

Conductivity of dense plasmas

P. Renaudin

CEA, DAM, DIF Bruyères-le-Châtel 91297 Arpajon Cedex, France

Acknowledgment C. Blancard, J. Clérouin, G. Faussurier, S. Mazevet, R. M. More, V. Recoules, H. Yoneda

> High Energy Density Science using XFEL Oxford, March 30-April 1, 2009

Outline

 Theoretical point of view: Dense plasmas may have very interesting transport regimes

 Transport vs Radiation theory

- Classical vs Quantum theory
- Experimental point of view:
 - Electrically driven warm dense matter experiments
 - Ultrashort-pulse laser pump-probe experiments in the UV to IR range
- Quantum conduction phenomena and low-frequency opacity in dense plasmas
- Impact on the design of sub-ps XFEL experiments

In dense plasmas, the ions are strongly correlated and coupled with complex atomic physics

Theoretically the difficulty is there are no small parameters

In the majority of the (ρ,kT,ħω) experimentally explored, the Boltzmann equation gives the correct answer

CECI

Assume free electrons, ions and coulomb collisions

- Instantaneous collisions
- No interaction between the collisions
- Weak mean-free-path (LTE)

Dielectric function
$$\epsilon(\omega) = 1 + 4\pi n_a \alpha(\omega) + \frac{4\pi i \sigma(\omega)}{\omega}$$
 $\alpha(\omega) = \text{atomic polarization}$
DC conductivity $\sigma_{DC} = \frac{ne^2 \tau}{m}$
AC conductivity (Drude Formula) $\sigma(\omega) = \frac{n_e \tau e^2}{m} \left(\frac{1}{1 - i\omega\tau}\right)$

Collision time τ (electron-phonon in solids, electron-ion in liquids & plasmas) Many theories give similar results using different collision times (*Ziman*, *Kubo*, *Fokker Planck* etc)

Ziman formula
$$\frac{1}{\sigma_0} = -\frac{\eta}{3\pi Z^{*2} e^2 \rho_i} \int_0^\infty d\varepsilon f'(\varepsilon) \int_0^{2k} dq q^3 S(q) \Sigma_{sc}(q)$$

Opacity $K(\omega)$ and refraction index $n(\omega)$ are obtained from the dielectric functions $\varepsilon_r(\omega)$ and $\varepsilon_i(\omega)$ (*Kramers-Kronig relations*)

 $K(\omega) = \frac{4 \pi \sigma_{\rm DC}}{n(\omega) \, c \, \rho \, (1 + \omega^2 \tau^2)}$

Fluctuation-dissipation theorem coupled with QMD calculations provides a consistent approach of the structure and transport properties in dense plasmas

Using fast transient methods allowed to measure DC conductivity of hot expanded liquids

Isobaric Expansion Experiments at LLNL used a pressure cell capable to hold rare gas at 0.4 GPa

Gathers, Int Journal of Thermophys 11 (1990)

- Current, voltage, sample cross section are measured as function of time
- The EOS data are the pressure, volume, and enthalpy of the hot liquid (temperature up to 9000 K)

Transport phenomena in liquid metals were studied in exploding-wire experiments

« The Ziman theory of transport properties for liquid metals is remarkably successful when both the interference function and the electron-ion interaction are known »

Ashcroft & Lekner, Phys Rev 145, 83 (1966)

• Resistance can be measured from the time-resolved electrical parameters of the circuit

• Density can be measured

from the time-resolved measurements of the wire radii found by x-ray or optical shadowgraphs

Ben-Yosef & Rubin, Phys Rev Lett 23, 289 (1969)

DC conductivity of dense plasmas has been measured using confined exploded-wire experiments

« The capillary confines the plasma in a uniform & measurable volume for a short time, during which it is possible to make accurate measurements of the conductivity, density and input energy »

DeSilva & Kunze, Phys Rev E 49, 4448 (1994)

- Large discrepancies
 between models
- Lee-More model disagrees more than expected with the experimental data ?

Lee-More model:

Drude formula

- + Effects of magnetic field
- + Dense plasma rules for $log(\Lambda)$
- + Minimum mean-free-path

Lee & More, Phys. Fluids 27 (1984)

The agreement is much better with theoretical models that include quantum mechanical effects

International workshop on the HEDS Endstation & associated instrumentation at the European XFEL, Oxford 2009 /9

A minimum mean-free path translates into a minimum of DC conductivity

DeSilva *et al.* (■) *vs* Ziman formula in average atom model

> At low density ionization is driven by temperature

At low T

a minimum of conductivity indicates where the ionization is driven by the density

USP laser experiments approximately agree with the Drude theory and the solutions of the Maxwell equations

Ultrashort-pulse laser pump-probe experiments in the UV-IR range

Heat-pulse reflectivity "measures" AC conductivity and observe a minimal mean-free path during the metal to plasma transition Milchberg *et al.*, Phys Rev Lett 61 (1988)

Heat-pulse reflectivity showing "black glass" in the WDM regime & excellent agreement with Drude
High-Te formula for all materials at high temperature Price et al., Phys Rev Lett 75 (1995)

Low-Te Low-ρ Ellipsometry experiments of s, p reflectivity and phase-difference of s- and p-polarized waves in low temperature gold plasma are well described by a Drude model that include atomic polarizability Yoneda *et al.*, Phys Rev Lett 91 (2003)

These experiments give a sensitive measure of optical properties in the WDM regime

Kubo-Greenwood formulas with *ab initio* simulations show how the atomic-scale plasma conditions influence the conductivity and the spectra

International workshop on the HEDS Endstation & associated instrumentation at the European XFEL, Oxford 2009 /12

Dense plasmas may have very interesting transport regimes

- Radiation begins to rival electron thermal conduction
 - Low-frequency opacity & quantum conduction phenomena are difficult to take into account

What is the correct answer between the Fermi energy and a few plasmon energy?

The low-frequency part of the opacity is dominated by the free-free contribution

Radiation theory

With non-relativistic quantum corrections through the Gaunt factor G^{ff}

From Mazevet et al., A&A 405 (2003)

International workshop on the HEDS Endstation & associated instrumentation at the European XFEL, Oxford 2009 /14

X-UV opacity of degenerate solid-density plasma highlights the conflict between kinetic theory and quantum mechanics

Plasma parameters

Nearly free M-shell electrons L-edge at 73 eV Plasma frequency at 15 eV Fermi energy at 11 eV

Modified Inverse Bremsstrahlung with partially degenerate electrons

Considers fast and slow electrons with different collision frequencies. Pauli blocking reduces the number of electrons taking part in the absorption process for $h\nu < E_F$ and T- 0

Meyer-ter-Vehn *et al.*, 33th EPS Plasma Conf (2008)

A minimum mean-free-path translates into a maximum opacity for free-free transitions

Usual plasma approximations fail to reproduce the behaviour near ω_n

What happened to the opacity when the temperature is increasing?
How accurate are the experimental data in this spectral range ?

Bright sub-ps XUV radiation would allow to measure the low-frequency opacity of dense plasmas

Conclusion

- Drude model gives the correct answer for a large range of density and temperature.
- Ultrashort-pulse laser pump-probe experiments in the UV-IR range approximately agree with the Drude theory and the solutions of the Maxwell equations.
- Dense plasmas may have very interesting transport regimes.
- Any conductivity and low-frequency opacity data in the dense plasma regime would allow to better quantified 3D and quantum mechanical effects which are challenging to simulate.
- Bright sub-ps X-UV radiation (high-order harmonics and XFEL) is the unique way to perform such experiments
- Accurate design of sub-ps XFEL experiments need accurate opacities and conductivities