

Compact acceleration

<u>A. Pukhov</u> Uni Dusseldorf, Germany

F³iA, Scharbeutz 2016

Petawatt Lasers

The laser electric field at $I=10^{21}$ W/cm² is

$E = 100 \text{ TV/m} = 10^{14} \text{ V/m}$

The field is transverse and requires rectification?

Laser Wake Field Acceleration

The idea was proposed by T. Tajima and J. W. Dawson, Phys.Rev.Lett. 43 , p.267, (1979)

Laser bubble acceleration: quasi-monoenergetic bunches

Pukhov & Meyer-ter-Vehn Appl. Phys. B 74, pp. 355-361 (2002)

Laser bubble acceleration: limitations in uniform plasmas

We might want an EMPTY plasma channel

- 1. Maximum energy gain per stage is limited by laser depletion
- 2. Radiation damping will limit acceleration around 100 GeV
- 3. Limits on bunch emittance and energy spread due to the direct laser interaction at the betatron resonance

PRL 113, 245003 (2014)

Electron acceleration in a channel: towards high quality acceleration

A channel helps to moderate the accelerating field and adjust the laser depletion length

A region of constant accelerating field appears where monoenergetic acceleration is possible

PRL 113, 245003 (2014)

Electron acceleration in a channel: towards high quality acceleration

Focusing force in the channel walls No net transverse force in the void region

1 GeV/m sustained gradient

AWAKE: Proton beam self-modulation in plasmas

Kumar et al., PRL 104, 255003 (2010): Pukhov, et al. PRL 107, 145003 (2011)

Caldwell et al., Nucl. Instr. 2016 http://dx.doi.org/10.1016/j.nima.2015.12.050

Beam self-modulates at plasma wavelength...

...and excites resonant wake field

AWAKE: Expected accelerating field

Limit on Wakefield Gradient?

<u>Thesis:</u> although ~GeV energy gains are possible with high gradients, the perspective multi-stage plasma wake field accelerators have sustained gradients ~1 GeV/m

<u>Reason:</u> plasma field is just a second order perturbation of the laser.

Wake field is small!

January 30, 2016 Breakthroughs in high power fiber lasers enables four times faster drilling through hard rock

HEINRICH HEINE

Lasers fields

- $I = 10^{21} \text{ W/cm}^2 \leftarrow E = 100 \text{ TV/m} = 10^{14} \text{ V/m}$
- $I = 10^{19} \text{ W/cm}^2 \leftarrow E = 10 \text{ TV/m} = 10^{13} \text{ V/m}$
- $I = 10^{17} \text{ W/cm}^2 \leftarrow E = 1 \text{ TV/m} = 10^{12} \text{ V/m}$

Do we want rectification?

Non-plasma accelerating schemes

- Dielectric photonic crystals with axial laser coupling
- Dielectric phase masks with side laser coupling

Dielectrics combined with short pulse lasers can provide sustained accelerating fields at GV/m level

Well competitive with weakly nonlinear wake fields.

Dielectric photonic mask with side laser coupling

T. PLETTNER, P. LU, AND R. L. BYER Phys. Rev. ST Accel. Beams 9, 111301 (2006)

Demonstration of electron acceleration in a laser-driven dielectric microstructure

Peralta et al., Nature 503, 91, (2013)

Eur. Phys. J. ST 223, 1197-1206 (2014)

Let us go full plasma

- iCAN provides echelons of coherent laser pulses
- Intensities well above 10¹⁶ W/cm²
- **Sustained** accelerating rates of 100 GV/m and above become possible
- Resonant and free streaming plasma structures can be discussed

The future is fiber accelerators

G. Mourou et al., Nature Photonics 2013

an echelon of mutually coherent laser pulses → revolution in laser technology

Resonant plasma structure

Fields in the resonant plasma cavity

Eur. Phys. J. ST 223, 1197-1206 (2014)

Open plasma structures: multi TV/m fields are feasible

Two counter-propagating laser echelons and a periodic plasma structure

Plasma structure on a substrate

Plasma structure on a substrate

Accelerating and focusing phases

Plasma structure for multiple pulses

Plasma structure for multiple pulses

Plasma structure for multiple pulses

Summary

- Wake field plasma accelerators have sustained acceleration gradients ~GV/m
- Hollow plasma channels are better for acceleration: no collisional scattering
- Coherent electron acceleration in plasma structures may lead to sustained TV/m gradients