{FB}$
Inclusive	34400	$\mathcal{O}(f_{\text{baryon}})$ (e.g., 7%)	$\pm 7\%$
Semi-inclusive	$2300 \times (\epsilon_{\Lambda}/30\%)$	70%	$\pm 8\%$
Fyeluciyo	$1040 \times (\epsilon_{\Lambda_c}/25\%)$	30%	$\pm 19\%$
Exclusive		100%	$\pm 10\%$

Part 2 Top-quark samples as a hiding place for new physics

Original motivation

A simple explanation

Annihilation of a near-threshold bound state (*X*-onium) of a new colored and charged particle *X* with mass near 375 GeV.

arXiv:1512.06670 Luo, Wang, Xu, Zhang, Zhu
arXiv:1602.08100 Han, Ichikawa, Matsumoto, Nojiri, Takeuchi
arXiv:1602.08819 Kats, Strassler
arXiv:1604.07828 Hamaguchi, Liew

A simple explanation

Annihilation of a near-threshold bound state (*X*-onium) of a new colored and charged particle *X* with mass near 375 GeV.

arXiv:1512.06670 Luo, Wang, Xu, Zhang, Zhu
arXiv:1602.08100 Han, Ichikawa, Matsumoto, Nojiri, Takeuchi
arXiv:1602.08819 Kats, Strassler
arXiv:1604.07828 Hamaguchi, Liew

A long-anticipated colored and charged particle is the **stop**, but the stoponium signal would be too small.

Larger electric charge was needed to account for the excess.

Annihilation to photons

Color-triplet scalars with Q = -4/3 or 5/3 were candidates. (In principle, also a vector with Q = 2/3.)

Annihilation to photons

Color-triplet fermion with Q = -4/3 was a candidate.

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

$$\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$$

Main LHC phenomenology $gg, q\bar{q} \rightarrow XX^*, \quad X \rightarrow \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ $gg \rightarrow (XX^*) \rightarrow gg, ZZ, Z\gamma, \gamma\gamma$

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

 $\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$

Main LHC phenomenology $gg, q\bar{q} \rightarrow XX^*, \quad X \rightarrow \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ hiding in $t\bar{t}$ +jets unconstrained $gg \rightarrow (XX^*) \rightarrow gg, ZZ, Z\gamma, \gamma\gamma$ unconstrained

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

 $\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$

Main LHC phenomenology $gg, q\bar{q} \rightarrow XX^*, \quad X \rightarrow \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ hiding in $t\bar{t}$ +jets unconstrained $gg \rightarrow (XX^*) \rightarrow gg, ZZ, Z\gamma, \gamma\gamma$ unconstrained

But why would there be such a particle? Doesn't this scalar even introduce a new hierarchy problem?

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

 $\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$

Main LHC phenomenology $gg, q\bar{q} \rightarrow XX^*, \quad X \rightarrow \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ hiding in $t\bar{t}$ +jets unconstrained $gg \rightarrow (XX^*) \rightarrow gg, ZZ, Z\gamma, \gamma\gamma$ unconstrained

But why would there be such a particle? Maybe it is actually a top partner ;)
A simple scenario

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

 $\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$

Main LHC phenomenology $gg, q\bar{q} \rightarrow XX^*, \quad X \rightarrow \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ hiding in $t\bar{t}$ +jets unconstrained

 \diamond

For large c_{ij} , *X*-onium is unobservable (like the toponium), but the *X* may still be there!

But why would there be such a particle? Maybe it is actually a top partner ;)

Reminder of "Folded SUSY"

Burdman, Chacko, Goh, Harnik, JHEP 02 (2007) 009 [hep-ph/0609152]

Members of $\mathcal{N} = 2$ supermultiplets and their boundary conditions

 $Z_2 \qquad \qquad \textbf{Quarks} (3, 1, SM, SM) \\ \textbf{Folded quarks} (1, 3, SM, SM) \\ \end{array}$

$$\psi(++) \quad \psi^{c}(--) \quad \phi(+-) \quad \phi^{c}(-+)$$

 $\psi_F(+-) \ \psi_F^c(-+) \ \phi_F(++) \ \phi_F^c(--)$

Importantly, the Higgs brane preserves the Z_2 .

Divergences from top (ψ) are canceled by (colorless) "folded stops" (ϕ_F).

preliminary

Members of $\mathcal{N} = 2$ supermultiplets and their boundary conditions

Quarks (SM, SM, Y_{SM}, Y_F) $\psi(++) \psi^c(--) \phi(+-) \phi^c(-+)$ Folded quarks (SM, SM, Y_F, Y_{SM}) $\psi_F(+-) \psi_F^c(-+) \phi_F(++) \phi_F^c(--)$ Z_2

Importantly, the Higgs brane preserves the Z_2 .

Divergences from top (ψ) are canceled by **colored** "folded stops" (ϕ_F) with **unconventional hypercharges**.

preliminary

	$ \mathrm{SU}(3)_C $	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_F$	
H_u	1	2	1/2	1/2	
H_d	1	2	-1/2	-1/2	
$oldsymbol{Q},oldsymbol{Q}_F$	3	2	$\frac{1}{6}(1, 1-2q)$	$\frac{1}{6}(1-2q,1)$	
$oldsymbol{U^c},oldsymbol{U^c_F}$	3	1	$\frac{1}{3}(-2, -2+q)$	$\frac{1}{3}(-2+q,-2)$	
$oldsymbol{D^c}, oldsymbol{D^c}_F$	3	1	$\frac{1}{3}(1,1+q)$	$\frac{1}{3}(1+q,1)$	
$oldsymbol{L},oldsymbol{L}_{oldsymbol{F}}$	1	2	$\frac{1}{2}(-1, -1+2q)$	$\frac{1}{2}(-1+2q,-1)$	
$oldsymbol{E^c}, oldsymbol{E^c_F}$	1	1	(1, 1-q)	(1-q,1)	
$oldsymbol{N^c}, oldsymbol{N^c_F}$	1	1	(0,-q)	(-q,0)	
$oldsymbol{S},oldsymbol{S}_{oldsymbol{F}}$	1	1	$(q_S,0)$	$(0,q_S)$	for $U(1)_F$
$oldsymbol{S^c}, oldsymbol{S_F^c}$	1	1	$(-q_S,0)$	$(0,-q_S)$	breaking

- Folded stops with **any charge** can be obtained by varying *q*.
 Charges of other fields are then constrained by *B L*.
- The charge q_S (also a free parameter) determines the U(1)_F-allowed operators for **decays**: W ∝ S_FO_F, where the operator O_F respects the SM gauge symmetries but not U(1)_F.

preliminary

Interesting decay examples

For a folded RH stop with Q = -4/3:

 $W \supset U_F^c U^c U^c$

allows the decays

$$X \rightarrow \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$$

preliminary

Interesting decay examples

For a folded RH stop with Q = -4/3:

 $W \supset U_F^c U^c U^c$

allows the decays

 $X \rightarrow \overline{u}\overline{c}, \overline{t}\overline{u}, \overline{t}\overline{c}$

Same decays are possible for a folded LH sbottom

with Q = -4/3 (different scenario) via

 $W \supset D_F^c U^c U^c$

in the presence of mixing.

preliminary

Interesting decay examples

For a folded RH stop with Q = -4/3:

 $W \supset U_F^c U^c U^c$

allows the decays

 $X \rightarrow \overline{u}\overline{c}, \overline{t}\overline{u}, \overline{t}\overline{c}$

Same decays are possible for a folded LH sbottom with Q = -4/3 (different scenario) via $W \supset D_F^c U^c U^c$

in the presence of mixing.

Alternatively, the sbottom may decay via

 $W \supset (H_u Q_F)(QQ)$

as

$$X \to W^- \overline{u} \overline{d}$$

Our setup: "Hyperfolded SUSY" preliminary

Bound state signals

Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Our setup: "Hyperfolded SUSY" preliminary

Bound state signals

Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Our setup: "Hyperfolded SUSY" preliminary

Bound state signals

Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Limits from:

ATLAS-CONF-2016-056 (*llvv*, 13.3/fb) ATLAS-CONF-2016-082 (*llqq*, 13.2/fb) *vvqq*, 13.2/fb)

Our setup: "Hyperfolded SUSY" preliminary

Bound state signals

Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Limits from:

ATLAS-CONF-2016-049 (*bbbb*, 13.3/fb) CMS-PAS-HIG-16-029 (*bbττ*, 12.9/fb)

"Hyperfolded Composite Higgs"

or how to get spin-1/2 partners with unconventional charges

preliminary

Symmetry breaking pattern:

 $\operatorname{SU}(3)_G \times \operatorname{SU}(2)_X \times \operatorname{U}(1)_Z \to \operatorname{SU}(2)_L \times \operatorname{SU}(2)_X \times \operatorname{U}(1)_Y$ $\Phi \sim (\bar{3}, 1)_{\frac{1}{3}} = \exp\left(-i\frac{\pi^a T_G^a}{f}\right) \begin{pmatrix} 0\\0\\f \end{pmatrix} \approx \begin{pmatrix} H\\f - \frac{H^{\dagger} H}{2f} \end{pmatrix}$

SM electroweak group generators:

$$T_L^{1,2,3} = T_G^{1,2,3} \qquad Y = Z - \frac{T_G^8}{\sqrt{3}} + \left(\frac{2}{3} - Y_T\right) T_X^3$$
 free the

free parameter, to become the top-partner hypercharge "Hyperfolded Composite Higgs"

or how to get spin-1/2 partners with unconventional charges

Symmetry breaking pattern:

 $\operatorname{SU}(3)_G \times \operatorname{SU}(2)_X \times \operatorname{U}(1)_Z \to \operatorname{SU}(2)_L \times \operatorname{SU}(2)_X \times \operatorname{U}(1)_Y$ $\Phi \sim (\bar{3}, 1)_{\frac{1}{3}} = \exp\left(-i\frac{\pi^a T_G^a}{f}\right) \begin{pmatrix} 0\\0\\f \end{pmatrix} \approx \begin{pmatrix} H\\f - \frac{H^{\dagger}H}{2f} \end{pmatrix}$

SM electroweak group generators:

$$T_L^{1,2,3} = T_G^{1,2,3} \qquad Y = Z - \frac{T_G^8}{\sqrt{3}} + \left(\frac{2}{3} - Y_T\right)T_X^3$$

``

The top sector:

preliminary

$$Q \sim (3,2)_{\frac{Y_T}{2}} = \begin{pmatrix} b & q'_d \\ -t & -q'_u \\ t' & T \end{pmatrix}$$

$$\underbrace{\mathsf{SU}(2)_X}$$

$$Q^c \sim (1,2)_{-\frac{Y_T}{2} - \frac{1}{3}} = \left(T^c \ t^c\right)$$

"Hyperfolded Composite Higgs" or how to get spin-1/2 partners preliminary

with unconventional charges

The Yukawa coupling $\mathcal{L}_Y = \lambda_t \epsilon_{\alpha\beta} Q^{\alpha} \Phi Q^{c\beta}$ translates to

$$\mathcal{L}_Y \supset \lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c - \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to top are canceled by the charge- Y_T partner.

	$SU(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$Q_{ m EM}$	
H	1	2	1/2		_
$\begin{array}{c} q \\ t^c \end{array}$	$\frac{3}{3}$	2 1	1/6 -2/3	2/3, -1/3 -2/3	- SM
$T \\ T^c$	$\frac{3}{3}$	1 1	$\begin{array}{c} Y_T \\ -Y_T \end{array}$	$\begin{array}{c} Y_T \\ -Y_T \end{array}$	Top partner X with arbitrary charge
$egin{array}{c} q' & \ q'^c & \ t' & \ t'^c & \ t'^c & \end{array}$	3 3 3 3 3	2 2 1 1	$ \begin{array}{r} Y_T - 1/2 \\ -(Y_T - 1/2) \\ 2/3 \\ -2/3 \end{array} $	$Y_T, Y_T - 1 -Y_T, -(Y_T - 1) 2/3 -2/3$	Extra states + vectorlike partners (can be heavy)

"Hyperfolded Composite Higgs" or how to get spin-1/2 partners preliminary with unconventional charges

The Yukawa coupling $\mathcal{L}_Y = \lambda_t \epsilon_{\alpha\beta} Q^{\alpha} \Phi Q^{c\beta}$ translates to

$$\mathcal{L}_Y \supset \lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c - \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to top are canceled by the charge- Y_T partner.

This is just a toy model since it does not have custodial protection. A similar but more complicated model (with additional light partners) seems possible using

 $\mathrm{SO}(5)_G \times \mathrm{SU}(2)_X \times \mathrm{U}(1)_Z \to \mathrm{SO}(4) \times \mathrm{SU}(2)_X \times \mathrm{U}(1)_Z$

"Hyperfolded Composite Higgs" or how to get spin-1/2 partners preliminary with unconventional charges

The Yukawa coupling $\mathcal{L}_Y = \lambda_t \epsilon_{\alpha\beta} Q^{\alpha} \Phi Q^{c\beta}$ translates to

$$\mathcal{L}_Y \supset \lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c - \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to top are canceled by the charge- Y_T partner.

Since the charge- Y_T partner does not mix with the SM quarks, the usual decays to W/Z/h + quark are absent.

"Hyperfolded Composite Higgs" or how to get spin-1/2 partners preliminary with unconventional charges

The Yukawa coupling $\mathcal{L}_Y = \lambda_t \epsilon_{\alpha\beta} Q^{\alpha} \Phi Q^{c\beta}$ translates to

$$\mathcal{L}_Y \supset \lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c - \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to top are canceled by the charge- Y_T partner.

Since the charge- Y_T partner does not mix with the SM quarks, the usual decays to W/Z/h + quark are absent.

Instead, the decay may proceed via a higher-dimensional operator. For example, the operator

$$\mathcal{L} \propto \bar{X}^{\dagger}_{\alpha} \bar{u}^{\dagger}_{i\beta} \bar{d}^{\alpha}_{j} \bar{d}^{\beta}_{k} + \text{h.c.}$$

may give the potentially elusive decays

$$X \rightarrow jjj, tjj$$

Conclusions

A **run-2 reality** is that measurements of s, c, b polarizations can be calibrated with O(10%) precisions.

If this is done, **BSM will have to face** this new tool of ours.

Conclusions

The 750 is gone, but it has shown us new ways of putting a checkmark on the Higgs mass.

Thank You!

Supplementary Slides

 $m_b \gg \Lambda_{\rm QCD}$

b spin **preserved** during hadronization

b spin **preserved** during lifetime

b spin **oscillates** during lifetime

 Λ_b sample contaminated by $\Sigma_b^{(*)} \rightarrow \Lambda_b \pi$

fragmentation fraction $f(b \rightarrow baryons) \approx 8\%$

Dominant polarization loss effect $\Sigma_{h}^{(*)} ightarrow \Lambda_{b} \pi$ decays

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

Dominant polarization loss effect $\Sigma_b^{(*)} ightarrow \Lambda_b \pi$ decays

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

diquarks

$$S T$$
spin-0 spin-1
isosinglet isotriplet

$$A = \frac{\text{prob}(\Sigma_b^{(*)})}{\text{prob}(\Lambda_b)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)}$$

$$w_1 = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)}$$
Falk and Peskin

[hep-ph/9308241]

Dominant polarization loss effect $\Sigma_{h}^{(*)} \rightarrow \Lambda_{h}\pi$ decays

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

Production as a *b* spin eigenstate. Decay as a Σ_b or Σ_b^* mass eigenstate. e.g. $|b_{\pm 1/2}\rangle|T_0\rangle = -\sqrt{\frac{1}{3}}|\Sigma_{b,\pm 1/2}\rangle + \sqrt{\frac{2}{3}}|\Sigma_{b,\pm 1/2}^*\rangle$

diquarks S Tspin-0 spin-1 isosinglet isotriplet $A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$ $w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$ Falk and Peskin

Falk and Peskin PRD 49, 3320 (1994) [hep-ph/9308241]

Dominant polarization loss effect $\Sigma_{h}^{(*)} \rightarrow \Lambda_{h}\pi$ decays

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

Production as a *b* spin eigenstate. Decay as a Σ_b or Σ_b^* mass eigenstate. e.g. $|b_{\pm 1/2}\rangle|T_0\rangle = -\sqrt{\frac{1}{3}}|\Sigma_{b,\pm 1/2}\rangle + \sqrt{\frac{2}{3}}|\Sigma_{b,\pm 1/2}^*\rangle$

diquarks

$$S T$$
spin-0 spin-1
isosinglet isotriplet

$$A = \frac{\text{prob}\left(\Sigma_b^{(*)}\right)}{\text{prob}\left(\Lambda_b\right)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)}$$

$$w_1 = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)}$$

$$r\approx \frac{1+(1+4w_1)A/9}{1+A}$$

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

Parameter	(MeV)
Γ_{Σ_b}	7 ± 3
$\Gamma_{\Sigma_b^*}$	9 ± 2
$m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

Parameter	(MeV)
Γ_{Σ_b}	7 ± 3
$\Gamma_{\Sigma_b^*}$	9 ± 2
$m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2

$$\begin{split} |E\rangle \propto \int d\cos\theta \, d\phi \, \sum_{J,M} \langle J, M \mid \frac{1}{2}, +\frac{1}{2}; \, 1, m \rangle \, \frac{p_{\pi}(E)}{E - m_J + i\Gamma(E)/2} \times \\ & \times \sum_s \langle \frac{1}{2}, s; \, 1, M - s \mid J, M \rangle \, Y_1^{M-s}(\theta, \phi) \mid \theta, \phi \rangle \mid s \rangle \\ \rho(E) \propto \operatorname{Tr}_{\theta, \phi} \mid E \rangle \, \langle E \mid & \uparrow \\ pion & \Lambda_b \text{ spin momentum} \\ \rho \propto \int_{m_{\Lambda_b} + m_{\pi}}^{\infty} dE \, p_{\pi}(E) \exp\left(-E/T\right) \rho(E) \\ & \text{statistical hadronization model } (T \approx 165 \text{ MeV}) \\ & \text{review: PLB 678, 350 (2009) [arXiv:0904.1368]} \end{split}$$

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

Parameter	(MeV)
Γ_{Σ_b}	7 ± 3
$\Gamma_{\Sigma_b^*}$	9 ± 2
$m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2

 $w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$ applies along the fragmentation axis.

If the b is polarized transversely, r is different.

Polarization retention factors:

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A}$$

where
$$A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

What is known about A and w_1 ?

Polarization retention factors:

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A}$$
where
$$A = \frac{\text{prob}\left(\Sigma_{b}^{(*)}\right)}{\text{prob}\left(\Lambda_{b}\right)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)} \qquad w_{1} = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)}$$
Pythia tunes $0.24 \leq A \leq 0.45$ (based on light hadron data)
DELPHI (LEP) $1 \leq A \leq 10$ (b) $w_{1} = -0.36 \pm 0.30 \pm 0.30$ (b)

DELPHI-95-107

PLB 379, 292 (1996) [hep-ex/9604007] PRL 78, 2304 (1997)

E791 $A \approx 1.1 (c)$ **CLEO (CESR)** $w_1 = 0.71 \pm 0.13 (c)$

Statistical hadronization model $A \approx 2.6$ (b and c) review: PLB 678, 350 (2009) [arXiv:0904.1368]

Adamov-Goldstein model $A \approx 6$ (b and c) $w_1 \approx 0.41$ (b), 0.39 (c) PRD 64, 014021 (2001) [hep-ph/0009300]

Polarization retention factors:

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A}$$

where
$$A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

What is known about A and w_1 ?

Overall, $A \sim \mathcal{O}(1)$, $0 \leq w_1 \leq 1 \implies r_L, r_T \sim \mathcal{O}(1)$

consistent with Λ_b measurements from LEP

Mass splittings and widths

bottom system

 $m_{\Lambda_b} = 5619.5 \pm 0.4 \text{ MeV}$

Parameter	(MeV)
$m_{\Sigma_b} - m_{\Lambda_b}$	194 ± 2
$m_{\Sigma_b^*} - m_{\Lambda_b}$	214 ± 2
$\Delta \equiv m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2
Γ_{Σ_b}	7 ± 3
$\Gamma_{\Sigma_b^*}$	9 ± 2
Ŭ	

charm system

 $m_{\Lambda_c} = 2286.5 \pm 0.2 \text{ MeV}$

_		
_	Parameter	(MeV)
_	$m_{\Sigma_c} - m_{\Lambda_c}$	167.4 ± 0.1
	$m_{\Sigma_c^*} - m_{\Lambda_c}$	231.9 ± 0.4
	$\Delta \equiv m_{\Sigma_c^*} - m_{\Sigma_c}$	64.5 ± 0.5
	Γ_{Σ_c}	2.2 ± 0.2
	$\Gamma_{\Sigma_c^*}$	15 ± 1

Measurement of b polarization in Z decays

Z production: $pp \rightarrow Z \rightarrow b\overline{b}$

- Longitudinally polarized b quarks (similar to $t\overline{t}$)
- Large cross section

 $\frac{\sigma(pp\to Z\to b\bar{b})}{\sigma(pp\to t\bar{t}\to W^+W^-b\bar{b})}\sim 10$

• Large QCD background (at 8 TeV, S/B \approx 1/15 even for p_T^Z > 200 GeV) dilutes the asymmetry.

Probably less effective than $t\overline{t}$.

Measurement of b polarization in QCD events

QCD production: $pp \rightarrow b\overline{b} + X$

- Large cross section
- Unpolarized at leading order
- Transverse polarization at NLO
- Strong dependence on kinematics
- Significant only at low momenta $\mathcal{P}(b) \sim \alpha_s m_b/p_b$

Relevant (primarily) for LHCb

Existing LHCb analysis:

 $\begin{array}{ll} \text{Measurements of the } \Lambda^0_b \rightarrow J/\psi \,\Lambda \\ \text{decay amplitudes and the } \Lambda^0_b \\ \text{polarisation in } pp \text{ collisions at} \\ \sqrt{s} = 7 \,\text{TeV} \end{array} \begin{array}{l} \text{PLB 724, 27 (2013)} \\ \text{[arXiv:1302.5578]} \\ \mathcal{P}(\Lambda_b) = 0.06 \pm 0.07 \pm 0.02 \end{array}$

Suboptimal because the dependence on kinematics is ignored.

Dharmaratna and Goldstein PRD 53, 1073 (1996)

FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.
Which Λ_b decay to use?

Choose semileptonic mode, **inclusive** in charm hadrons (large BR, no hadronic uncertainties).

	Mode	Fraction (Γ_i/Γ)
Γ_1	$J/\psi(1S)$ $\Lambda imes$ B($b o \Lambda^0_b$)	(5.8 ± 0.8) $\times 10^{-5}$
Γ2	$pD^0\pi^-$	(5.9 $^{+4.0}_{-3.2}$) $ imes$ 10 $^{-4}$
Γ ₃	р D ⁰ К ⁻	(4.3 $^{+3.0}_{-2.4}$) $\times10^{-5}$
Г ₄	$\Lambda_c^+ \pi^-$	(5.7 $^{+4.0}_{-2.6}$) $\times10^{-3}$
Г ₅	$\Lambda_c^+ K^-$	(4.2 $\substack{+2.6\\-1.9}$) $\times10^{-4}$
Г _б	$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen
Γ ₇	$\Lambda_c^+ \pi^+ \pi^- \pi^-$	$(8 {+5\atop-4}) imes 10^{-3}$
Г ₈	$egin{aligned} &\Lambda_c(2595)^+\pi^- \ ,\ \Lambda_c(2595)^+ \ o \ &\Lambda_c^+\pi^+\pi^- \end{aligned}$	(3.7 $\substack{+2.8\\-2.3}$) \times 10^{-4}
Γ ₉	$\Lambda_c(2625)^+ \pi^-$, $\Lambda_c(2625)^+ o \Lambda_c^+ \pi^+ \pi^-$	$(3.6 \ +2.7 \ -2.1 \) imes 10^{-4}$
Γ ₁₀	$\Sigma_c(2455)^0 \pi^+ \pi^-$, $\Sigma_c^0 ightarrow \Lambda_c^+ \pi^-$	$(6 {+5 \atop -4}) imes 10^{-4}$
Γ ₁₁	$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++} ightarrow \Lambda^+\pi^+$	(3.5 $\substack{+2.8\\-2.3}$) \times 10^{-4}
Γ12	$\Lambda K^0 2\pi^+ 2\pi^-$	
$\Gamma_{13}^{}$	$arLambda_{m{c}}^+ \ell^- \overline{ u}_\ell$ anything	$[a]$ (9.9 ± 2.2)%
Γ ₁₄	$\Lambda_{c}^{+} \ell^{-} \overline{ u}_{\ell}$	(6.5 $^{+3.2}_{-2.5}$) %
Γ ₁₅	$\Lambda_{c}^{+}\pi^{+}\pi^{-}\ell^{-}\overline{\nu}_{\ell}$	(5.6 \pm 3.1) %
Г ₁₆	$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$	(8 ± 5) $ imes$ 10 $^{-3}$
Γ ₁₇	$\Lambda_c(2625)^+ \ell^- \overline{ u}_\ell$	(1.4 $\substack{+0.9\\-0.7}$) %
Г ₁₈	$\Sigma_c(2455)^0 \pi^+ \ell^- \overline{ u}_\ell$	
Γ ₁₉	$\Sigma_c(2455)^{++}\pi^-\ell^-\overline{ u}_\ell$	
Γ ₂₀	p h	$[b] < 2.3 imes 10^{-5}$
Γ ₂₁	$p\pi^-$	$(4.1 \pm 0.8) \times 10^{-6}$
l ₂₂	<i>pK</i> ⁻	$(4.9 \pm 0.9) \times 10^{-0}$
1 ₂₃	$\Lambda \mu + \mu^-$	$(1.08\pm0.28) imes10^{-0}$
24	$\Lambda\gamma$	$< 1.3 10^{-3}$

Which Λ_b decay to use?

Choose semileptonic mode, inclusive in charm hadrons (large BR, no hadronic uncertainties).

Includes also:

$$\Lambda_b o p \, D^0 \, \ell^- ar{
u}_\ell$$
 small contribution

		Mode	Fraction (Γ_i/Γ)
	Γ_1	$J/\psi(1S)$ $\Lambda imes$ B($b o$ Λ^0_b)	(5.8 ± 0.8) $\times 10^{-5}$
7	Г ₂	$pD^0\pi^-$	(5.9 $\substack{+4.0 \\ -3.2}$) $ imes$ 10 ⁻⁴
	Γ ₃	р D ⁰ К ⁻	(4.3 $^{+3.0}_{-2.4}$) $\times10^{-5}$
	Г ₄	$\Lambda_c^+ \pi^-$	(5.7 $\substack{+4.0\\-2.6}$) $ imes$ 10 ⁻³
	Γ ₅	$\Lambda_c^+ K^-$	(4.2 $^{+2.6}_{-1.9}$) $\times10^{-4}$
	Г ₆	$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen
	Γ ₇	$\Lambda_c^+ \pi^+ \pi^- \pi^-$	(8 $\substack{+5\\-4}$) $ imes$ 10 $^{-3}$
	Г ₈	$egin{aligned} &\Lambda_c(2595)^+\pi^- \ ,\ \Lambda_c(2595)^+ \ o \ &\Lambda_c^+\pi^+\pi^- \end{aligned}$	(3.7 $^{+2.8}_{-2.3}$) $\times10^{-4}$
	Г ₉	$\Lambda_c(2625)^+\pi^-$, $\Lambda_c(2625)^+ ightarrow \Lambda_c^+\pi^+\pi^-$	(3.6 $^{+2.7}_{-2.1}$) $\times10^{-4}$
	Γ ₁₀	$\Sigma_c(2455)^0 \pi^+ \pi^-$, $\Sigma_c^0 o \Lambda_c^+ \pi^-$	$(6 \stackrel{+5}{-4})\times 10^{-4}$
	Γ ₁₁	$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++} ightarrow \Lambda_c^+\pi^+$	$(3.5 \begin{array}{c} +2.8\\ -2.3 \end{array})\times 10^{-4}$
	Γ ₁₂	$\Lambda K^{0} 2 \pi^{c} 2 \pi^{-}$	
	Γ_{13}	$arLambda_{m{c}}^+ \ell^- \overline{ u}_\ell$ anything	[a] (9.9 \pm 2.2)%
	Γ ₁₄	$\Lambda_{c}^{+} \ell^{-} \overline{ u}_{\ell}$	(6.5 $\substack{+3.2\\-2.5}$) %
	Γ ₁₅	$\Lambda_{c}^{+} \pi^{+} \pi^{-} \ell^{-} \overline{\nu}_{\ell}$	(5.6 \pm 3.1) %
	Γ ₁₆	$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$	$(8 \pm 5) imes 10^{-3}$
	Γ ₁₇	$\Lambda_c(2625)^+ \ell^- \overline{ u}_\ell$	$(1.4 \begin{array}{c} +0.9 \\ -0.7 \end{array})$ %
	Γ ₁₈	$\sum_{c} (2455)^0 \pi^+ \ell^- \overline{\nu}_\ell$	
	Г ₁₉	$\sum_{c}(2455)^{++}\pi \ell \nu_{\ell}$	[b] < 2.2 × 10 ⁻⁵
	י 20 בסו	ρm^{-}	$(4.1 + 0.8) \times 10^{-6}$
	Γ_{22}	ρ ρ.Κ ⁻	$(4.9 \pm 0.9) \times 10^{-6}$
	Γ_{23}^{22}	$\Lambda \mu^+ \mu^-$	$(1.08\pm0.28)\times10^{-6}$
	Γ ₂₄	$\Lambda\gamma$	$< 1.3 \times 10^{-3}$

For the inclusive semileptonic decays

$$\Lambda_b \to X_c \ell^- \bar{\nu}$$

 Λ_b polarization is encoded in the angular distributions

 $\frac{1}{\Gamma_{\Lambda_b}} \frac{d\Gamma_{\Lambda_b}}{d\cos\theta_i} = \frac{1}{2} \left(1 + \alpha_i \mathcal{P}\left(\Lambda_b\right) \cos\theta_i \right) \qquad i = \ell \text{ or } \nu$

For the inclusive semileptonic decays

$$\Lambda_b \to X_c \ell^- \bar{\nu}$$

 Λ_b polarization is encoded in the angular distributions

$$\frac{1}{\Gamma_{\Lambda_b}} \frac{d\Gamma_{\Lambda_b}}{d\cos\theta_i} = \frac{1}{2} \left(1 + \alpha_i \mathcal{P}\left(\Lambda_b\right) \cos\theta_i \right) \qquad i = \ell \text{ or } \nu$$

where

$$\alpha_{\ell} = \frac{-\frac{1}{3} + 4x_c + 12x_c^2 - \frac{44}{3}x_c^3 - x_c^4 + 12x_c^2\log x_c + 8x_c^3\log x_c}{1 - 8x_c + 8x_c^3 - x_c^4 - 12x_c^2\log x_c} \approx -0.26$$

$$\alpha_{\nu} = 1$$

$$\alpha_{\nu} = 1$$

$$x_c = \frac{m_c^2}{m_b^2}$$

 $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$ corrections are absent, and α_s corrections are few %.

Manohar, Wise PRD 49, 1310 (1994) [hep-ph/9308246] Czarnecki, Jezabek, Korner, Kuhn, PRL 73, 384 (1994) Czarnecki, Jezabek, NPB 427, 3 (1994)

 $\dot{\mathcal{P}}(\Lambda_b)$

 θ_i

 $\Lambda_b \rightarrow X_c \ell^- \bar{\nu}$ (BR ≈ 10% per flavor)

- Soft-muon *b* tagging e.g. CMS-PAS-BTV-09-001
- Neutrino reconstruction using...
 - Λ_b mass constraint
 - Λ_b flight direction

Dambach, Langenegger, Starodumov NIMA 569, 824 (2006) [hep-ph/0607294]

- > Neutrino $A_{\rm FB}$ measurement (in the Λ_b rest frame)

See paper for many additional details...

 $\Lambda_c^+
ightarrow p K^- \pi^+$ (BR pprox 6.7%)

> Three tracks reconstructing the Λ_c mass.

- Backgrounds under the mass peak can be suppressed in various ways.
- Spin analyzing powers α_i seem to be large for K^- , small for p and π^+ .

NA32: Jeżabek, Rybicki, Ryłko, PLB 286, 175 (1992)

Precise values not essential if SM calibration samples are available.

 $\Lambda
ightarrow p \, \pi^-$ (BR ≈ 64%)

- Pair of tracks from a highly displaced vertex reconstructing the Λ mass.
- > Spin analyzing power $\alpha \approx 0.64$
- \succ ATLAS and CMS already have experience with Λ 's

Measuring A directly

A is simply the ratio of the $\Sigma_b^{(*)}$ and Λ_b yields, independent of the *b* polarization:

$$A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$

Can be measured by any experiment that can see $\Sigma_b^{(*)} \rightarrow \Lambda_b \pi$: LHCb, ATLAS, CMS, maybe even re-analysis of Tevatron data. **CDF**, PRL 99, 202001 (2007) [arXiv:0706.3868] **CDF**, PRD 85, 092011 (2012) [arXiv:1112.2808]

Same for $\Sigma_c^{(*)}$ and Λ_c , where Belle and BaBar can also help. Belle, PRD 89, 091102 (2014) [arXiv:1404.5389]

Measuring w₁ directly

The angular distribution of $\Sigma_b^{(*)} \to \Lambda_b \pi$ is sensitive to w_1 , independent of the *b* polarization:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{1}{2} + \frac{9}{8} a\left(w_1 - \frac{2}{3}\right)\left(\cos^2\theta - \frac{1}{3}\right)$$

where a is given in the plot.

Can be measured by any experiment that can reconstruct these decays (see previous slide).

Same for
$$\Sigma_c^{(*)}$$
 and Λ_c .

Suppose a jets + MET excess is being attributed to:

Suppose a jets + MET excess is being attributed to:

This scenario was barely beyond the reach of Run 1.

PRD 90, 052008 (2014) [arXiv:1407.0608]

JHEP 09, 176 (2014) [arXiv:1405.7875]

Suppose a jets + MET excess is being attributed to:

This scenario was barely beyond the reach of Run 1.

*The masses of interest are unfortunately not shown.

JHEP 06, 055 (2014) [arXiv:1402.4770]

CMS-PAS-SUS-13-009

Suppose a jets + MET excess is being attributed to:

Test this interpretation by measuring the *s*-quark polarization.

Suppose a jets + MET excess is being attributed to:

Test this interpretation by measuring the *s*-quark polarization.

Rough estimate (see paper for details): for 3 ab⁻¹ of 14 TeV data: statistical precision of better than **30%** (even without optimization of selection cuts, without accounting for the expected detector upgrades, and without combining ATLAS and CMS)