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Summary

• Review previous opacity measurement 
techniques
– Review EUV experiments (with plasma EUV 

laser).
• Application of EUV experiments to XFEL.
• Novel experiments?



Relevant XFEL performance

• 100 fs pulses
• 1012 photons
• 0.2 – 12.4 keV photons
• Beam size 100 μm
• Bandwidth 0.1%.
• → 1014 Wcm-2 in the unfocussed beam.
• → 1018 Wcm-2 in beam focused to 1 μm.
• → 1 mJ of energy in the beam.



Previous methods of measuring 
plasma opacity
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• Emission spectroscopy can be used:
assume plasma is in LTE
calculate opacity from emissivity 
of a thin sample – not useful for
‘warm dense plasma’ as emission
is weak.

• Shine a bright backlighter
through an x-ray heated 
plasma – line radiation in the
backlighter complicates interpretation



Emission spectra can give opacity*

* Provided the plasma is optically thin and in LTE.



X-ray laser output is narrow-band –
better for probing
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Transmission (spectrally resolved) and
(spectrally integrated) is shown for
different values ‘a’ of probed plasma 
linewidth/backlighter linewidth
assuming Gaussian line profiles.
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‘Saturation’ behaviour limits usefulness of 
probing with broad linewidths at high optical 
depth >> narrow XRL spectral width is better
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Demonstration experiment that 
could be carried over onto FELs



An experiment to use EUV 
laser output as a backlighter
to measure plasma opacity
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The opacity targets
Fe layer Hot plasma

created by laser is
transparent to EUV

Thermal wave penetrates target.
Tamp

EUV laser

EUV transmission
determined by Fe
opacity change due
to heating
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EUV laser footprint at opacity target
Region of target 
heated by a
visible laser

Transmission of EUV
through solid target 



Transmission at 89 eV through iron 
irradiated by a laser pulse
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Short pulses produce uniform 
plasmas in buried layer targets

Time 4 ps Time 100 ps

Variation of electron temperature and density in an initially 50 nm thick Fe layer 
tamped by 20 nm CH irradiated by 4 x 1017 Wcm-2, 3 ps pulse as simulated by the 
Ehybrid code at times shown.



Demonstration experiment that 
could be carried over to FELs
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Transmission of focussed moderate 
irradiance EUV laser thru Al target –
simultaneous heating and diagnosis

Footprint of x-ray laser
at focus position (no target).

Footprint of x-ray laser
transmission through 
500 nm Al target.

90 ps pulses, 59 eV photon energy

No additional optical laser heating



Transmission of 23.1 nm focussed 
EUV radiation through Al as a 

function of EUV irradiance
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Al targets have 3 layers –
complicates transmission probing

Al2O3
10 nm thick
T ≈ 0.7 each

Focussed
EUV
radiation
(59 eV)

Al 480 nm thick T ≈ 0.5

Front Al2O3 layer heats to the highest temperature



Absorption coefficient of Al2O3 as a 
function of temperature
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Absorption coefficient of polyimide 
as a function of temperature as 

heated by EUV laser

1.00E+06

1.00E+07

1.00E+08

1 10 100

Temperature/eV

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

/m
-1

106

107

108



To interprete opacity experiments, 
simulation capability is required

Submitted to 
MNRAS.



To interprete opacity experiments, 
simulation capability is required
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The York opacity code (using 
Opacity Project data) is used to 
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of Da Silva et al (PRL 69, 438, 1992)
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Probing a plasma with XFEL

• Harmonics could be used to probe plasma 
opacity at several frequencies.
– WDM experiments without separate optical 

laser heating
– Hot plasma measurements with separate 

optical heating.
• XFEL could be used to launch a Marshak

wave?  Propagation gives opacity and 
heat capacity.



FEL radiation will be highly 
penetrative

High penetration depth and moderate energy → warm dense matter
is produced by x-ray laser heating.  To produce high temperature 
matter, an optical heating (short pulse) laser will be required.



A simple  FEL transmission 
measurement gives the material 

opacity at solid density (with a good 
estimate of temperature)

Temperature of the solid material can be calculated from the transmission T
(assuming a knowledge of the material heat capacity).

T = Itrans/I0 = exp(-σρl)
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Can produce the beam with FEL 
and probe with FEL

T = Itrans/I0 = exp(-σρl)

Fundamental
heating beam

Itrans

l

Density ρ solid value
Opacity σ measured

Warm dense matter

Probe I0
(fundamental +
harmonics)

The effect of the heating variation during the pulse
is removed by sampling with a FEL probe



Estimation of XFEL direct heating

1 μm2

FEL beam
EFEL = 1 mJ

L
Attenuation length

Density ρ, atomic mass M

Number of heated particles = 1016 Lρ/(1.67M)

Heat capacity/particle ≈ 3kT   (neglecting phase changes and ionization)

T (in eV) = EFEL (in mJ) X M
3Lρ

Fe T = 2 keV (L = 1 μm)
CH T = 20 eV (L = 100 μm)

Short pulse optical laser is needed to 
heat low Z material to high temperature



Can probe plasma produced by an 
optical laser

T = Itrans/I0 = exp(-σρl)

I0Itrans
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Density ρ solid value
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Propagation velocity of an 
ionisation wave can give the 

Rosseland mean opacity
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Conclusions

• Warm dense matter opacity can be 
measured from FEL transmission.

• Hot plasma opacity will require a short 
pulse heating laser.  Targets need to be 
thin (and tamped) for uniformity.

• May be possible to launch Marshak waves 
for a measurement of the Rosseland mean 
opacity.


