
Peter Uwer

Computer Algebra and Particle Physics Zeuthen, 02.04.09

Efficient Computing in Particle
Physics

2

What do we mean by efficiency ?

Getting the result as fast as possible !

3

 Different kinds of efficiency

● Different algorithms may be more or less efficient

● Different implementations of the same algorithm may
be more or less efficient

● Different tools may be more or less efficient for specific
tasks

4

 Example: Algorithms for sorting

Bubble sort: 1. Step through the list, compare neighboring elements,

2. Swap them if they are in the wrong order,

3. Repeat until no swapping occurs

First Pass:
(5 1 4 2 8)  (1 5 4 2 8), Swap since 5 > 1
(1 5 4 2 8)  (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8)  (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8)  (1 4 2 5 8),

Second Pass:
(1 4 2 5 8)  (1 4 2 5 8)
(1 4 2 5 8)  (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)

Third Pass:
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)

What is needed by the
 sorting algorithm ?

 Compare items (is_greater(a,b))
 Swap items

Algorithm

5

 Example: Algorithms for sorting

Quick sort:

1. Pick an element x from the
list.

2. Reorder the list so that all
elements which are less
than x come before x and
all elements greater than x
come after it

3. Recursively sort the sub-
list of lesser elements and
the sub-list of greater
elements.

6

 Example: Algorithms for sorting

Many other algorithms available:

What is the difference ?

Their efficiency !

● Insertion sort
● Shell sort
● Merge sort
● Heap sort
● Bucket sort
● Radix sort
● Distribution sort
● Shuffle sort
● … [see for example D. Knuth’s book for details]

7

 Example: Algorithms for sorting

Bubble sort: 1. Step through the list, compare neighboring elements,

2. Swap them if they are in the wrong order,

3. Repeat until no swapping occurs

First Pass:
(5 1 4 2 8)  (1 5 4 2 8), Swap since 5 > 1
(1 5 4 2 8)  (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8)  (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8)  (1 4 2 5 8),

Second Pass:
(1 4 2 5 8)  (1 4 2 5 8)
(1 4 2 5 8)  (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)

Third Pass:
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)

If list has n objects we need n passes with every pass
having n comparisons,

 n2 operations to sort a list of n elements

 “complexity is of order n2”

8

 Big O notation

Asymptotic behaviour for large integer n

How to read?

Example: Harmonic sums for large n

9

 Computational cost

10

 Complexity of different sorting algorithms

11

 The complexity of the n-gluon amplitude
[Fabio Maltoni]

color-ordered

“Number of diagrams”

12

 Importance of Big O

For many application n is still rather small

Note:

 Asymptotic behaviour may be irrelevant

For small n an algorithm which is formal more complex
may still be faster

Implementation may switch between different algorithms

 implementation, computing architecture

In many cases we are already happy if we have ONE algorithm

13

 Example: One-loop tensor reduction

qi external momenta

Lorentz
structures

Scalar integrals [Davydychev]

The algorithm

14

 Tensor reduction using integration-by-parts

[Chetyrkin, Kataev, Tkachov]

[Duplancic, Nizic 03, Giele, Glover 04]

d/2
2 3 4 5

5

5-point

IR UV

15

 Tensor reduction using integration-by-parts

Integrals with raised powers of propagators are reduced
recursively to integrals with lower powers:

IntType Int(int d,int n1,int n2,int n3,int n4,int n5,
 int n6,...){

 .
 .
 .
 return(+ b[1] * Int(d,n1-1,n2,n3,n4,n5,n6,...)
 + b[2] * Int(d,n1,n2-1,n3,n4,n5,n6,...)
 + b[3] * Int(d,n1,n2,n3-1,n4,n5,n6,...)
 + b[4] * Int(d,n1,n2,n3,n4-1,n5,n6,...)
 + b[5] * Int(d,n1,n2,n3,n4,n5-1,n6,...)
 + b[6] * Int(d,n1,n2,n3,n4,n5,n6-1,...)
);
}

Easy to implement, but some integrals are
 evaluated several times  poor performance

The implementation

16

 Tensor reduction using integration-by-parts

Need to store integrals already known in a data base

 use cache

For complicated topologies large improvement in performance,
when cache is used

 difference in runtime by large factor (~1000)

Note:

● For testing the basic implementation, cache is not
required

● Impressive speed up only due to poor behaviour of
initial version

[numerical implementation used in tt+1-Jet production @ NLO]

17

 Efficiency of tools

Intrinsic limitations:

● Performance of CAS like Maple and Mathematica often
degrades when large expressions are encountered

● Form delivers performance even when operating on large
expressions

On the other hand:

● If for example factorization is important to keep your
 expressions small, Maple or Mathematica are
probably better adopted to your problem

 No general rule, the decisions depend on the
problems and the algorithms

18

 Choosing the right tools

● Know about strength and weakness of tools

● If possible extend capabilities to your own needs

̶Extension of Maple/Mathematica by C/C++/Fortran code

̶Extension of Form via pipe mechanism

● Be flexible in switching between tools

̶Store result, use different tool, continue with original tool

● Do not blindly believe the common blurb

[see Kouhei Hasegawa’s talk]

19

 Comments on tuning

● First consider of buying a faster computer

● Get things work first, then consider tuning it

● Don’t expect too much from tuning the implementation

● Improving the algorithm is usually much more important

̶ Improve on the complexity

̶ Use algorithm more adopted to your tools

● Use tools more adopted to your algorithms

Note:

● If computing effort is distributed “equally” over several
steps  difficult to tune

● First identify the “hot-spots”  profiling

20

 What this lecture won’t tell you

● How to develop efficient algorithms for your
problem

● A full proofed method to tune the
implementations of your algorithms

● What tools you should use

21

 What I will try to tell you

● Some ideas to organize your work in an efficient way

● Some guidance in finding the right tools

● Encourage you to learn new techniques

● A short introduction into C++

In many cases you may not save time in the beginning, but:

● What do you like more? Do the same thing over an over
again, or spent the time on learning something new to do
it automatically and saving time in the future?

● Knowledge always pays off sooner or later…

…let’s consider a real life problem…

22

 A generic project…

● Genious idea

● Some calculations on paper

● Computer Algebra

● Numerical part

● Publication

 Different steps may involve different tools
 Some steps may relay on others
 Need to redo certain things if we discover mistakes
 Don’t redo things which were not affected

nothing to tell about this

23

 Organization of a project

make

Abstract formulation:

Rules and dependencies

Rules tell us how to create results from other results

Dependencies tell us which result depends on which input

Standard tool to treat this type of problem:

[see also Thomas Hahn’s lecture]

24

 Example

The rules specify how the
dependencies are updated

#dependencies:
paper.ps: paper.tex plot.eps

plot.eps: data.dat plotit.kumac

data.dat: a.out

a.out: numerics.c fun.c

fun.c: doit.mpl result

result: paper.tex

general part

formulae
from paper,
manipulated
by maple

“The genious idea”

25

paper.ps: paper.tex plot.eps
 latex paper.tex; latex paper.tex; dvips paper.dvi -o paper.ps

plot.eps: data.dat plotit.kumac
 pawX11 -b plotit.kumac

data.dat: a.out
 rm -f data.dat; ./a.out > data.dat

a.out: numerics.c fun.c
 gcc -lm numerics.c

fun.c: doit.mpl result
 rm -f fun.c; maple < doit.mpl

result: paper.tex
 ExtractCode.csh paper.tex

clean:
 rm -f result fun.c a.out paper.aux paper.log paper.dvi paw.metafile

distclean: clean
 rm -f data.dat plot.eps paper.ps

 Rules to update the dependencies

Extract formulae form tex-file

do some mathematics produce
part of the numeric program

26

 How to write your LaTeX formula

\begin{equation}
 %%STARTCODE
 \res = \binomial(n,k) * {(x+2)*(x+3) \over (x+5)^3}
 %;
 %%ENDCODE
 ,
\end{equation}

tag to extract formula

 can be converted with a few editor commands to maple/math.

sed = stream editor, see example for details

Macro taken from Jos:

\def\binomial(#1,#2){ \left(\!\!\begin{array}{c} #1 \\ #2 \end{array}\!\! \right) }

Use sed to do this automatic

27

 How to extract and move information

Use shell-tools like

cat, sed, ed, awk, cut, paste,…

to extract and modify information

For more complicated situations use

Regular Expressions

Regular Expressions are similar to pattern matching with
wildcards in Form

Example: Translate a(1),a(2),a(3) into b[1], b[2], b[3]

Regular Expressions can save you a lot of time
during development or in porting information

28

#!/bin/csh

rm -f result
sed -n '/%%STARTCODE/,/%%ENDCODE/ p' paper.tex | \
sed -f sed.cmd > result

 Extract formulae from LaTeX

\begin{equation}
 %%STARTCODE
 \res = \binomial(n,k) * {(x+2)*(x+3) \over (x+5)^3}
 %;
 %%ENDCODE
 ,
\end{equation}
\begin{equation}
 %%STARTCODE
 b = \cos(x)
 %;
 %%ENDCODE
 ,
\end{equation}
\begin{equation}
 %%STARTCODE
 w = b \times \res
 %;
 %%ENDCODE
 .
\end{equation}
Using
\begin{equation}
 %%STARTCODE
 n = 5
 %;
 %%ENDCODE
 ,
\end{equation}
\begin{equation}
 %%STARTCODE
 k = 2
 %;
 %%ENDCODE
 .
\end{equation}

res := binomial(n,k) * ((x+2)*(x+3))/((x+5)^3)
 ;

 b := cos(x)
 ;

 w := b * res
 ;

 n := 5
 ;

 k := 2
 ;File: paper.tex

File: result

File: ExtractCode.csh

+

easy to implement
automatic checking

29

How it was done in the last millenium…

To assure the correctness of the published formulae we typed them in again…

no fun and clearly not very efficient

30

 Produce C code from expressions using Maple

read "./result";

with(CodeGeneration);

C(w,declare=[x::numeric],resultname="res",output="fun.c");

File: doit.mpl

res = 0.10e2 * cos(x) * (x + 0.2e1) * (x + 0.3e1) * pow(x + 0.5e1, -0.3e1);
 File: fun.c

Maple

 Similar features in Mathematica

Useful option: optimize

31

 Remark

Using the command line interface to maple/mathematica
is important here!

[see also Thomas Hahn’s lecture]

Everything can be run from a shell / batch queue !

Additional remark on worksheets:

● Not unusual that after an update worksheet becomes
unreadable

● Porting a text file (ascii) from one CAS to another easier
than porting a worksheet

32

 Example
paper.ps: paper.tex plot.eps
 latex paper.tex; latex paper.tex; dvips paper.dvi -o paper.ps

plot.eps: data.dat plotit.kumac
 pawX11 -b plotit.kumac

data.dat: a.out
 rm -f data.dat; ./a.out > data.dat

a.out: numerics.c fun.c
 gcc -lm numerics.c

fun.c: doit.mpl result
 rm -f fun.c; maple < doit.mpl

result: paper.tex
 ExtractCode.csh paper.tex

clean:
 rm -f result fun.c a.out paper.aux paper.log paper.dvi paw.metafile

distclean: clean
 rm -f data.dat plot.eps paper.ps

make updates the entire project automatically

/afs/ifh.de/user/p/puwer/public/capp/exercises/make

33

 Automate testing

A long the same lines automate the testing

Possible checks:
● Evaluate numerically
● Check known cases
● Check symmetries
● …

Automating these checks saves you a lot of time

 debugging during development
 comparison with your colleagues
 assure correctness after modifications

Extreme case: First write the checks and than solve the problems

Nice side effect: Helps you in splitting/organizing your
project in individual modules

be efficient in
finding bugs

34

 Basic layout of a computer

CPU

Cache

~100 MB/s

~GB/s Storage speed:

cache > memory > hard disk

 Amount and layout of data has
important impact on speed

~100 : ~10 : ~1

~GFLOPS

The more memory you need the more you are limited by the bandwidth

35

 Memory is accessed via cache

If your application conflicts with the way the cache works, this
may have dramatic impact on performance:

Matrix multiplication of n x n matrix  O(n3)

n

71s   ~26s

for n = 160:

36

 Some details about the cache

Cache is organized in cachelines with 64byte each

For specific address region only a limited number of
these lines are available

If you need more than the available number the cache
will stop working  severe performance problem

 align data to specific addresses,
 keep data which is used together close to each other in memory
 avoid data sizes conflicting with the cache mechanism

37

 Important consequence

Obtain best performance if expressions stay in memory

If hard disk is used, speed of your application is
limited by bandwidth of hard disk, don’t use network

file system in such cases

 Try to keep your expressions (=data) small

No general rule how to do this, try to reduce expressions to
a basis with a minimal number of individual structures

…your home directory is usually located on a network file system (nfs,afs)…

Example: partial fractioning

38

 Data storage: How

Arrays, Vectors:

Some examples:

Access: O(1)
Insertion: O(n)

Lists:
Access: O(n)
Insertion: O(1)

Trees:
+

*

3 4

/

2 4

3*4+2/4

39

 Adopt the way you store
you data to the problem

40

 Data storage: Where
static

at fixed distance with respect to the code,
available during the entire runtime

automatic

on the stack, disappear when stack is cleaned up,
i.e. after return from function

heap

Important for:

● Performance
● To understand error messages (stack overflow, segmentation fault)

● Parallelization using threads (“reentrant”)

Allocated dynamically during runtime, needs to be freed

Note: Essentially no control over storage in computer algebra

41

Computing in Particle Physics

Analytic/Algebraic
Methods Numerical Methods

42

 Numerics: Why ?

In the end we are interested in a number to compare with nature

 there is always some numerics

Some algorithms are more useful when applied numerically

Often we don’t care about the intermediate (analytic) results

[see Malgorzata Worek’s lecture, Costa Papadopoulos lecture]

43

 Numerics

What language shall we use ?

Supervisor: Fortran77, I did this 20 years ago and it was
fine

The IT Expert: C++, only object-oriented programming
makes sense

The performance expert: Use a compiled language
otherwise it will be too slow

44

 Some recommendations

● Use the language you know best

● Learning a new language in particular object oriented
ones, is a huge investment

● Start with small projects

● Don’t translate old code into a new language

 see Thomas Hahn’s lecture how to interface different languages

45

 A short introduction into C++

Why C++?

● Very powerful language

● Many existing libraries

● Considered as language allowing efficient code reuse

● Can do both in C++: analytic as well as numerical
calculations

● Well suited to deal with increasing complexity in
computational physics

● Conceptually very different from non-object oriented
languages

46

 Object oriented programming — basic ideas

● Introduces new data types
● Put data and methods (≈functions) together ( “class”)
● Hide the storage of the data and the implementation of

the methods from the user

Example:

class TwoDimVec {
 public:
 double norm2();
 private:
 double x,y;
}

 No direct access to x,y!

Usage:
TwoDimVec a;
a.norm2();

47

 Object oriented programming — basic ideas

class TwoDimVec {
 public:
 double norm2();
 private:
 double x,y;
}

If we change later

class TwoDimVec {
 public:
 double norm2();
 private:
 double x[2];
}

the user would use the code as before

The class can ensure:

● that objects are correctly initialized
● that data always remains consistent
● that data which belongs together is stored together
● that objects are cleaned up when no longer used
● many more sophisticated things…

double norm2(){return(x*x+y*y);}; double norm2(){return(x[0]*x[0]
 +x[1]*x[1]);};

48

 Object oriented programming — basic ideas

Function overloading — use the same name for functions
with different arguments

How does it work?

“name mangling”

The compiler appends the type of the
arguments to the function name

 annoying when interfacing with C and Fortran code

to switch off use: extern “C” { … }

int max(int a, int b);
float max(float a, float b);
double max(double a, double b);

compiler figures out which function to use,
programs become more readable

49

 Object oriented programming — basic ideas

Operator overloading — define basic operators for new class:

TwoDimVec a,b,c;
c = a + b; (not possible in Java)

Useful applications:

● Code becomes more readable
- Examples: Complex numbers, 4-vectors, histograms

● Can be used for algebraic manipulations ( Ginac)

Note that internally the advanced concepts are still realized
by function calls

Ignoring what happens internally may lead to severe
performance problems

50

 Looking under the hood

How is

tmp = a + b + c + d + f

translated by the compiler?

Assume a,b,c,… some sort of vector with + overloaded in
the canonical way

tmp1 = add(a,b);
tmp2 = add(tmp1,c)
tmp3 = add(tmp2,d)
…

Might be translated as: Instead of:

for(i=0,…){
 tmp[i] = a[i] + b[i] + …
}

Be careful when using C++ for time critical applications !
Very difficult without detailed knowledge about C++

51

 Object oriented programming — Advanced concepts

● Generic programming with templates

Example: Sorting of objects relies only on a
comparison function (“is_greater(a,b)”)

 can be formulated for arbitrary data types,
provide code as template, compiler generates the specialization

Many useful examples in the Standard Template Library (STL)

using QD for example
Function templates allow easily to switch to higher accuracy

Useful application:

[see also D. Bailey’s lecture]

 have a look before developing something from scratch

Generic formulation of algorithms

52

Object oriented programming - Advanced concepts ++

● Expressions templates and template meta programming

Basic idea: Let the compiler do the work for you,
avoid draw back of some nice C++ features,

i.e. overhead in operator overloading

 very sophisticated technology, highly non-trivial

template<int N>
class Factorial {
public:
 static const double value = N * Factorial<N-1>::value;
};
template<>
class Factorial<0>{
public:
 static const double value = 1.;
};

Usage: Factorial<69>::value;

The value is substituted at compile time,
no time needed during execution!

Yes, we could
have tabulated

it…

53

Object oriented programming — Advanced concepts

● Composition  built new classes from old ones

● Inheritance  extend existing classes by new methods

● Polymorphism  make old code calling new code

Compose new classes from old ones via
easy

difficult

54

 Recommendation

● Start with C using the C++ compiler

● Start with the easy concepts

● A good object oriented design needs a lot of time

55

 Conclusion

Being efficient is very difficult !
Depends on

● Algorithms
● Implementation
● Tools / Hardware
● Organizing the work in an efficient way

 No general rule, try out various methods to see
what works best for you

I hope, I gave you some ideas how to address the problem

The more you know what is available on the market
the more likely you may find the right tools

56

 Exercises:

1) Go to the directory make

● Run the project, understand how it works
● Extend it by “checks”

3) Define a function template in C++

● Evaluate the function in single and double precision
● Evaluate the function in double double using QD

2) Go to to the directory sed-awk

● Add the data in data.dat using awk
● Create C assignments a_i = # from data.dat using awk
● Translate the result a_i =…  a[i] =… using sed

4) Calculate Fibonacci numbers using template techniques

see /afs/ifh.de/user/p/puwer/public/capp/exercises

