Numerical Integration

Thomas Hahn

Max-Planck-Institut für Physik München

Integration is a wide field. We will concentrate here on Riemann integrals of the form

$$
\mathrm{I} f:=\int_{0}^{1} \mathrm{~d}^{d} x f(\vec{x}) w(\vec{x}) .
$$

The Weight Function $w(\vec{x})$ is generally known analytically and is used to absorb characteristics of the integrand which are difficult to treat otherwise, e.g. peaks or oscillatory behaviour.

For the purposes of numerical integration, we assume that $f(\vec{x})$ is given as a function/subroutine that can be sampled at arbitrary points $\vec{x}_{i} \in[0,1]^{d}$.

Task: Find a Quadrature Formula

$$
\mathbf{Q}_{n} f:=\sum_{i=1}^{n} w_{i} f(r)
$$

with and Weights w_{i}.
$\mathrm{Q}_{n} f$ should approximate $\mathrm{I} f$ for a large class of functions with as small an Erort as possible:

$$
\mathbf{I} f=\mathbf{Q}_{n} f+\mathrm{E}_{n} f, \quad \mathbf{E}_{n} f \text { "small." }
$$

But: For a given \mathbf{Q}_{n}, it is always possible to construct an f such that $\mathrm{E}_{n} f$ becomes arbitrarily large!

A Quadrature Rule is the vector of nodes and weights,

$$
R_{n}=\left\{\binom{\vec{x}_{1}}{w_{1}}, \ldots,\binom{\vec{x}_{n}}{w_{n}}\right\}
$$

and of course completely specifies Q_{n}.

- Open Rule = all $\overrightarrow{x_{i}}$ lie strictly inside the unit hypercube.
- Closed Rule = some \vec{x}_{i} lie on the boundary.
- Positive Rule $=$ all w_{i} are positive.
(Weights with alternating sign are generally considered inferior because numerical cancellations may occur when adding up.)

Idea: Approximate f by a polynomial $p^{(n-1)}$ and integrate the latter. Works as far as f is well approximated by polynomials.
We impose that $p^{(n-1)}$ interpolates f at n given points :

$$
p^{(n-1)}() \stackrel{!}{=} f(), \quad i=1, \ldots, n .
$$

The polynomial thus specified is unique and can explicitly be given in terms of Lagrange Polynomials $\ell_{n-1, i}$:

$$
p^{(n-1)}(x)=\sum_{i=1}^{n} f\left(x_{i}\right) \ell_{i}^{(n-1)}(x), \text { where } \ell_{i}^{(n-1)}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} .
$$

By construction, $\ell_{i}^{(n-1)}\left(x_{j}\right)=\delta_{i j}$.

Weights:

$$
\begin{aligned}
\mathrm{I} p^{(n-1)} & =\int_{0}^{1} \mathrm{~d} x w(x) p^{(n-1)}(x) \\
& =\sum_{i=1}^{n} f(x) \underbrace{\int_{0}^{1} \mathrm{~d} x w(x) \ell_{i}^{(n-1)}(x)}_{w_{i}} .
\end{aligned}
$$

From the practical point of view, the weight function $w(x)$ must be chosen such that these integrals can be computed.

The Degree of Q_{n} is the degree of the highest polynomial integrated exactly by \mathbf{Q}_{n}.

The simplest case: take equidistant x_{i}.
For $w(x)=1$ the lowest-order rules are:

Open rules: $x_{i}=\frac{1}{n+1}$, e.g.
$\mathrm{Q}_{1} f=f\left(\frac{1}{2}\right)$,
$\mathbf{Q}_{2} f=\frac{1}{2}\left(f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)\right)$,
$\mathrm{Q}_{3} f=\frac{1}{3}\left(2 f\left(\frac{1}{4}\right)-f\left(\frac{1}{2}\right)+2 f\left(\frac{3}{4}\right)\right)$.

Closed rules: $x_{i}=\frac{i-1}{n-1}$, e.g.
$\mathrm{Q}_{2} f=\frac{1}{2}(f(0)+f(1))$,
$\mathrm{Q}_{3} f=\frac{1}{6}\left(f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right)$,
$\mathbf{Q}_{4} f=\frac{1}{8}\left(f(0)+3 f\left(\frac{1}{3}\right)+3 f\left(\frac{2}{3}\right)+f(1)\right)$.

By construction, $\operatorname{deg} \mathbf{Q}_{n} \geqslant n-1$, but cannot generally be expected to be larger than $n-1$ because the x_{i} are prescribed and only the $n w_{i}$ have been determined.

The Newton-Cotes rules by themselves are not nearly as powerful as the Gauss rules, but they have the advantage that they can be compounded easily, e.g. in Romberg Rules.

Choose the x_{i} such that \mathbf{Q}_{n} has the highest possible degree. With $2 n$ degrees of freedom ($n x_{i}$ and $n w_{i}$), we ought to achieve $\operatorname{deg} \mathrm{Q}_{n}=2 n-1$.
By Euclid's GCD algorithm we write

$$
\begin{aligned}
p^{(2 n-1)}(x) & =q^{(n)}(x) r^{(n-1)}(x)+s^{(n-1)}(x), \quad q^{(n)}(x)=\prod_{i=1}^{n}(x-x) \\
\mathbf{I} p^{(2 n-1)} & =\int_{0}^{1} \mathrm{~d} x w(x) q^{(n)}(x) r^{(n-1)}(x)+\int_{0}^{1} \mathrm{~d} x w(x) s^{(n-1)}(x) \\
& =\sum_{i=1}^{n} w_{i} \underbrace{q^{(n)}\left(x_{i}\right)}_{=0} r^{(n-1)}\left(x_{i}\right)+\sum_{i=1}^{n} w_{i} s^{(n-1)}\left(x_{i}\right)+\mathrm{E}_{n} p^{(2 n-1)}
\end{aligned}
$$

If the boxed term were zero, the error term would vanish!

$$
\begin{aligned}
\int_{0}^{1} \mathrm{~d} x w(x) q^{(n)}(x) r^{(n-1)}(x) & = \\
\left\langle q^{(n)} \mid r^{(n-1)}\right\rangle & =0 \quad \Leftrightarrow \quad q^{(n)} \perp r^{(n-1)}
\end{aligned}
$$

Choose Orthogonal Polynomials for the $q^{(n)}$, then

$$
\begin{aligned}
r^{(n-1)}=\sum_{i=0}^{n-1}\left\langle q^{(i)} \mid r^{(n-1)}\right\rangle q^{(i)} \quad \text { and }\left\langle q^{(n)} \mid r^{(n-1)}\right\rangle & =0 \\
\text { because }\left\langle q^{(n)} \mid q^{(i<n)}\right\rangle & =0 .
\end{aligned}
$$

Since $q^{(n)}(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)$, the x_{i} are just the zeros of the orthogonal polynomials $q^{(n)}$!

Gauss rules for particular weight functions have special names, hinting at the orthogonal polynomials used:

$$
\begin{aligned}
& w(x)=1 \\
& w(x)=1 / \sqrt{1-x^{2}} \\
& w(x)=x^{\alpha} \mathrm{e}^{-x} \\
& w(x)=\mathrm{e}^{-x^{2}} \\
& w(x)=(1-x)^{\alpha}(1+x)^{\beta} \quad \text { Gauss-Jacobi Rules }
\end{aligned}
$$

So far we have no error estimate for our integration rule. Idea: Compare the results of two rules, \mathbf{Q}_{n} and \mathbf{Q}_{n+m}. Use Embedded Rules with $x\}_{17}+\{x\}^{\prime \prime}$ for economy. But: e.g. Gauss rules of different n have no common Seek to add new points such that \mathbf{Q}_{n+m} is exact for polynomial of maximum degree expectable from \#df, $p^{(n+2 m-1)}$. This leads to

$$
\int_{0}^{1} \mathrm{~d} x w(x) v^{(n)}(x) q^{(m)}(x) r^{(m-1)}(x)=0
$$

with $\quad v^{(n)}(x)=\prod_{i=1}^{n}\left(x-x_{i}\right), \quad q^{(m)}(x)=\prod_{i=1}^{m}\left(x-x_{n+i}\right)$.
Not all $w(x)$ have solutions since a scalar product with weight function $w(x) v^{(n)}(x)$ cannot in general be defined.

Some common Embedded Rules in $d=1$ are:

- Gauss-Kronrod Rules add one point between every two points of a Gauss rule R_{n} so that $R_{n} \subset R_{n+n+1}$, e.g.

- Patterson Rules add points on top of the Gauss-Kronrod rules, e.g. there exists a set of rules

$$
R_{1} \subset R_{3} \subset R_{5} \subset R_{7} \subset R_{15} \subset R_{31} \subset R_{63} \subset R_{127} \subset R_{255} .
$$

A Null Rule \mathbf{N}_{m} is associated with an integration rule \mathbf{Q}_{n} (usually $m<n$) and is engineered to give zero for all functions that are integrated exactly by \mathbf{Q}_{n}.
\mathbf{N}_{m} measures the "higher terms" of the integrand that are not exactly integrated by Q_{n} and is also used for error estimation.

With an error estimate available, adaptiveness can easily be implemented:

1. Integrate the entire region: $I_{\text {tot }} \pm E_{\text {tot }}$.
2. while $E_{\text {tot }}>\max \left(\varepsilon_{\text {rel }} I_{\text {tot }}, \varepsilon_{\text {abs }}\right)$
3. Find the region r with the largest error.
4. Bisect (or otherwise cut up) r.
5. Integrate each subregion of r separately.
6. $I_{\mathrm{tot}}=\sum I_{i}, E_{\mathrm{tot}}=\sqrt{\sum E_{i}^{2}}$.
7. end while

Examples: Quadpack's QAG, CuBA's Cuhre, Suave.

Extrapolation can be used to accelerate convergence if the functional behaviour of the error term is known.
Example: for the Newton-Cotes formulas the error can be shown to vary with the spacing h of the nodes as

$$
\mathbf{Q}_{n} f-\mathbf{I} f=c_{2} h^{2}+c_{4} h^{4}+\ldots, \quad h=\frac{1}{n} .
$$

Idea: Compute $\mathbf{Q}_{n} f$ for different h and extrapolate to $h=0$. Use Richardson's Extrapolation to eliminate k powers of h :

$$
T_{m}^{k}:=\frac{4^{k} T_{m+1}^{k-1}-T_{m}^{k-1}}{4^{k}-1}, \quad T_{m}^{0}:=\mathbf{Q}_{2^{m-1}} f . \begin{aligned}
& T_{1}^{0} \geq T_{2}^{0} \\
& T_{2}^{0} \geq T_{1}^{1} \\
& T_{3}^{0} \geq T_{2}^{\prime} \geq T_{1}^{2}
\end{aligned}
$$

These are known as Romberg Formulas.

Imagine computing the volume of the d-dim. sphere S_{d} by integrating its characteristic function $\chi=\theta\left(1-\|x\|_{2}\right)$ inside the surrounding hypercube $C_{d}=[-1,1]^{d}$.

The following table gives the ratio of the volumes:

d	2	5	10	50	100
$\frac{\mathrm{Vol} S_{d}}{\overline{\mathrm{Vol} C_{d}}}$.785	.164	.0025	1.5×10^{-28}	1.9×10^{-70}

This ratio can in a sense be thought of as the chance that a general-purpose integrator will find the sphere at all!

Easiest method: Iterate one-dimensional rules, e.g.

$$
\int_{0}^{1} \mathrm{~d}^{3} x f(\vec{x})=\sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}} \sum_{k=1}^{n_{z}} w_{i}^{(x)} w_{j}^{(y)} w_{k}^{(z)} f\left({ }^{(x)}, \quad,\right.
$$

But: the number of samples increases as $N=\prod_{i=1}^{d} n_{i} \sim n^{d}$.
Consider e.g. the Newton-Cotes rules, where the error term is $\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-2}\right)$. Convergence is thus:

$$
\mathbf{Q}_{n} f-\mathbf{I} f=\mathcal{O}\left(N^{-2 / d}\right)
$$

Even for moderate dimensions (say $d \gtrsim 5$), this convergence rate is usually too slow to be useful.

Select orthogonal basis of functions $\left\{b_{1}, \ldots, b_{m}\right\}$ (usually monomials) with which most f can (hopefully) be approximated sufficiently and impose that each b_{i} be integrated exactly by Q_{n} :

$$
\mathbf{I} b_{i} \stackrel{!}{=} \mathbf{Q}_{n} b_{i} \Leftrightarrow \sum_{k=1}^{n} w_{k} b_{i}(x)=\int_{0}^{1} \mathrm{~d}^{d} x w(\vec{x}) b_{i}(\vec{x}) .
$$

These are m Moment Equations for $n d+n$ unknowns \vec{x}, w_{i}, and a formidable, in general nonlinear, system of equations. Additional assumptions (e.g. Symmetries) are often necessary to solve this system. If a unique solution exists, Q_{n} is an Interpolatory Rule.
Example: the Genz-Malik rules used in CuBa's Cuhre.

Idea: Interpret f as a Random Variable and estimate I f by the Statistical Average over independent, identically distributed samples $\vec{x}_{i} \in[0,1]^{d}$

$$
\mathbf{I} f \approx \mathbf{M}_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}_{i}\right) \quad(w(\vec{x})=1 \text { here })
$$

The Standard Deviation is a probabilistic estimate of the integration error:

$$
\sigma\left(\mathbf{M}_{n} f\right)=\sqrt{\mathbf{M}_{n}\left(f^{2}\right)-\left(\mathbf{M}_{n} f\right)^{2}}
$$

From $\sigma\left(\mathbf{M}_{n} f\right)=\frac{\sigma(f)}{\sqrt{n}}$, convergence is $\mathbf{M}_{n} f-\mathbf{I} f=\mathcal{O}\left(n^{-1 / 2}\right)$. Not particularly fast, but independent of the dimension d !

Variance Reduction = Methods for accelerating convergence.
In Importance Sampling one introduces a weight function:

$$
\mathbf{I} f=\int_{0}^{1} \mathrm{~d}^{d} x w(\vec{x}) \frac{f(\vec{x})}{w(\vec{x})}, \quad w(\vec{x})>0, \quad \mathbf{I} w=1 .
$$

- One must be able to sample from the distribution $w(\vec{x})$,
- f / w should be "smooth," such that $\sigma_{w}(f / w)<\sigma(f)$, e.g. w and f should have the same peak structure.

The ideal choice is $w(\vec{x})=|f(\vec{x})| / \mathrm{I} f$ which has $\sigma_{w}(f / w)=0$.
Example: Vegas uses a piecewise constant weight function which is successively refined, thus coming closer to $|f(\vec{x})| / \mathrm{I} f$.

Stratified Sampling works by sampling subregions. Consider:

	n samples in total region $r_{a}+r_{b}$	$\begin{aligned} & n_{a}=n / 2 \text { samples in } r_{a}, \\ & n_{b}=n / 2 \text { samples in } r_{b} \end{aligned}$
Integral	$\mathrm{I} f \approx \mathbf{M}_{n} f$	$\mathbf{I} f \approx \frac{1}{2}\left(\mathbf{M}_{n / 2}^{a} f+\mathbf{M}_{n / 2}^{b} f\right)$
Variance	$\begin{aligned} & \frac{\sigma^{2} f}{n} \\ & =\frac{1}{2 n}\left(\sigma_{a}^{2} f+\sigma_{b}^{2} f\right)+ \\ & \quad \frac{1}{4 n}\left(\mathbf{I}_{a} f-\mathbf{I}_{b} f\right)^{2} \end{aligned}$	$\begin{aligned} & \frac{1}{4}\left(\frac{\sigma_{a}^{2} f}{n / 2}+\frac{\sigma_{b}^{2} f}{n / 2}\right) \\ & =\frac{1}{2 n}\left(\sigma_{a}^{2} f+\sigma_{b}^{2} f\right) \end{aligned}$

The optimal reduction of variance is for $n_{a} / n_{b}=\sigma_{a} f / \sigma_{b} f$. But: splitting each dimension causes $\mathbf{a} 2^{d}$ increase in regions! Example: Miser uses Recursive Stratified Sampling.

Importance Sampling and Stratified Sampling are complementary:

- Importance Sampling puts most points where the magnitude of the integrand $|f|$ is largest,
- Stratified Sampling puts most points where the variance of f is largest.

The basis for the number-theoretical formulas is the Koksma-Hlawka Inequality:
The error of every $\mathbf{Q}_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}_{i}\right)$ is bounded by

$$
\left|\mathbf{Q}_{n} f-\mathbf{I} f\right| \leqslant V(f) D^{*}\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right) .
$$

where V is the "Variation in the sense of Hardy and Krause" and D^{*} is the Discrepancy of the sequence $\vec{x}_{1}, \ldots, \vec{x}_{n}$,

$$
D^{*}\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right)=\sup _{r \in[0,1]^{d}}\left|\frac{\nu(r)}{n}-\operatorname{Vol} r\right|,
$$

where $\nu(r)$ counts the \vec{x}_{i} that fall into r. For an Equidistributed Sequence, $\nu(r)$ should be proportional to $\mathrm{Vol} r$.

Cannot do much about $V(f)$, but can sample with Low-Discrepancy Sequences a.k.a. Quasi-Random Numbers which have discrepancies significantly below the pseudo-random numbers used in ordinary Monte Carlo, e.g.

- Halton Sequences,
- Sobol Sequences,
- Faure Sequences.

These Quasi-Monte Carlo Methods typically achieve convergence rates of $\mathcal{O}\left(\log ^{d-1} n / n\right)$ which are much better than the $\mathcal{O}(1 / \sqrt{n})$ of ordinary Monte Carlo.
Example: Cuba's Vegas and Suave use Sobol sequences.

Mersenne Twister Pseudo-Random Numbers

$n=1000$

$n=2000$

Lattice Methods require a usually obtained by applying a (e.g. $x \rightarrow 3 x^{2}-2 x^{3}$). Sampling is done on an Integration Lattice L spanned by a carefully selected integer vector \vec{z} :

$$
\mathbf{Q}_{n} f=\frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i}{n} \vec{z}\right\}\right), \quad\{x\}=\text { fractional part of } x .
$$

Construction principle for \vec{z} : knock out as many low-order "Bragg reflections" as possible in the error term:

$$
\mathbf{Q}_{n} f-\mathbf{I} f=\sum_{\vec{k} \in \mathbb{Z}^{d}} \tilde{f}(\vec{k}) \mathbf{Q}_{n} \mathrm{e}^{2 \pi \mathrm{i} \overrightarrow{\mathrm{k}} \cdot \vec{x}}-\tilde{f}(\overrightarrow{0})=\sum_{\vec{k} \in L^{\perp}, \vec{k} \neq 0} \tilde{f}(\vec{k}),
$$

where $L^{\perp}=\left\{\vec{k} \in \mathbb{Z}^{d}: \vec{k} \cdot \vec{z}=0(\bmod n)\right\}$ is the Reciprocal Lattice. Method: extensive computer searches.

- Univariate Integration is pretty straightforward. are the rules of choice, often in an adaptive algorithm. There are, of course, many special routines, e.g. for oscillatory or singular integrands.
- Multivariate Integration is not at all straightforward. Most multivariate integrators use a more or less empirical hodge-podge of Quadrature Rules, Monte Carlo, quasi-Monte Carlo, and Lattice Techniques, garnished with one or more Variance Reduction Methods. There are several "good" algorithms on the market, all of which have their PROS and CONS, but there is in general no "best" algorithm.
- QUADPACK,

Standard for 10 problems. Well tested. Well documented in QuADPACK book (Springer), but book out of print, README file.

- NAG (Numerical Algorithms Group), http://www.nag.co.uk Fortran and C. Commercial, well documented and tested.
- IMSL, http://www.imsl.com (Intl. Math and Statistical Libraries, now Visual Numerics) Fortran, C, C\#, Java. Commercial, well documented and tested.
- CERNLIB, http://wwwinfo.cern.ch/asd/ Fortran. Somewhat aged, well documented.
- CUBA, http://www.feynarts.de/cuba, hep-ph/0404043 Fortran, C/C++, Mathematica. Quite new, well documented.
- A.R. Krommer, C.W. Ueberhuber Computational Integration SIAM Press, 1998.
- PJ. Davis, P. Rabinowitz

Methods of Numerical Integration, Second Edition Academic Press, 1984.

- M. Evans, T. Swartz

Approximating Integrals via Monte Carlo and
Deterministic Methods
Oxford University Press, 2000.

- W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Numerical Recipes, Second Edition Cambridge University Press, 1992.

