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Summary

* Review previous opacity measurement
techniques

— Review EUV experiments (with plasma EUV
laser).

» Application of EUV experiments to XFEL.
* Novel experiments?



Relevant XFEL performance

100 fs pulses

1072 photons

0.2 - 12.4 keV photons

Beam size 100 um

Bandwidth 0.1%.

— 10" Wcem~in the unfocussed beam.
— 10" Wem~in beam focused to 1 um.
— 1 mJ of energy in the beam.



Previous methods of measuring
plasma opacity
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Emission spectra can give opacity”
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intensity (arbitrary units)

experiment

The time-integrated x-ray emission from a hot, dense iron plasma has been recorded. The iron L \ L R ! \ I . 1 .
plasma was created when a target with a 1000-A-thick iron layer buried beneath 1000 A of plastic 800 900 1000 1100 1200

was irradiated by a 300 fs pulse of 249 nm laser light at an intensity of approximately
107 W em™. Two models have been used to construct a synthetic x-ray spectrum. The first
employs detailed, spectroscopically accurate atomic data and the second uses a local thermodynamic
equilibrium opacity model. The detailed model shows fairly good agreement with experiment FIG. 2. Comparison between measured x-ray intensity (with background

whereas the opacity model only shows agreement in the gross features. © 1996 American Institute i‘;btlr_im_d’ and the_:.’rencil 1?ien§1;y Ca;mlatid N f,rom Elq' ! :]' «_I;me a4;s’ Ehe
. : Ne-like won transition: 1s “25 “2pys 2pay “3dsp— 15 “25 “2pyy "2pys.
sies. [ -695 50- . ! L0 i . 5
of Fhysics. [S0003-6951(96)04350-1] Line b is the Nelike iron transition: 1s 225 22pys 2p3n 3dss
—1s 225 32;?1 ) 4'2p:f_.-2.

photon energy (¢V)

* Provided the plasma is optically thin and in LTE.



X-ray laser output is narrow-band —
better for probing
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probing with broad linewidths at high optical
depth >> narrow XRL spectral width is better



Demonstration experiment that
could be carried over onto FELs

PHYSICAL REVIEW LETTERS week ending

PRL 97, 035001 (2006) 21 JULY 2006

Opacity Measurements of a Hot Iron Plasma Using an X-Ray Laser
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The temporal evolution of the opacity of an iron plasma at high temperature (30-350 V) and high
density (0.001-0.2 gcm ™) has been measured using a nickel-like silver x-ray laser at 13.9 nm. The hot
dense iron plasma was created in a thin (50 nm) iron layer buried 80 nm below the surface in a plastic
target that was heated using a separate 80 ps pulse of 6-9 J, focused to a 100 pm diameter spot. The
experimental opacities are compared with opacities evaluated from plasma conditions predicted using a
fluid and atomic physics code.



An experiment to use EUV
laser output as a backlighter
to measure plasma opacity
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The opacity targets
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EUV laser footprint at opacity target
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Transmission at 89 eV through iron
irradiated by a laser pulse
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Short pulses produce uniform
plasmas in buried layer targets
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Variation of electron temperature and density in an initially 50 nm thick Fe layer
tamped by 20 nm CH irradiated by 4 x 107 Wcm-2, 3 ps pulse as simulated by the
Ehybrid code at times shown.



Demonstration experiment that
could be carried over to FELs

Measurements of opacity and temperature of warm dense matter
heated by focused soft x-ray laser irradiation
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In press:

High Energy

DenSity Abstract

PhySiCS The transmission of plasma-based soft x-ray lasers through thin targets can be used to

measure the target opacity. Measurements of warm dense matter transmission
obtained using a focused 59 eV photon energy laser irradiation on thin targets of
polyimide (Cz2H10N20s5) and aluminum are shown to produce simultaneous heating
and probing enabling opacity and temperature measurements of warm dense matter.
It is shown that the opacity of the warm dense matter considered in the experiments
follows closely tabulated cold ‘room temperature’ opacities at temperatures below ~
10 €V. Transmission measurements of thin iron targets which are highly opaque to
the x-ray laser radiation are also presented.

Keywords: plasma, opacity, x-ray laser
PACS: 52.25.0s, 52.70.Kz,78.20.-e
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Transmission of focussed moderate
irradiance EUV laser thru Al target —
simultaneous heating and diagnosis
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at focus position (no target). transmission through
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No additional optical laser heating



Transmission of 23.1 nm focussed
EUV radiation through Al as a
function of EUV irradiance
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Al targets have 3 layers —
complicates transmission probing

Al 480 nm thick T = 0.5

/

8 —

Focussed
EUV
radiation
ALO, (59 eV)
10 nm thick
T ~0.7 each

Front Al,O, layer heats to the highest temperature



Absorption coefficient of Al,O4 as a
function of temperature
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Absorption coefficient of polyimide
as a function of temperature as
heated by EUV laser
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To interprete opacity experiments,
simulation capability is required

Iron Opacity Predictions under Solar Interior Conditions:

*D. S. Whittaker and G. J. Tallents

Submitted to

MNRAS. University of York, Heslington, York, YO10 5SDD, UK

ABSTRACT

Iron opacity predictions over an extended spectral range are obtained with a model
using Opacity Project atomic data for conditions within the solar convective zone.
These predictions are compared with the published results of a laboratory experiment
using a laser-plasma backlighter. The effect of differing line broadening treatments on
monochromatic and the Rosseland mean opacity is also investigated.

Key words: atomic processes — radiative transfer — stars: interiors.



To interprete opacity experiments,
simulation capabillity is requwed
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Probing a plasma with XFEL

 Harmonics could be used to probe plasma
opacity at several frequencies.

— WDM experiments without separate optical
laser heating

— Hot plasma measurements with separate
optical heating.
 XFEL could be used to launch a Marshak
wave? Propagation gives opacity and
heat capacity.



FEL radiation will be highly
penetrative

Fe Density=7.874, Angle=80.deg
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High penetration depth and moderate energy — warm dense matter
is produced by x-ray laser heating. To produce high temperature
matter, an optical heating (short pulse) laser will be required.



A simple FEL transmission
measurement gives the material
opacity at solid density (with a good
estimate of temperature)

Warm dense matter
Itrans IO

¢ e ©

Density p solid value
Opacity o measured

T =l nlo = €Xp(-opl)

Temperature of the solid material can be calculated from the transmission T
(assuming a knowledge of the material heat capacity).



Can produce the beam with FEL
and probe with FEL

The effect of the heating variation during the pulse
is removed by sampling with a FEL probe
o Probe |,

(fundamental +
harmonics)
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Warm dense matter  heating beam

trans
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T= l,= exp(-opl)

trans



Estimation of XFEL direct heating

Density p, atomic mass M

Attenuation length

Number of heated particles = 1076 Lp/(1.67M)

Heat capacity/particle ~ 3kT (neglecting phase changes and ionization)

S T(ineV)= E (inmd) XM
3Lp
Fe T=2keV (L=1um) | Short pulse optical laser is needed to

CHT=20eV (L=100 um) heat low Z material to high temperature




Can probe plasma produced by an
optical laser

Optical laser
0.1-1ps

Itrans
S
Opaque |

Material
(thin) Density p solid value

Opacity o measured

Tamp (transparent)

T= Itrans/IO = eXp(-apI)



Propagation velocity of an
lonisation wave can give the
Rosseland mean opacity
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Conclusions

 Warm dense matter opacity can be
measured from FEL transmission.

* Hot plasma opacity will require a short
pulse heating laser. Targets need to be
thin (and tamped) for uniformity.

 May be possible to launch Marshak waves
for a measurement of the Rosseland mean
opacity.



