

Status of the European XFEL and plans for a HED instrument

International Workshop on the High Energy Density Science Endstation and Associated Instrumentation at the European XFEL Oxford, Mar 30 - Apr 1, 2009

Thomas Tschentscher

thomas.tschentscher@xfel.eu

HELMHOLTZ

European

Peak brilliance matches HED characteristics

180

2

FEL X-ray free-electron lasers

Concept

- stimulate emission of 'free' electrons
 - → free selection of photon energy
 - → synchrotron radiation as sp. source
 - → interaction of radiation field with electron bunch introduces coherence
- x-ray energies
 - → single pass schemes are needed
- various schemes
 - → SASE
 - start from shot noise
 - most reliable for hard x-rays
 - → seeded FELs

Critical electron beam parameters

- Emittance ε ($\Delta x \times \Delta x'$)
- Bandwidth & pulse duration

N-electrons micro-bunched Ecoherent ~ NE1

Pcoherent ~ N2P1

European **FEL** New scientific applications

- time resolution allowing to resolve phonon dynamics & chemical reactions
- disentangle excitation & relaxation processes

Extreme intensities

- 10¹² 10¹⁴ photons for x-ray measurement
- pump efficiently using x-rays (minimally interacting)
- non-linear processes

Coherent radiation

- new imaging methods with atomic resolution
- coherent spectroscopy for studying equilibrium dynamics

European Broad scientific case

- atomic, molecular, cluster physics: gases, jets, traps, ...
- high energy density sciences: plasmas at near-solid density
- condensed-matter physics: surfaces, phase trans., magnetism, ...
- materials science: imaging, time-resolved processes,
- **geo-sciences**: high-pressure states, ...
- **chemistry**: solids, liquids, gases, ...
- life-sciences: molecules, assemblies, cells, ...
- **quantum optics:** non-linear, high-field, multi-photon, ...

LCLS, First Experiments (2000), www-ssrl.slac.stanford.edu/lcls TESLA XFEL, Technical Design Report (2001), ---BESSY FEL, Visions of Science (2001), www.bessy.de ELETTRA, 2002, www.elettra.trieste.it/projects/fermi_public European XFEL, 2006, www.xfel.eu

XFEL HED scientific instrument scope (TDR)

- Investigation of matter at high temperature, pressure, ionisation (\rightarrow plasmas)
- X-ray generation of high energy density states of matter (WDM, HDM)
 - → Isochoric heating of matter to well-defined WDM states
 - Improve description of matter in transition from solids to plasmas
 - Usage of various laser and x-ray diagnostics
 - → HDM experiments and plasma spectroscopy
 - Generation of well-defined samples
 - Redistribution dynamics in plasma matter
 - → Interaction of intense x-ray pulse and matter on atomic time and length scales
 - study dynamics for the case of Bragg diffraction: occurrence of single photon damage
 - → Hollow ion emission
 - probe atoms in intense Coulomb fields: a new probe for local plasma conditions
- X-ray probing high energy density states of matter
 - → Magnetic field generation and probing
 - Magnetic field development following intense IR irradiation
 - → Radiation hydrodynamics: Forest-fire experiments
 - Ionisation dynamics in dense cluster jets following intense IR irradiation
 - → High pressure states of matter
 - structural dynamics following shock generation in solid matter

→ Proposal of 2 instruments for HED research: 1 for soft / 1 for hard x-rays

XFEL Dedicated European XFEL HED instrument

Scientific drivers

- Strongly-coupled plasmas
 - → EOS, WDM, excitation & probing

Plasma dynamics and spectroscopy

→ atomic states, opacity, time-dependent processes

Excited solids

→ solid-to-plasma transition, high pressure states

Instrumentation sessions

- Novel instrumentation and diagnostics
 - → lasers, laser techniques, spectroscopy, detectors

Additional ideas and related areas of application of FEL radiation should be discussed in the working groups.

XFEL Project overview European XFEL

X-ray free-electron laser user facility with a 17.5 GeV superconducting linear accelerator.

- Low emittance electron beams for SASE FEL process
- Several FEL undulators covering wide range of x-ray parameters
- Dedicated instruments for wide range of scientific applications
- Construction cost 986 M€
- First beam: 2014
- Full operation: 2015
- 14 international partners

sc technology enables delivery of up to 30000 pulses/s

- allow combination of peak & average brightness
- apply feedback mechanisms for higher stability
- operate many experiments parallel

HELMHOLTZ

XFEL Repetition rate of HED experiments

HED experiments (so far) require high peak brilliance. What about additionally using high repetition rates ?

- investigation of dilute systems and/or small effects
- utilize high rep. rate for investigation of temporal development (ns-scale)

Instruments limitations

- optical lasers
- sample delivery
- detection (systems)
- x-ray delivery

Status European XFEL & HED instrument

Source	Instruments	Photon beam line characeristics	
SASE 1	SPB, MID	FEL radiation ~12 keV; High coherence; Spont. radiation (3 rd , 5 th harm.)	
SASE 2	FDE, HED	FEL radiation 3-12 keV; High time-resolution; Spont. radiation (3rd, 5th harm.)	
SASE 3	SQS, SCS	FEL radiation 0.25 – 3 keV; High flux	
		FEL radiation 0.25 – 3 keV; High resolution	

SPB	Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules	
MID	Materials Imaging & Dynamics	
FDE	Femtosecond Diffraction Experiments	
HED	High Energy Density Matter	

SQS	Small Quantum Systems	
SCS	Soft x-ray Coherent Scattering	

13

XFEL Beam parameters SASE 2/HED

Geometry

3 instruments on 15×42 m² real estate inside experiments hall
source distance ~920 m

SASE 2 x-ray source

- 3.1 keV, bw 0.18 %, 3.4 μ rad \rightarrow ~3 mm, 1.6×10¹³ phot./pulse
- 12.4 keV, bw 0.08 %, 0.84 µrad → ~0.8 mm, 1.0×10¹² phot./pulse
- linear polarization
- odd (3rd, 5th, 7th, ...) harm. & spont. radiation available at smaller intensity
- 'full' spatial & partial temporal coherence

X-ray optical elements

- plane mirrors \rightarrow transport & distribution
- monochromator \rightarrow reduce bw to ≤0.01 %
- special optics: focussing, split&delay, etc. require definition

TDR-2006

XFEL HED instrumentation

X-ray beam conditioning

- Tunability, provision of higher harm. or spont. radiation
- Beam size 1 100 µm
- X-ray split-and-delay (2-color)
- Photon diagnostics: photon number, spatial, spectral & temporal distribution, sync.

Sample manipulation & environment

- Gasous, liquid & solid samples
- UHV conditions
- Fast exchange and sample alignment (~1 μm)

Optical lasers

- Generation of HED samples
- Probing techniques, e.g. Fourier-Domain-Interferometry

Spectrometers

- Visible & (soft) x-ray emission spectroscopy
- Space-, energy-, time-resolved methods

Detectors

- OD and 2D techniques
- X-ray streak camera

- A. Ultrashort probe laser (mJ/ fs pulses)
 - various probing techniques
 - HHG generation and gaseous plasmas
 - capable of high repetition rates 100 kHz -5 MHz

New development (F. Tavella et al.)

- OPCPA scheme using Ti:Sa oscillator → sub-10 fs; 1 mJ; 100 kHz
- high power amplifier required (kW class)
 - → fiber amplifier: coll. with Tünnermann (U Jena)
 - → Yb:YAG amplifier: coll. with Hoffmann (ILT Aachen)

FLASH PP laser

(dev. MBI Berlin)

Pump amplifier

slide/material courtesy F. Tavella (DESY)

XFEL Optical lasers

- A. Ultrashort probe laser (mJ/fs pulses)
- B. Ultrashort pump laser (1 J/10 fs pulses)
 - use 'standard/commercial' technology for (1-100) TW class systems
 - 30 50 fs pulse duration
 - 0.1 10 J pulse energy
 - 10 Hz repetition rate
 - contrast ratio ~10⁸-10¹⁰
- C. Longpulse pump laser (100 J/100 ns)
 - particular need for shock generation
 - parameters / repetition rate / impact(s) / availability ?? → R&D

Project scope

- TDR: 2× system A. and 2× system B. (with slight modifications)
- startup: 1× system A. and 1× system B.

 \rightarrow talk by J.-C. Chanteloup

XFEL Spectrometers

Implementation of existing and development of new schemes

- in general high efficiency is required (solid-angle, throughput)
- spectral resolution depends on application
- spatial and temporal resolution might be needed
- various spectral ranges (vis./UV-XUV/X)

XFEL X-ray detection schemes

21

TDR – conventional detectors

- At the time it was not considered critical to use detectors more sophisticated than x-ray diodes or CCDs (with 10 Hz rep. rate). Furthermore no detailed requirements for spatial resolution and dyn. range were given.
- One exception was the demand for a x-ray streak camera with sub-fs resolution, high efficiency and reliability for (time-resolved spectroscopy) This request led to call for proposals (2007) to develop/build such a system:
 - → working system: robust, efficient & reliable with 500 to 1000 fs resolution
 - → 0.1 4 keV; 10% overall efficiency; 10 Hz; < 100 kg</p>
 - → 1D for spectral and 1D for temporal resolution

This call was not successfully answered.

Beyond (outside present scope)

- 1D detectors \rightarrow powder diffraction, ...
- = 2D detectors \rightarrow diffraction, scattering and coherent imaging technique

 \rightarrow talk by C. Youngman

XFEL Charge to this workhop

This Workshop is the initial activity for the next step towards setting up the HED instrument at the European XFEL. Its results will be the basis for a conceptual design of instrument and beam transport.

Science

Identification of scientific drivers for instrumentation

Technical issues

- x-ray parameters & instrumentation
- optical laser parameters & instrumentation
- other instrumentation

User community issues

- establish a HED user group (list, email, future meetings, ...)
- define R&D projects, preparatory experiments, contributions

Brief report

Conceptual design :	early 2010	Installation :
Technical design :	2011/12	Start of operation :

2014

2015

XFEL Some technical issues :

X-ray instrumentation

- define various types of applications using x-rays to generate or to probe HED samples → classification possible ?
- requirements
 - → x-ray parameters
 - → required instrumentation
 - → detectors
- where is R&D required

Optical laser instrumentation

- define various types of applications using optical lasers to probe or to generate HED samples → classification possible ?
- requirements
 - → optical laser parameters
 - → used techniques
- where is R&D needed

Bring together in discussing experiments combining both techniques

Ultrashort & intense x-rays from European XFEL offer new opportunities for the investigation of High Energy Density systems and matter under extreme conditions.

•

European XFEL project enters the next phase with the definition of beam transport and scientific instruments. Interaction with user community important to develop conceptual designs.

Early European XFEL experiments scheduled for 2015. But experimental HED program using x-ray FELs starts now.

•

The European XFEL team is looking forward to working with you over the next years on defining and building this instrument.

