
An Introduction to FORM

J.A.M. Vermaseren

Nikhef

1 Introduction

This course is intended for people who know already about computers and have experience working
with a program editor. People can use their favourite editor like emacs, vim etc. There are example
files which the students can run and modify, if they desire so.

Form is a program that is run in batch mode. This means that one prepares a program in the
language of FORM and then lets FORM execute it. During the execution or after one can study
the results. Assume for instance that we have a program in the file ex1.frm (the extension .frm is
mandatory), we can run it with

form ex1

The system then locates the executable of FORM (prefarably /usr/local/bin/form) and starts it
up. Next FORM looks for the file ex1.frm in the current directory and executes it. The output
would be on the screen. Slightly more sophisticated is

form -l ex1

which would create the output file ex1.log. Output will be to the screen and to the file simultane-
ously. Certain output (designated as such in the program file) would be only to the log file. This
has the advantage that one can monitor the progress of the program on the screen while at the
same time catch (lengthy) outputs in a file.

2 The first examples

The first example is the file ex1.frm. It contains:

Symbols a,b,c;

Local F = (a+b+c)^10;

Print;

.end

Running this file with the command form -l ex1 will give us its output on the screen and in the
file ex1.log. The file should contain

FORM by J.Vermaseren,version 3.3(Mar 23 2009) Run at: Thu Mar 26 15:29:31 2009

Symbols a,b,c;

Local F = (a+b+c)^10;

Print;

1

.end

Time = 0.00 sec Generated terms = 66

F Terms in output = 66

Bytes used = 1160

F =

c^10 + 10*b*c^9 + 45*b^2*c^8 + 120*b^3*c^7 + 210*b^4*c^6 + 252*b^5*c^5

+ 210*b^6*c^4 + 120*b^7*c^3 + 45*b^8*c^2 + 10*b^9*c + b^10 + 10*a*c^9

+ 90*a*b*c^8 + 360*a*b^2*c^7 + 840*a*b^3*c^6 + 1260*a*b^4*c^5 + 1260*a*

b^5*c^4 + 840*a*b^6*c^3 + 360*a*b^7*c^2 + 90*a*b^8*c + 10*a*b^9 + 45*a^2

*c^8 + 360*a^2*b*c^7 + 1260*a^2*b^2*c^6 + 2520*a^2*b^3*c^5 + 3150*a^2*

b^4*c^4 + 2520*a^2*b^5*c^3 + 1260*a^2*b^6*c^2 + 360*a^2*b^7*c + 45*a^2*

b^8 + 120*a^3*c^7 + 840*a^3*b*c^6 + 2520*a^3*b^2*c^5 + 4200*a^3*b^3*c^4

+ 4200*a^3*b^4*c^3 + 2520*a^3*b^5*c^2 + 840*a^3*b^6*c + 120*a^3*b^7 +

210*a^4*c^6 + 1260*a^4*b*c^5 + 3150*a^4*b^2*c^4 + 4200*a^4*b^3*c^3 +

3150*a^4*b^4*c^2 + 1260*a^4*b^5*c + 210*a^4*b^6 + 252*a^5*c^5 + 1260*a^5

*b*c^4 + 2520*a^5*b^2*c^3 + 2520*a^5*b^3*c^2 + 1260*a^5*b^4*c + 252*a^5*

b^5 + 210*a^6*c^4 + 840*a^6*b*c^3 + 1260*a^6*b^2*c^2 + 840*a^6*b^3*c +

210*a^6*b^4 + 120*a^7*c^3 + 360*a^7*b*c^2 + 360*a^7*b^2*c + 120*a^7*b^3

+ 45*a^8*c^2 + 90*a^8*b*c + 45*a^8*b^2 + 10*a^9*c + 10*a^9*b + a^10;

0.00 sec out of 0.00 sec

We see first a line that tells when the program ran and what version of FORM was used. Then
the program is listed and after that the reaction of FORM to this program. It gives first some
running statistics, indicating amoung others the CPU time since the startup of FORM, the number
of terms in the output and the number of bytes that the output occupies. It should be noted that
both the running time and the number of bytes used are very low in FORM as compared to other
programs. It can be more than an order of magnitude better. Finally FORM shows the total
amount of CPU time used and the real time elapsed since the startup of the program.

Let us now have a look at how FORM obtains its results. For this we run the file ex1a.frm.

Symbols a,b;

Local F = (2*a+b-a)^2;

Print "=== %t";

Print;

.sort

Print "--- %t";

.end

and the output is

FORM by J.Vermaseren,version 3.3(Mar 23 2009) Run at: Thu Mar 26 15:29:26 2009

Symbols a,b;

Local F = (2*a+b-a)^2;

Print "=== %t";

Print;

.sort

=== + 4*a^2

=== + 4*a*b

=== - 4*a^2

2

=== + b^2

=== - 2*a*b

=== + a^2

Time = 0.00 sec Generated terms = 6

F Terms in output = 3

Bytes used = 54

F =

b^2 + 2*a*b + a^2;

Print "--- %t";

.end

--- + b^2

--- + 2*a*b

--- + a^2

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 54

0.00 sec out of 0.00 sec

We see that in the beginning only the input till the .sort instruction is being listed. This is because
FORM programs consist of modules that are separated by instructions that start with a period.
Each module is translated and immediately after it is executed. After the execution of a module is
completed, FORM will forget it (and its input) and use its output as input for the next module.

The print statement with the double quotation marks is a statement that is executed each
time FORM passes that statement during execution. What happens is that FORM encounters
the definition of F and then starts working out the rhs. For each term that it generates it applies
the remaining statements of the module and then it stores the term away. Hence we see that it
generates first 4*a^2. After writing this away, it generates 4*a*b etc. In the end 6 terms are
written away and then FORM sorts them bringing the expression to ‘normal form’. This may
involve adding coefficients and if necessary cancelling terms. The final expression is then written
away and printed (if asked for) and the module is finished. FORM will clear the module from its
buffers and then read the next module. The output of the first module will become the input for
the second. We can see this in the printing as now the order of the terms is quite different from
the order in the first module.

What happens with the terms that are written away one by one and how they are sorted can
be seen better in the third example ex1b.frm

#:SmallSize 1000

#:LargePatches 4

Symbols a,b,c,d;

Local F1 = (a+b+c)^10;

Local F2 = (a+b+c+d)^10;

.end

This program gives the output

FORM by J.Vermaseren,version 3.3(Mar 23 2009) Run at: Thu Mar 26 15:29:26 2009

3

#:SmallSize 1000

#:LargePatches 4

Symbols a,b,c,d;

Local F1 = (a+b+c)^10;

Local F2 = (a+b+c+d)^10;

.end

Time = 0.00 sec Generated terms = 44

F1 1 Terms left = 44

Bytes used = 788

Time = 0.00 sec Generated terms = 66

F1 1 Terms left = 66

Bytes used = 1162

Time = 0.00 sec Generated terms = 66

F1 Terms in output = 66

Bytes used = 1160

Time = 0.00 sec Generated terms = 43

F2 1 Terms left = 43

Bytes used = 854

Time = 0.00 sec Generated terms = 82

F2 1 Terms left = 82

Bytes used = 1634

Time = 0.00 sec Generated terms = 121

F2 1 Terms left = 121

Bytes used = 2394

Time = 0.00 sec Generated terms = 159

F2 1 Terms left = 159

Bytes used = 3142

Time = 0.00 sec Generated terms = 197

F2 1 Terms left = 197

Bytes used = 3882

Time = 0.00 sec

F2 Terms active = 197

Bytes used = 3856

Time = 0.00 sec Generated terms = 239

F2 1 Terms left = 239

Bytes used = 4632

Time = 0.00 sec Generated terms = 283

F2 1 Terms left = 283

Bytes used = 5402

Time = 0.00 sec Generated terms = 286

F2 1 Terms left = 286

Bytes used = 5456

4

Time = 0.00 sec

F2 Terms active = 286

Bytes used = 5480

Time = 0.00 sec Generated terms = 286

F2 Terms in output = 286

Bytes used = 5416

0.00 sec out of 0.00 sec

In this program we encounter first some global settings that hold for the whole FORM run.
They start with #: and must be at the beginning of the program. They control how much space
FORM reserves for some buffers. In this case we make these buffers artificially small so that we
see what happens when such a buffer becomes full.

First we look at the first three statistic blocks. They all contain the name F1 in the second
line, indicating that they refer to the treatment of the first expression. When terms are written
away they are written to a buffer which is called the small buffer. With the #: SmallSize 1000

instruction we forced this buffer to be 1000 bytes. Hence after 43 terms have been written in there
it is full. The 44-th term doesn’t fit. So when the 44-th term arrives the contents of the small
buffer are sorted, compressed and written to another buffer which is called the large buffer. Now
the 44-th term can be written into the small buffer. Each time the small buffer has been sorted
statistics are printed. After 66 terms there are no more terms to be generated. Then the final sorts
take place. First the contents of the small buffer are sorted and placed in the large buffer and then
the two sorted ‘patches’ in the large buffer are merged and written to output. This last merge
produces the final statistics for this expression.

With expression F2 we run into a limit for the large buffer. Of this the size can be controled,
but also the maximum number of patches in it. We have set this to 4. Hence after the small buffer
has been sorted for the fifth time we cannot write its sorted results to the large buffer. Therefore
the large buffer is now sorted and the result is written to file. This file is called the sort file. This
gives the special statistics with ‘Terms active’. Now there is room again in the large buffer. In the
end the remains in the small buffer are sorted. Then the remains in the large buffer are sorted and
written to file and finally the patches in the file are merged, using the combined small and large
buffers as a cache system, and the results are written to the output.

The above example was rather artificial as we set some buffer values to unrealistically small
amounts. We could have used some brute force and test at the same moment the speed of FORM:

Symbols a,b,c,d,e,f,g;

Local F = (a+b+c+d+e+f+g)^32;

.end

This file results in ex1c.log

FORM by J.Vermaseren,version 3.3(Mar 23 2009) Run at: Sat Mar 28 20:11:15 2009

Symbols a,b,c,d,e,f,g;

L F = (a+b+c+d+e+f+g)^32;

.end

Time = 0.71 sec Generated terms = 100000

F 1 Terms left = 100000

Bytes used = 3328872

5

Time = 1.57 sec Generated terms = 200000

F 1 Terms left = 200000

Bytes used = 6783982

Time = 2.49 sec Generated terms = 300000

F 1 Terms left = 300000

Bytes used = 10236598

Time = 3.44 sec Generated terms = 400000

F 1 Terms left = 400000

Bytes used = 13766904

Time = 4.43 sec Generated terms = 500000

F 1 Terms left = 500000

Bytes used = 17281720

Time = 5.49 sec Generated terms = 600000

F 1 Terms left = 600000

Bytes used = 20768048

Time = 6.57 sec Generated terms = 700000

F 1 Terms left = 700000

Bytes used = 24366208

Time = 7.60 sec Generated terms = 800000

F 1 Terms left = 800000

Bytes used = 27865620

Time = 8.70 sec Generated terms = 900000

F 1 Terms left = 900000

Bytes used = 31320952

Time = 9.78 sec Generated terms = 1000000

F 1 Terms left = 1000000

Bytes used = 34885940

Time = 10.92 sec Generated terms = 1100000

F 1 Terms left = 1100000

Bytes used = 38297250

Time = 11.96 sec Generated terms = 1200000

F 1 Terms left = 1200000

Bytes used = 41837466

Time = 13.12 sec Generated terms = 1300000

F 1 Terms left = 1300000

Bytes used = 45309350

6

Time = 14.14 sec Generated terms = 1400000

F 1 Terms left = 1400000

Bytes used = 48679204

Time = 15.30 sec Generated terms = 1500000

F 1 Terms left = 1500000

Bytes used = 52213990

Time = 15.85 sec

F Terms active = 1500000

Bytes used = 52213714

Time = 16.97 sec Generated terms = 1600000

F 1 Terms left = 1600000

Bytes used = 55556044

Time = 18.03 sec Generated terms = 1700000

F 1 Terms left = 1700000

Bytes used = 58949128

Time = 19.17 sec Generated terms = 1800000

F 1 Terms left = 1800000

Bytes used = 62423186

Time = 20.32 sec Generated terms = 1900000

F 1 Terms left = 1900000

Bytes used = 65755070

Time = 21.32 sec Generated terms = 2000000

F 1 Terms left = 2000000

Bytes used = 69002468

Time = 22.42 sec Generated terms = 2100000

F 1 Terms left = 2100000

Bytes used = 72453706

Time = 23.56 sec Generated terms = 2200000

F 1 Terms left = 2200000

Bytes used = 75808688

Time = 24.69 sec Generated terms = 2300000

F 1 Terms left = 2300000

Bytes used = 78996440

Time = 25.63 sec Generated terms = 2400000

F 1 Terms left = 2400000

Bytes used = 82128736

7

Time = 26.66 sec Generated terms = 2500000

F 1 Terms left = 2500000

Bytes used = 85365974

Time = 27.76 sec Generated terms = 2600000

F 1 Terms left = 2600000

Bytes used = 88549490

Time = 28.84 sec Generated terms = 2700000

F 1 Terms left = 2700000

Bytes used = 91616378

Time = 29.44 sec Generated terms = 2760681

F 1 Terms left = 2760681

Bytes used = 93353936

Time = 29.96 sec

F Terms active = 2760681

Bytes used = 95091252

Time = 31.16 sec Generated terms = 2760681

F Terms in output = 2760681

Bytes used = 93353668

31.27 sec out of 32.80 sec

This example was run on a PentiumIV-2800 notebook computer.

3 Variables

FORM has a number of types of variables. Each has to be declared as such. There are symbols,
vectors, indices, commuting functions, non-commuting functions,tensors and sets. These are called
algebraic variables. In addition there are preprocessor variables and $-variables. Finally there are
the expressions, which are collections of terms. It are the terms that we are manipulating.

3.1 Functions, commuting and non-commuting. Drop statement.

Example ex2a.frm:

CFunction f;

Symbol x;

Local F = f(x)+f(x^2)+f(x,x+1)+f;

Print;

.sort

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 114

F =

f + f(x^2) + f(x) + f(x,1 + x);

8

Functions A,B;

Drop F;

Local G = (A+B)^3;

Print;

.end

Time = 0.00 sec Generated terms = 8

G Terms in output = 8

Bytes used = 162

G =

A*A*A + A*A*B + A*B*A + A*B*B + B*A*A + B*A*B + B*B*A + B*B*B;

We see here that functions can have arbitrary numbers of arguments. Zero arguments is also
allowed. For noncommuting variables one uses noncommuting functions without arguments.

The drop statement erases existing expressions. It comes in two varieties: Without arguments
it drops all existing expressions and with arguments it drops only the expressions mentioned in the
arguments.

3.2 Vectors have indices. Contractions give dotproducts

Example ex2b.frm:

Vector p,q;

Indices mu,nu,rho;

Local F = p(mu)*q(nu)+p(mu)*q(mu)*p(nu)*q(nu)*q(rho);

Print;

.end

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

Bytes used = 48

F =

p(mu)*q(nu) + q(rho)*p.q^2;

Here we see that vectors have indices. They have to be declared as such. Contracted indices
are automatically summed over. In the next example we will see how this can be prevented.

3.3 Indices and their dimensions

Example ex2c.frm:

Symbol n,x;

Indices mu=4,nu,i=3,rho=n,a=0;

Local F = x*d_(mu,mu)+x^2*d_(nu,nu)+x^3*d_(i,i)+x^4*d_(rho,rho)

+x^5*d_(a,a);

print +s;

.end

Time = 0.00 sec Generated terms = 5

F Terms in output = 5

Bytes used = 86

9

F =

+ 4*x

+ 4*x^2

+ 3*x^3

+ n*x^4

+ d_(a,a)*x^5

;

The object d_ is the kronecker delta. We declare the dimension of an index together with the
index. If no dimension is specified the default dimension is taken which is 4. This can be changed
with the dimension statement. The dimension can be a nonnegative integer or a symbol. If the
dimension is zero the index is not summed over. Actually the dimension comes only into play when
there is a Kronecker delta with two identical indices. The print statement here has the option +s
which indicates that the output is printed in a mode in which each term starts on a new line.

3.4 Schoonschip notation for contracted indices

Example ex2d.frm:

CFunction f,g;

Indices mu,nu,ro,si,a=0;

Vectors p,q,r,s;

L F = f(mu)*p(mu)+f(a)*p(a)+f(mu)*g(mu)

+e_(mu,nu,ro,si)*p(mu)*q(nu)*r(ro)*s(si);

Print +s;

.end

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 86

F =

+ e_(p,q,r,s)

+ f(p)

+ f(mu)*g(mu)

+ f(a)*p(a)

;

The object e_ is the Levi-Civita tensor. Schoonschip notation is the notation in which we
write a vector in the place of an index if the index of that vector is contracted with the index
that was originally in that position. Note that the index a is zero dimensional and hence does not
get contracted. The Levi-Civita tensor does not have to have the same number of indices as the
dimension of the indices. How this is to be interpreted is up to the user.

3.5 $-variables

Example ex2e.frm:

Symbols a,b,c;

Local F = (a+b+c)^3;

#$c = 0;

$c = $c + 1;

print +f "<%$> %t",$c;

10

Print +f;

.end

<1> + a^3

<2> + 3*a^2*b

<3> + 3*a^2*c

<4> + 3*a*b^2

<5> + 6*a*b*c

<6> + 3*a*c^2

<7> + b^3

<8> + 3*b^2*c

<9> + 3*b*c^2

<10> + c^3

Time = 0.00 sec Generated terms = 10

F Terms in output = 10

Bytes used = 180

F =

c^3 + 3*b*c^2 + 3*b^2*c + b^3 + 3*a*c^2 + 6*a*b*c + 3*a*b^2 + 3*a^2*c +

3*a^2*b + a^3;

The $-variables are special systems variables that can be applied on a term by term basis.
They don’t really belong to the algebraic expression. Rather they can contain information about
the expression or the terms. There are two basic ways to give them a value. The first is during
compilation. In that case they should be preceeded by the character #. We see that in the above
example we use this to initialize the variable $c. The second way to give them a value is during
execution. Here for each term the value of $c is raised by one. We can use the value of the $-
variable in a print statement by the control sequence %$ and mentioning which variable we want
to use after the control string. $-variables can contain numbers, arguments, groups of arguments,
single variables, complete terms or even complete expressions. One should be careful assigning
expressions to them as they are kept in memory. Hence very big expressions might slow down
execution considerably.

3.6 Preprocessor variables

Example ex2f.frm:

#define MAX "5"

Symbols x,y;

#do i = 1,‘MAX’

Local F‘i’ = (x+y)^‘i’;

#enddo

Print;

.end

Time = 0.00 sec Generated terms = 2

F1 Terms in output = 2

Bytes used = 32

Time = 0.00 sec Generated terms = 3

F2 Terms in output = 3

Bytes used = 54

Time = 0.00 sec Generated terms = 4

11

F3 Terms in output = 4

Bytes used = 70

Time = 0.00 sec Generated terms = 5

F4 Terms in output = 5

Bytes used = 86

Time = 0.00 sec Generated terms = 6

F5 Terms in output = 6

Bytes used = 102

F1 =

y + x;

F2 =

y^2 + 2*x*y + x^2;

F3 =

y^3 + 3*x*y^2 + 3*x^2*y + x^3;

F4 =

y^4 + 4*x*y^3 + 6*x^2*y^2 + 4*x^3*y + x^4;

F5 =

y^5 + 5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5;

Preprocessor variables are aids during compilation. They contain string values that sometimes
are interpreted as numbers as is the case here in the preprocessor do-loop. We give preprocessor
variables a value with the (re)define instruction. The value is given between double quotes. When
we use a preprocessor variable its name is placed between a back-quote quote combination. This
contruction can be nested. The loop variable in a do-loop construction is automatically also a
preprocessor variable. Note that the do-loop generates the contents ‘MAX’ times, each time with
the appropriate value for ‘i’. This is different from loops in the languages C and Fortran where the
code exists once and the loop passes through it several times during execution. Here the code is
generated several times and then compiled. Note also that because of this the loop may contain
.sort instructions.

The $-variables can also be used as preprocessor variables. For this one has to enclose them
with a back-quote quote pair as in ‘$c’. They have then the ‘value’ that exists during compilation
time and this ‘value’ is converted into a string. This allows the contents of the terms to influence
the structure of the program.

3.7 Example of that the terms get treated by statements one by one

Example ex2g.frm:

Symbols x,y;

Local F = (x+y)^2;

Print +f "<1> %t";

Multiply 2;

Print +f "<2> %t";

Print;

.end

<1> + x^2

12

<2> + 2*x^2

<1> + 2*x*y

<2> + 4*x*y

<1> + y^2

<2> + 2*y^2

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 54

F =

2*y^2 + 4*x*y + 2*x^2;

What we see here is that each term gets generated and then treated by the statement(s) until
the end of the module is reached, and the term is stored away. Then the next term in the expansion
of (x+y)^2 is generated. Hence the treatement of terms in a module follows a giant tree structure
in which the statements are at the potential splittings of the branches.

4 Substitutions

Of course the essence of symbolic manipulation is that we can modify the terms. This can be
done in many different ways. The most powerful one is the substitution. The general form of a
substitution is

id,options,lhs = rhs;

For the moment we will forget about the options. In that case we have

id lhs = rhs;

The id stands for identify and the action is that when the lhs occurs in a term it will be replaced
by the rhs.

Example ex3a.frm:

Symbols x,y;

Local F = (x+1)^3;

Print;

.sort

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 50

F =

1 + 3*x + 3*x^2 + x^3;

id x = y;

Print;

.sort

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 50

13

F =

1 + 3*y + 3*y^2 + y^3;

id y = x-1;

Print;

.end

Time = 0.00 sec Generated terms = 10

F Terms in output = 1

Bytes used = 18

F =

x^3;

There is a problem if one needs to do two replacements simultaneously as shown here
Example ex3b.frm:

S x,y,sinphi,cosphi;

Local F = x^2+y^2;

id x = x*cosphi-y*sinphi;

id y = x*sinphi+y*cosphi;

id sinphi^2 = 1-cosphi^2;

Print;

.sort

Time = 0.00 sec Generated terms = 15

F Terms in output = 10

Bytes used = 158

F =

2*y^2*cosphi^2 - y^2*cosphi^4 + 4*x*y*sinphi*cosphi - 2*x*y*sinphi*

cosphi^2 - 2*x*y*sinphi*cosphi^3 + 2*x^2 - 2*x^2*cosphi - 2*x^2*cosphi^2

+ 2*x^2*cosphi^3 + x^2*cosphi^4;

Drop;

Local F = x^2+y^2;

id x = x*cosphi-y*sinphi;

al y = x*sinphi+y*cosphi;

id sinphi^2 = 1-cosphi^2;

Print;

.end

Time = 0.00 sec Generated terms = 8

F Terms in output = 2

Bytes used = 32

F =

y^2 + x^2;

The al stands for also and means that the lhs of this statement is taken out together with the
lhs of the previous id statement and before the rhs of the previous id statement is inserted. Note
also that id sinphi2 = · · · takes out all integer powers of sinphi2. sinphi itself is left untouched.

14

4.1 Patterns

Generally the lhs of a substitution is called a pattern. It describes what we have to substitute.
This may involve generic variables, called wildcards. Example ex4a.frm:

Symbols x,n;

Local F = (x+2)^3;

id x^n? = x^(n+1)/(n+1);

Print;

.end

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 54

F =

8*x + 6*x^2 + 2*x^3 + 1/4*x^4;

n is called a wildcard and is indicated in the pattern with a questionmark. x^n? will match any
power of x, also x^0. Because we have no negative powers of x there is no problem wrt dividing by
zero. What would happen in that case? Example ex4b.frm:

Symbols x,n;

Local F = (x+2)^3/x^2;

id x^n? = x^(n+1)/(n+1);

Print;

.end

Division by zero during normalization

We see that FORM terminates with an error. We should have forseen this case and intercepted
it: Example ex4c.frm:

Symbols x,n,lnx;

Local F = (x+2)^3/x^2;

id x^n?!{,-1} = x^(n+1)/(n+1);

al 1/x = lnx;

Print;

.end

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 58

F =

- 8*x^-1 + 12*lnx + 6*x + 1/2*x^2;

Note that we have to use the al statement because the other statement will generate a new
term with 1/x. The construction n?!,-1 means anything except for the set that consists of -1. The
reason of the comma will become clear at a later stage. For now the rule is that if a set consists
only of a single number, we need an extra comma between the to indicate that it is really a set.
The empty set is not allowed.

Wildcards can be restricted to sets or anything but a set. Sets can either be declared or be
given dynamically. Declared set: Example ex4d.frm:

Symbols x,a,b,c,d,e;

Set abc:a,b,c;

15

CFunction f;

Local F = f(a)+f(b)+f(c)+f(d)+f(e);

id f(x?abc) = f(x,x);

id f(x?!abc) = f(x+1);

Print;

.end

Time = 0.00 sec Generated terms = 5

F Terms in output = 5

Bytes used = 118

F =

f(1 + e) + f(1 + d) + f(a,a) + f(b,b) + f(c,c);

This could also have been done with Example ex4e.frm:

Symbols x,a,b,c,d,e;

CFunction f;

Local F = f(a)+f(b)+f(c)+f(d)+f(e);

id f(x?{a,b,c}) = f(x,x);

id f(x?!{a,b,c}) = f(x+1);

Print;

.end

Time = 0.00 sec Generated terms = 5

F Terms in output = 5

Bytes used = 118

F =

f(1 + e) + f(1 + d) + f(a,a) + f(b,b) + f(c,c);

If a set has to be used many times it is better to declare it. If it has to be used only once one
may as well use the dynamical definition. One can also refer to the elements of a set. Example
ex4f.frm:

Symbols x,n,a,b,c,d,e;

Set abc:a,b,c;

CFunction f;

Local F = f(a)+f(b)+f(c)+f(d)+f(e);

id f(x?abc[n]) = f(x,n);

Print;

.end

Time = 0.00 sec Generated terms = 5

F Terms in output = 5

Bytes used = 86

F =

f(a,1) + f(b,2) + f(c,3) + f(d) + f(e);

This way sets can also be used in the rhs. Note however that the index can only be a single
symbol or a single positive number, no larger than the number of elements in the set. Example
ex4g.frm:

Symbols x,n,a,b,c,d,e;

Vector p,q,r;

16

Set abc:a,b,c;

Set pqr:p,q,r;

CFunction f;

Local F = f(a)+f(b)+f(c)+f(d)+f(e);

id f(x?abc[n]) = f(x,pqr[n]);

Print;

.end

Time = 0.00 sec Generated terms = 5

F Terms in output = 5

Bytes used = 86

F =

f(a,p) + f(b,q) + f(c,r) + f(d) + f(e);

For more options with the sets one should consult the manual.

4.2 Functions

Let I be a matrix that is a function of a variable x. One matrix element is then for instance
I(i1,i2,x). Example ex5a.frm:

Symbols x,y,z,x1,...,x6;

Indices i1,...,i6;

CFunction I;

Local F = I(i1,i2,x)*I(i2,i3,y)*I(i3,i4,z)

*I(i4,i5,x)*I(i5,i6,z)*I(i6,i1,y);

id I(i1?,i2?,x?)*I(i2?,i3?,y?) = I(i1,i3,x,y);

Print;

.sort

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 76

F =

I(i1,i3,x,y)*I(i3,i5,z,x)*I(i5,i1,z,y);

id I(i1?,i2?,x1?,x2?)*I(i2?,i3?,x3?,x4?) = I(i1,i3,x1,x2,x3,x4);

id I(i1?,i2?,x1?,x2?,x3?,x4?)*I(i2?,i3?,x5?,x6?) = I(i1,i3,x1,...,x6);

Print;

.sort

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 48

F =

I(i1,i1,x,y,z,x,z,y);

Drop;

Local G = I(i1,i2,x)*I(i2,i3,y)*I(i3,i4,z)

*I(i4,i5,x)*I(i5,i6,z)*I(i6,i1,y);

repeat;

id I(i1?,i2?,?a)*I(i2?,i3?,?b) = I(i1,i3,?a,?b);

17

endrepeat;

Print;

.end

Time = 0.00 sec Generated terms = 1

G Terms in output = 1

Bytes used = 48

G =

I(i1,i1,x,y,z,x,z,y);

We can string the matrices together and we see that the result is the trace over the product
of six matrices. The first method however is rather laborious when things become general. In the
second method we use:

• a new type of wildcard: ?a and ?b

• the repeat loop.

The repeat loop is very much related to a while statement in other languages because

repeat;

if (condition);

endif;

endrepeat;

is equivalent to

while (condition);

endwhile;

In our case the fact that the id statement catches something means that the condition is fulfilled.
?a means any sequence of arguments, including no argument. These variables don’t have to be
delared as they have only one interpretation.

Imagine we have a function den(x) which stands for 1/x. We can split fractions with: Example
ex5b.frm:

CF den;

S x,x1,x2;

L F = den(x+1)*den(x+2)^2*den(x+3)^3*den(x+4)^4;

SplitArg,den;

Print;

.sort

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 150

F =

den(1,x)*den(2,x)^2*den(3,x)^3*den(4,x)^4;

repeat;

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

endrepeat;

18

id den(x?number_) = 1/x;

Print +s;

.end

Time = 0.00 sec Generated terms = 181

F Terms in output = 10

Bytes used = 216

F =

+ 1/648*den(1,x)

+ 1/4*den(2,x)

- 1/16*den(2,x)^2

- 17/8*den(3,x)

+ 3/4*den(3,x)^2

- 1/2*den(3,x)^3

+ 607/324*den(4,x)

+ 403/432*den(4,x)^2

+ 13/36*den(4,x)^3

+ 1/12*den(4,x)^4

;

First we see the SplitArg command that takes a multiterm argument and assigns one argument
per term. There are variations in which it takes only a single specified term to make a new
argument. In this program we like to take x out and hence then the statement would have been
SplitArg,((x)),den; The ((x)) means only terms that are a numeric multiple of x. The option (x)
means all terms that contain x become a separate argument. One can also specify in which functions
(like den) or which arguments this should happen. The new wildcarding here is that we define a
set x2? and a set x1?. If we would just say x2 it would look for exactly the object x2. With the
questionmark it knows that this is the value that the wildcard x2 gets. Hence this construction
means that x1 and x2 should not get the same value.

When we extend this example to 6 we start seeing that the amount of CPU time becomes
nonnegligible.

Example ex5c.frm:

L F = den(x+1)*den(x+2)^2*den(x+3)^3*den(x+4)^4

*den(x+5)^5*den(x+6)^6;

.

.

Time = 4.82 sec Generated terms = 65973

F Terms in output = 21

Bytes used = 520

Many terms are generated while there are actually few different terms. We can speed the process
up by doing several steps and then sorting, after which we do the rest:

Example ex5d.frm:

CF den;

S x,x1,x2;

L F = den(x+1)*den(x+2)^2*den(x+3)^3*den(x+4)^4

*den(x+5)^5*den(x+6)^6;

SplitArg,den;

Print;

.sort

19

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 304

F =

den(1,x)*den(2,x)^2*den(3,x)^3*den(4,x)^4*den(5,x)^5*den(6,x)^6;

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

.sort

Time = 0.25 sec Generated terms = 10513

F Terms in output = 1612

Bytes used = 87112

repeat;

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

endrepeat;

id den(x?number_) = 1/x;

.end

Time = 0.93 sec Generated terms = 9745

F Terms in output = 21

Bytes used = 520

Basically what we need is a repeat with a .sort but that is not possible

repeat;

id

.sort

endrepeat;

This would cause a syntax error because when the module is executed there is no endrepeat. For
this we need the preprocessor. And some communication with the preprocessor. We want to make
modules with one id statement and keep executing these modules as long as something can still be
done. This gives the program Example ex5e.frm:

CF den;

S x,x1,x2;

L F = den(x+1)*den(x+2)^2*den(x+3)^3*den(x+4)^4

*den(x+5)^5*den(x+6)^6;

SplitArg,den;

Print;

.sort

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 304

F =

den(1,x)*den(2,x)^2*den(3,x)^3*den(4,x)^4*den(5,x)^5*den(6,x)^6;

20

#do i = 1,1

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

id den(x?number_) = 1/x;

if (match(den(x1?!{x2?},x)*den(x2?!{x1?},x)));

redefine i "0";

endif;

.sort

Time = 0.01 sec Generated terms = 144

F Terms in output = 144

Bytes used = 12084

#enddo

Time = 0.09 sec Generated terms = 2248

F Terms in output = 259

Bytes used = 8302

Time = 0.11 sec Generated terms = 1155

F Terms in output = 162

Bytes used = 3870

Time = 0.12 sec Generated terms = 396

F Terms in output = 82

Bytes used = 1860

Time = 0.12 sec Generated terms = 157

F Terms in output = 59

Bytes used = 1324

Time = 0.12 sec Generated terms = 97

F Terms in output = 44

Bytes used = 1020

Time = 0.13 sec Generated terms = 67

F Terms in output = 35

Bytes used = 796

Time = 0.13 sec Generated terms = 49

F Terms in output = 26

Bytes used = 616

Time = 0.13 sec Generated terms = 31

F Terms in output = 21

Bytes used = 520

Print +s;

.end

Time = 0.13 sec Generated terms = 21

F Terms in output = 21

Bytes used = 520

F =

21

+ 1/10368000000*den(1,x)

+ 43/95551488*den(2,x)

- 1/15925248*den(2,x)^2

- 265/559872*den(3,x)

+ 1/7776*den(3,x)^2

- 1/46656*den(3,x)^3

- 1489/41472*den(4,x)

+ 53/3456*den(4,x)^2

- 11/2304*den(4,x)^3

+ 1/768*den(4,x)^4

+ 374111/5971968*den(5,x)

+ 3109/497664*den(5,x)^2

+ 269/13824*den(5,x)^3

+ 5/3456*den(5,x)^4

+ 1/288*den(5,x)^5

- 117653266057/4478976000000*den(6,x)

- 1661734447/149299200000*den(6,x)^2

- 1888673/466560000*den(6,x)^3

- 49313/41472000*den(6,x)^4

- 29/115200*den(6,x)^5

- 1/34560*den(6,x)^6

;

We reset the do loop parameter as long as there is still work to do. Notice also the if statement.
The condition here is that if there is a match, the answer is true. Actually the answer is a number
that indicates the number of matches there are. The redefine statement is a way to redefine a
preprocessor variable. In this case the do loop parameter.

Actually we can make this program even faster. We notice that the second time in the loop
there are very many terms generated and only 10surviving:

Time = 0.09 sec Generated terms = 2248

F Terms in output = 259

Bytes used = 8302

This is because the id statement catches more than one combination at a time. If we force the id
statement to make only a single substitution things go even faster: Example ex5e.frm:

.

id,once,den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

.

This is done with the option once.

Time = 0.01 sec Generated terms = 21

F Terms in output = 21

Bytes used = 520

As you see there are various ways of doing things and some are faster than others.

5 Preprocessor instructions

We have seen already some parts of the preprocessor. All instructions that start with the character
belong to the preprocessor except for what starts with #: which are settings at the startup of

22

the program. Thusfar we have seen #define and #do/#enddo. Also the · · · operator belongs to
the preprocessor and the preprocessor has its own variables and its own calculator.

Let us first study the complete · · · operator. It is between two separators which will be repeated:
, · · · , + · · ·+ − · · · − ⋆ · · · ⋆ / · · · / + · · · − − · · ·+. The last two mean that there will be an alternatig
sign, the first one being + resp -. The pattern that is to be set up is in general given between <>.
Hence we have <pattern1>, cdots,<pattern2>, Form then looks how this can be generalized and
would make pattern1,pattern2 in this case. In simple cases where there is a single number at the
end the <> can be omitted as in x1, · · ·,x5 We can use this for the previous program Example
ex6a.frm:

CF den;

S x,x1,x2;

L F = <den(x+(1))^1>*...*<den(x+(8))^8>;

SplitArg,den;

Print;

.sort

#do i = 1,1

id den(x1?!{x2?},x)*den(x2?!{x1?},x) =

(den(x1,x)-den(x2,x))*den(x2-x1);

id den(x?number_) = 1/x;

if (match(den(x1?!{x2?},x)*den(x2?!{x1?},x)));

redefine i "0";

endif;

.sort

#enddo

Print +s;

.end

which gives for its final statistics

Time = 0.04 sec Generated terms = 36

F Terms in output = 36

Bytes used = 1160

Note: we have to be careful with x+1 as it picks the +1 as a number. It then reconstructs it
without the leading sign. This can be circumvented with parentheses. Notice that it is now also
easy to run the whole thing with a preprocessor variable:

#define MAX "10"

L F = <den(x+(1))^1>*...*<den(x+(‘MAX’))^‘MAX’>;

When preprocessor variables are used their name should be enclosed between ‘’ (back-quote, quote).
This can be nested. The value of a preprocessor variable is a string. It will just paste strings together
and look for new variables: Example ex6b.frm:

#define i1 "x"

#define i2 "y"

#define i3 "z"

#do j = 1,3

#message i‘j’ = ‘i‘j’’

~~~i1 = x

#enddo

~~~i2 = y

~~~i3 = z

.end

23



Sometimes it is necessary to interpret the preprocessor variables numerically and do some
arithmetic with them. For that we have the preprocessor calculator. It is invoked with and a
purely numerical expression between the as in Example ex6c.frm:

#define MAX "4"

Symbols x1,...,x{2*‘MAX’+1};

CF f;

Local F = f(x1,...,x{2*‘MAX’+1});

Print;

.end

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 52

F =

f(x1,x2,x3,x4,x5,x6,x7,x8,x9);

The variable MAX is interpreted as a number, the arithmetic is done and the result is translated
back into a string. This should explain now also why a set with only a number needs the comma to
do as if there is another element. The comma blocks the invokation of the preprocessor calculator.

The preprocessor has also a #if #elseif #else #endif and a #switch #case #break #default
#endswitch construction.

Maybe the most important feature of the preprocessor is to give structure to the program.
There are procedures that can be specified externally like subroutines in calculational languages.
Example ex6d.frm:

#procedure normden(x,den)

SplitArg,((‘x’)),‘den’;

id ‘den’(‘x’) = ‘den’(0,‘x’);

#do inormden = 1,1

id,once,‘den’(x1?!{x2?},‘x’)*‘den’(x2?!{x1?},‘x’) =

(‘den’(x1,‘x’)-‘den’(x2,‘x’))*‘den’(x2-x1);

id ‘den’(x1?number_) = 1/x1;

if ( match(‘den’(x1?!{x2?},‘x’)*‘den’(x2?!{x1?},‘x’)) );

redefine inormden "0";

endif;

.sort:normden;

#enddo

id ‘den’(x1?,x2?) = ‘den’(x1+x2);

#endprocedure

CF yden;

S y,x1,x2;

L F = <yden(y+(1))^1>*...*<yden(y+(8))^8>;

#call normden(y,yden)

.

.

.

Time = 0.04 sec Generated terms = 42

F Terms in output = 36

normden Bytes used = 1160

.end

24



Time = 0.04 sec Generated terms = 36

F Terms in output = 36

Bytes used = 1852

This gives the result we had before. Note that the procedure has arguments which inside the
procedure are preprocessor variables. Outside the procedure (after it is finished) these variables
don’t exist any longer. We could also have put the procedure inside a file normden.prc In that
case the #procedure instruction should be the first line of the file and there should be no other
characters before the #. Our program becomes simply: Example ex6e.frm:

#define MAX "8"

CF yden;

S y,x1,x2;

L F = <yden(y+(1))^1>*...*<yden(y+(‘MAX’))^‘MAX’>;

#call normden(y,yden)

Print +s;

.end

.

.

.

Time = 0.07 sec Generated terms = 55

F Terms in output = 55

Bytes used = 3420

Another useful preprocessor instruction is the #include file.h which includes on the spot the
contents of the file file.h.

It goes without saying that all these features can be nested. There is one restriction. A #if
and it matching #endif must be inside the same procedure or the #case in a #switch construction.
Similarly the complete #switch #endswitch construction must be inside the same procedure or the
same part of a #if construction.

There is also a #write instruction that allows to write in files. It can write text and expressions.
Example ex6f.frm:

Symbols x,y,n;

L F = (x+y)^3+(x-y+2)^4;

id x^n? = x^(n+1)/(n+1);

.sort

Time = 0.00 sec Generated terms = 19

F Terms in output = 15

Bytes used = 234

Format doubleFortran;

#write <fun.f> " REAL*8 FUNCTION fun(x,y)"

#write <fun.f> " REAL*8 x,y"

#write <fun.f> "*\n* Routine created by FORM, ‘DATE_’\n*"

#write <fun.f> " fun = %E",F

#write <fun.f> " RETURN"

#write <fun.f> " END"

Print +f;

.sort

Time = 0.00 sec Generated terms = 15

F Terms in output = 15

Bytes used = 234

25



F =

& 16.D0*x - 32.D0*x*y + 24.D0*x*y**2 - 7.D0*x*y**3 + x*y**4 + 16.D0

& *x**2 - 24.D0*x**2*y + 27.D0/2.D0*x**2*y**2 - 2.D0*x**2*y**3 + 8.

& D0*x**3 - 7.D0*x**3*y + 2.D0*x**3*y**2 + 9.D0/4.D0*x**4 - x**4*y

& + 1.D0/5.D0*x**5

Format C;

#write <fun.c> "double fun(double x,double y)"

#write <fun.c> "/*\n Function created by FORM, ‘DATE_’\n*/\n{"

#write <fun.c> " double f;"

#write <fun.c> " f = %E;",F

#write <fun.c> " return(f);\n}"

Print +f;

.end

Time = 0.00 sec Generated terms = 15

F Terms in output = 15

Bytes used = 234

F =

16*x - 32*x*y + 24*x*pow(y,2) - 7*x*pow(y,3) + x*pow(y,4) + 16*

pow(x,2) - 24*pow(x,2)*y + 27./2.*pow(x,2)*pow(y,2) - 2*pow(x,2)*

pow(y,3) + 8*pow(x,3) - 7*pow(x,3)*y + 2*pow(x,3)*pow(y,2) + 9./4.

*pow(x,4) - pow(x,4)*y + 1./5.*pow(x,5);

We see here also the use of the built in preprocessor variable DATE . Format is a statement
that controls the outputformat.

The contents of the file fun.f are

REAL*8 FUNCTION fun(x,y)

REAL*8 x,y

*

* Routine created by FORM, Mon Mar 5 13:12:31 2007

*

fun = 16.D0*x - 32.D0*x*y + 24.D0*x*y**2 - 7.D0*x*y**3 + x*y**4

& + 16.D0*x**2 - 24.D0*x**2*y + 27.D0/2.D0*x**2*y**2 - 2.D0*x**2*

& y**3 + 8.D0*x**3 - 7.D0*x**3*y + 2.D0*x**3*y**2 + 9.D0/4.D0*x**4

& - x**4*y + 1.D0/5.D0*x**5

RETURN

END

The contents of the file fun.c are

double fun(double x,double y)

/*

Function created by FORM, Mon Mar 5 13:12:31 2007

*/

{

double f;

f = 16*x - 32*x*y + 24*x*pow(y,2) - 7*x*pow(y,3) + x*pow(y,4) + 16*

pow(x,2) - 24*pow(x,2)*y + 27./2.*pow(x,2)*pow(y,2) - 2*pow(x,2)*

pow(y,3) + 8*pow(x,3) - 7*pow(x,3)*y + 2*pow(x,3)*pow(y,2) + 9./4.

26



*pow(x,4) - pow(x,4)*y + 1./5.*pow(x,5);

return(f);

}

Another useful preprocessor instruction is #- which turns off the listing of the input. #+ turns
it back on again. This can make lengthy programs much ’quieter’. If we put #- at the beginning
of the previous example we have in the output example ex6g.log:

#-

Time = 0.00 sec Generated terms = 19

F Terms in output = 15

Bytes used = 234

Time = 0.00 sec Generated terms = 15

F Terms in output = 15

Bytes used = 234

F =

& 16.D0*x - 32.D0*x*y + 24.D0*x*y**2 - 7.D0*x*y**3 + x*y**4 + 16.D0

& *x**2 - 24.D0*x**2*y + 27.D0/2.D0*x**2*y**2 - 2.D0*x**2*y**3 + 8.

& D0*x**3 - 7.D0*x**3*y + 2.D0*x**3*y**2 + 9.D0/4.D0*x**4 - x**4*y

& + 1.D0/5.D0*x**5

Time = 0.00 sec Generated terms = 15

F Terms in output = 15

Bytes used = 234

F =

16*x - 32*x*y + 24*x*pow(y,2) - 7*x*pow(y,3) + x*pow(y,4) + 16*

pow(x,2) - 24*pow(x,2)*y + 27./2.*pow(x,2)*pow(y,2) - 2*pow(x,2)*

pow(y,3) + 8*pow(x,3) - 7*pow(x,3)*y + 2*pow(x,3)*pow(y,2) + 9./4.

*pow(x,4) - pow(x,4)*y + 1./5.*pow(x,5);

The instruction #include- file.h will include the file file.h without listing it.

6 Some more statements and functions

There are more than 100 types of statements so we will not treat all of them. Some are not so
common and some can be learned from the manual just as well. Let us start with the if-statement
which we have seen a few times already. The question is of course what conditions one can have
in a symbolic program. We have seen match which gives the number of matches for a pattern.
Another that is very useful is a ’powercount’ as in

if ( count(x,1,y,2,f,1,d,-2) ) > 0 );

Here we have each power of the symbol x count for 1, of the symbol y count for 2, of the function
f count for 1 and of the function d count for -2. These weights are added to obtain the count.

Another condition can be whether a term belongs to a given expression as in

if ( expresseion(F) );

In that case terms of other expressions are not considered. One can also specify integer numbers
or the coefficient of the current term as in

27



if ( coefficient != 1 );

Multiply 1/coeff_;

endif;

or $-variables which should evaluate to a numerical value. Example Example ex7a.frm:

Symbols x,y,z;

L F = (x+y+z)^5-(x+2*y)^5;

.sort

Time = 0.00 sec Generated terms = 27

F Terms in output = 20

Bytes used = 364

#$xc = 0;

if ( count(x,1) > $xc ) $xc = count_(x,1);

.sort

Time = 0.00 sec Generated terms = 20

F Terms in output = 20

Bytes used = 364

#message The maximum power of x is ‘$xc’

~~~The maximum power of x is 4

Print +f;

Bracket x;

.end

Time = 0.00 sec Generated terms = 20

F Terms in output = 20

Bytes used = 386

F =

+ x * (5*z^4 + 20*y*z^3 + 30*y^2*z^2 + 20*y^3*z - 75*y^4)

+ x^2 * (10*z^3 + 30*y*z^2 + 30*y^2*z - 70*y^3)

+ x^3 * (10*z^2 + 20*y*z - 30*y^2)

+ x^4 * (5*z - 5*y)

+ z^5 + 5*y*z^4 + 10*y^2*z^3 + 10*y^3*z^2 + 5*y^4*z - 31*y^5;

Note that dollar variables can be used as preprocessor variables if placed between ‘’. The
function count works exactly like the count in the if but it gives a value that can be used to put
for instance in a $-variable.

If the condition in an if statement is composite one should use brackets around each subcondi-
tion. If this is not done the compiler might get confused and interpret things its own way.

We also see an example of the bracket statement. It should be after the executable statements
in the module. It controls some of the output format. The mentioned objects will be placed outside
brackets. The rest inside.

As any good programming language form has a goto and a label statement. The label should
have a name or a number and the goto must refer to a label inside the same module. We can use
this to make our procedure normden twice as fast. File normden2.prc:

#procedure normden2(x,den)

28

SplitArg,((‘x’)),‘den’;

id ‘den’(‘x’) = ‘den’(0,‘x’);

#do inormden = 1,1

id,once,ifmatch->1,‘den’(x1?!{x2?},‘x’)*‘den’(x2?!{x1?},‘x’) =

(‘den’(x1,‘x’)-‘den’(x2,‘x’))*‘den’(x2-x1);

goto 2;

Label 1;

redefine inormden "0";

Label 2;

id ‘den’(x1?number_) = 1/x1;

.sort:normden;

#enddo

id ‘den’(x1?,x2?) = ‘den’(x1+x2);

#endprocedure

The option in the id statement says to jump to label 1 if there is a match and after the whole
substitution has been completed. This way we don’t have to do the pattern matching twice (once
for the relabel statement). Notice however that it does cost us some readability of the program.
But when speed is at a premium......

6.1 Arguments

Sometimes one would like to treat the arguments of some functions with some statements but noth-
ing else. For this there is the Argument/EndArgument construction. In the argument statement
we can specify what we want to treat:

Argument,f,2;

means just the 2-nd argument of the function f.

Argument f,g,1,h,3;

means the first argument of the functions f and g and the third of h.

Argument f;

means all arguments of the function f.

Argument;

means all arguments of all functions. Example (ex7b.frm)

CF f,g;

Symbol x,y;

L F = f(x+y,x+y,x+y)+g(x+y,x+y,x+y);

argument,f,2;

id x = x+1;

endargument;

Print +s;

.end

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

Bytes used = 278

29

F =

+ f(y + x,1 + y + x,y + x)

+ g(y + x,y + x,y + x)

;

Note that

Argument,2,f;

would mean that all functions have their second argument treated except for f which has all its
arguments treated.

Argument ‘environments’ can be nested.

6.2 Replace

There are many built in functions which do exactly what their name says like fac is a factorial,
binom is a binomial, theta is a theta function and delta is the dirac delta function etc. One
very useful function should be mentioned. Because id x = y; only affects occurrences of x outside
functions it would be very complicated to replace all occurrence of x by y. For this we have the
replace function:

multiply replace_(x,y,a,b,b,a);

acts like integration over dirac delta functions: all occurrences of x get replaced by y, all occurences
of a by b and all of b by a (hence a and b are exchanged). This is the fastest way to do so. Be
careful with using more than one replace function at the same time. It is hard to predict which
one FORM will apply first.

Other built in functions include the dirac gamma matrices. We will leave them for study from
the manual.

6.3 Tables

FORM is also equiped with tables. Tables are objects with at least one index and can also have
(wildcard) arguments. They have to be declared and there are two types of tables. The regular
tables are like arrays where one spot is reserved for each element. The sparse tables have no reserved
spots and each element is taken as it comes. They are stored in a balanced tree to make searches
for table elements not too slow. Let us look at a few examples. Example ex8a.frm:

Symbols x,y,n1,n2;

Table t(0:2,0:2);

Fill t(0,0) = 1;

Fill t(0,1) = 2;

Fill t(0,2) = 3;

Fill t(1,0) = 2;

Fill t(1,1) = 3;

Fill t(1,2) = 4;

Fill t(2,0) = 3;

Fill t(2,1) = 4;

Fill t(2,2) = 5;

Local F = (1+x+y)^2;

print;

.sort

Time = 0.00 sec Generated terms = 6

30

F Terms in output = 6

Bytes used = 88

F =

1 + 2*y + y^2 + 2*x + 2*x*y + x^2;

id x^n1?*y^n2? = t(n1,n2);

Print;

.end

Time = 0.00 sec Generated terms = 6

F Terms in output = 1

Bytes used = 10

F =

21;

As can be seen, the substitutions of the table elements take place immediately. What happens
if an element is not in the table? In that case FORM leaves the element. Example ex8b.frm:

Symbols x,y,n1,n2;

Table t(0:2,0:2);

Fill t(0,0) = 1;

Fill t(0,1) = 2;

Fill t(0,2) = 3;

Fill t(1,0) = 2;

Fill t(1,1) = 3;

Fill t(1,2) = 4;

Fill t(2,0) = 3;

Fill t(2,1) = 4;

Fill t(2,2) = 5;

Local F = (1+x+y)^3;

id x^n1?*y^n2? = t(n1,n2);

Print;

.end

Time = 0.00 sec Generated terms = 10

F Terms in output = 3

Bytes used = 48

F =

73 + t(0,3) + t(3,0);

unless we apply the check option in the definition of the table. Example ex8c.frm:

Symbols x,y,n1,n2;

Table,check,t(0:2,0:2);

Fill t(0,0) = 1;

Fill t(0,1) = 2;

Fill t(0,2) = 3;

Fill t(1,0) = 2;

Fill t(1,1) = 3;

Fill t(1,2) = 4;

Fill t(2,0) = 3;

Fill t(2,1) = 4;

31

Fill t(2,2) = 5;

Local F = (1+x+y)^3;

id x^n1?*y^n2? = t(n1,n2);

Print;

.end

Table boundary check. Argument 1

t(3,0)

After the message is printed execution is halted. An example of a table with an argument is in
example ex8d.frm:

Symbols x,y,n;

Table,check,tlog(-2:3,x?);

Fill tlog(-2) = -x^-1;

Fill tlog(-1) = ln_(x);

Fill tlog(0) = x;

Fill tlog(1) = x^2/2;

Fill tlog(2) = x^3/2;

Fill tlog(3) = x^4/2;

Local F = (1+y)^4/y^2;

id y^n? = tlog(n,y);

Print +s;

.end

Time = 0.00 sec Generated terms = 5

F Terms in output = 5

Bytes used = 72

F =

- y^-1

+ 6*y

+ 2*y^2

+ 1/2*y^3

+ 4*ln_(y)

;

The right hand sides of the fill statements can also contain tables. The only rule here is that
one should try to avoid loops as that will cause a crash. Example ex8e.frm:

Symbols x,y;

Table ch(0:6,x?);

Fill ch(0) = 1;

Fill ch(1) = x;

Fill ch(2) = x*ch(1,x)+(x+1)*ch(0,x);

Fill ch(3) = x*ch(2,x)+(x-1)*ch(1,x);

Fill ch(4) = x*ch(3,x)+(x+1)*ch(2,x);

Fill ch(5) = x*ch(4,x)+(x-1)*ch(3,x);

Fill ch(6) = x*ch(5,x)+(x+1)*ch(4,x);

Local F5 = ch(5,y);

Local F6 = ch(6,y);

Print +f;

.end

Time = 0.00 sec Generated terms = 21

F5 Terms in output = 4

Bytes used = 54

32

Time = 0.00 sec Generated terms = 43

F6 Terms in output = 7

Bytes used = 86

F5 =

y + 3*y^3 + 4*y^4 + y^5;

F6 =

1 + 3*y + 5*y^2 + 5*y^3 + 7*y^4 + 5*y^5 + y^6;

When tables are multi-dimensional and/or not elements are known, it is usually better to use
sparse tables. In sparse tables we tell FORM only the dimension of the table and the possible
arguments. Example ex8f.frm:

Symbols x1,x2,x3,x4,n1,n2,n3,n4,N;

Table sparse,t(4);

Fill t(1,1,1,1) = N+1;

Fill t(1,2,1,2) = N+2;

Fill t(1,1,2,1) = N^2-1;

Local F = x1*x2*x3*x4*(1+x1)*(1+x2)*(1+x3)*(1+x4);

id x1^n1?*x2^n2?*x3^n3?*x4^n4? = t(n1,n2,n3,n4);

id t(n1?,n2?,n3?,n4?) = x1^n1*x2^n2*x3^n3*x4^n4;

Print +f +s;

.end

Time = 0.00 sec Generated terms = 19

F Terms in output = 16

Bytes used = 254

F =

+ 2

+ 2*N

+ N^2

+ x1*x2*x3*x4^2

+ x1*x2*x3^2*x4^2

+ x1*x2^2*x3*x4

+ x1*x2^2*x3^2*x4

+ x1*x2^2*x3^2*x4^2

+ x1^2*x2*x3*x4

+ x1^2*x2*x3*x4^2

+ x1^2*x2*x3^2*x4

+ x1^2*x2*x3^2*x4^2

+ x1^2*x2^2*x3*x4

+ x1^2*x2^2*x3*x4^2

+ x1^2*x2^2*x3^2*x4

+ x1^2*x2^2*x3^2*x4^2

;

Here we try what is in the table. The elements that are not in the table are written back and
will have to be dealt with by other means. Very often one puts the tables in separate files that can
be extended when more table elements become known. If these files become very big (megabytes)
there is a facility which is called the tablebase. It is a database feature for tables in which FORM
at first only looks which table elements exist but does not compile the right hand sides yet. At a
moment of the users choice FORM can then decide what elements are actually needed and only

33

compile those. The use of this can be looked up in the manual. During a recent project we had
tablebases containing more than 3 Gbytes of fill statements.

6.4 Collect,PolyFun

One of the reasons of the speed of FORM is the fact that it works its way through expressions one
by one. Each operation has for its input just a single term. Those are called local operations. The
major nonlocal operation is of course the sort that brings expressions to a standard form. It is
amaizing what can be done with just this single nonlocal operation. Yet there are cases in which
we could use, to great benefit, a nearly local operation. Have a look at the following. Example
ex9a.frm:

Symbols x,ep(:4);

CFunction acc;

Local F = (x+1+ep)^5;

Bracket x;

Print;

.sort

Time = 0.00 sec Generated terms = 20

F Terms in output = 20

Bytes used = 308

F =

+ x * (5 + 20*ep + 30*ep^2 + 20*ep^3 + 5*ep^4)

+ x^2 * (10 + 30*ep + 30*ep^2 + 10*ep^3)

+ x^3 * (10 + 20*ep + 10*ep^2)

+ x^4 * (5 + 5*ep)

+ x^5 * (1)

+ 1 + 5*ep + 10*ep^2 + 10*ep^3 + 5*ep^4;

Collect acc;

Print +s;

.end

Time = 0.00 sec Generated terms = 6

F Terms in output = 6

Bytes used = 414

F =

+ acc(1 + 5*ep + 10*ep^2 + 10*ep^3 + 5*ep^4)

+ acc(5 + 5*ep)*x^4

+ acc(5 + 20*ep + 30*ep^2 + 20*ep^3 + 5*ep^4)*x

+ acc(10 + 20*ep + 10*ep^2)*x^3

+ acc(10 + 30*ep + 30*ep^2 + 10*ep^3)*x^2

+ acc(1)*x^5

;

First we see in the declaration of ep a new option. This one indicates that we will consider
powers of ep up to 4. Higher powers will be automatically removed. The bracket statement indicates

34

that we want to print the output with x outside brackets. This may improve the readability. During
the sorting FORM takes this into account and all terms inside the same bracket are put together.
FORM prints the output in the order that the terms have after the sorting. The collect statement
tells FORM put the contents of the brackets inside the indicated function acc. This means that
the collect statement takes a number of adjacent (hence nearly local) terms for its input and gives
a single term as its output. We could process the new terms further as in the next job. Example
ex9b.frm:

Symbols x,ep(:4),x1,x2;

CFunction acc;

Local F = (x+1+ep)^5;

Bracket x;

.sort

Time = 0.00 sec Generated terms = 20

F Terms in output = 20

Bytes used = 308

Collect acc;

Splitarg,acc;

Print +s;

.sort

Time = 0.00 sec Generated terms = 6

F Terms in output = 6

Bytes used = 430

F =

+ acc(1)*x^5

+ acc(1,5*ep,10*ep^2,10*ep^3,5*ep^4)

+ acc(5,5*ep)*x^4

+ acc(5,20*ep,30*ep^2,20*ep^3,5*ep^4)*x

+ acc(10,20*ep,10*ep^2)*x^3

+ acc(10,30*ep,30*ep^2,10*ep^3)*x^2

;

Repeat id acc(x1?,x2?,?a) = acc(x1)*acc(x2,?a);

Print +s;

.end

Time = 0.00 sec Generated terms = 6

F Terms in output = 6

Bytes used = 438

F =

+ acc(1)*x^5

+ acc(1)*acc(5*ep)*acc(10*ep^2)*acc(10*ep^3)*acc(5*ep^4)

+ acc(5)*acc(5*ep)*x^4

+ acc(5)*acc(20*ep)*acc(30*ep^2)*acc(20*ep^3)*acc(5*ep^4)*x

+ acc(10)*acc(20*ep)*acc(10*ep^2)*x^3

+ acc(10)*acc(30*ep)*acc(30*ep^2)*acc(10*ep^3)*x^2

;

And whatever we want with it....
We can also consider the contents of the function as the coefficient of the term. This would be

equivalent to not using the collect statement at all, but in that case we have more terms and in the

35

sequel we may need much more pattern matching. Example ex9c.frm:

Symbols ep(:3),x,y;

CF acc,den;

Local F = x*den(1+ep)+x^2*den(1+2*ep)+x^3*den(1-3*ep);

Splitarg,((ep)),den;

Print;

.sort

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 102

F =

den(1, - 3*ep)*x^3 + den(1,2*ep)*x^2 + den(1,ep)*x;

repeat id den(x?,y?) = den(x)-y*den(x)*den(x,y);

id den(x?) = 1/x;

Abracket ep;

Print;

.sort

Time = 0.00 sec Generated terms = 12

F Terms in output = 12

Bytes used = 186

F =

+ x * (1 - ep + ep^2 - ep^3)

+ x^2 * (1 - 2*ep + 4*ep^2 - 8*ep^3)

+ x^3 * (1 + 3*ep + 9*ep^2 + 27*ep^3);

PolyFun acc;

Collect acc;

Print +s;

.sort

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 240

F =

+ x*acc(1 - ep + ep^2 - ep^3)

+ x^2*acc(1 - 2*ep + 4*ep^2 - 8*ep^3)

+ x^3*acc(1 + 3*ep + 9*ep^2 + 27*ep^3)

;

id x = 1/2;

Print +s;

.end

Time = 0.00 sec Generated terms = 3

F Terms in output = 1

Bytes used = 76

36

F =

+ acc(7/8 - 5/8*ep + 21/8*ep^2 + 7/8*ep^3)

;

Here we use the function den as a denominator function and we expand it in ep. We see that
this works well. Then we declare that acc is the PolyFun which stands for polynomial function. It
means that its argument is the coefficient of the term. It automatically also means that 2*acc(x)
is replaced by acc(2*x), etc. One can check that the addition (with the value for x) in the end
went correctly. The advantage is when we have to first do a lot of work with the powers of x. Before
each power had to be treated 4 times, now only once. At times this can cause great savings.

7 Massless propagator graphs

One of the very successful FORM programs is the MINCER program for three loop massless
propagators. A description of how the routines work is given in the separate documentation file
mincer.ps. It describes the various topologies of the diagrams and how each topology is solved,
either directly or via reduction into simpler topologies. The answer is given as an expansion in
ǫ = 2−D/2 in which D is the dimension of space-time. The three loop topologies LA (ladder), BE
(benz) and NO (non-planar) have to be evaluated to order 1. The three loop topologies FA and BU
should in principle be known to order ǫ and the three loop topologies O1, O2, O3 and O4 to order
ǫ2. Finally the three loop topologies Y1, Y2, Y3, Y4 and Y5 could be needed to order ǫ3 although
such cases are very rare. Basically the elimination of a line in a topology creates a diagram of a
simpler topology. At the same time such an elimination can give a factor 1/ǫ, hence the needed
accuracy because the following hierarchy exists when one line gets eliminated:

• NO → FA,BU.

• BE → FA,BU,O1,O2.

• LA → FA,O2,O3.

• FA → O1,O2,Y3,Y4.

• BU → O2,O4,Y1,Y3.

• O1 → Directly down to T1.

• O2 → Directly down to T1.

• O3 → Directly down to T1.

• O4 → Y2,Y3 or directly down to T1.

We see that for instance Y2 can be obtained via BE → BU → O4 → Y 2 with a factor 1/ǫ3 but
in practise we use the direct reduction to the two loop topology T1 and hence in the current setup
we need the Y topologies effectively only to order 1/ǫ2.

The two loop topologies are T1, T2 and T3 where we can reduce T1 to T2 and or T3 at the
cost of a factor 1/ǫ. Each one loop (sub)integral that we do can give a factor 1/ǫ. Hence the T1
integral can have a factor 1/ǫ3 and the T2,T3 integrals can have a factor 1/ǫ4. The T2,T3 integrals
can be reduced by integration to the one loop topology L1 at the cost of a potential factor 1/ǫ and
finally the L1 integral can give a factor 1/ǫ. In all, intermediate results may have to be expanded

37

to order ǫ6 and different integrals are needed to different accuracies. We obtain these accuracies by
multiplying a given integral by 1/ǫn with n the accuracy we need. Hence a T1 integral is multiplied
by 1/ǫ3. We multiply again by ǫ3 in the end after the rounding.

For diagrams the above accuracies are too much. There we have to consider that if a three
loop integral is needed to order 1, two loop integrals are needed to order ǫ, one loop integrals are
needed to order ǫ2 and tree graphs are needed to order ǫ3. The excess accuracy that is needed for
the individual integrals is due to the poles that are artifacts of the method.
So how do we use MINCER?
Any program that uses MINCER routines should have at or near the beginning the instruction

#include- mincer.h

The file mincer.h contains

• All necessary declarations of variables.

• All physics independent procedures that are needed.

• Some programs for the extension of tables, should the need arise.

All internal variables of MINCER have names that start with mnc to minimize the possibilities
of name conflicts with the parts of the program defined by the user. In addition a few external
variables are defined for communication. They include the vectors p1, · · · ,p8, Q, P, [P ± Q] and
[P ± p1] · · · [P ± p8]. For the moment we will ignore the vector P.

An example of a program that would run the ladder integral

LA(2, 2, 2, 2, 2, 2, 2, 2, 0) = dDp1d
Dp2d

Dp3Q · Q10/p1 · p
2

1/ · · · /p8 · p
2

8

would be (ex10a.frm)

#define TOPO "la"

#define SCHEME "0"

#include- mincer.h

off statistics;

.global

Local F = Q.Q^10/p1.p1^2/p2.p2^2/p3.p3^2/p4.p4^2

/p5.p5^2/p6.p6^2/p7.p7^2/p8.p8^2;

Multiply ep^3;

#call integral(‘TOPO’)

~~~Answer in MS-bar

.sort

On Statistics;

Print +s;

.end

Time = 0.47 sec Generated terms = 5

F Terms in output = 5

Bytes used = 80

F =

- 389662969/13500

- 4964/3*ep^-3

- 80739/5*ep^-2

38



- 56411291/1350*ep^-1

+ 325708/3*z3

;

Usually integrals are not this complicated though.
To do an integral of the type O1 as in

O1(2, 2, 2, 2, 2, 2, 2, 0, 0) = dDp1d
Dp2d

Dp3Q · Q8/p1 · p
2

1/ · · · /p7 · p
2

7

would give the program (ex10b.frm)

#define TOPO "o1"

#define SCHEME "0"

#include- mincer.h

off statistics;

.global

Local F = Q.Q^8/p1.p1^2/p2.p2^2/p3.p3^2/p4.p4^2

/p5.p5^2/p6.p6^2/p7.p7^2;

Multiply ep^3;

Multiply 1/ep^2;

#call integral(‘TOPO’)

~~~Answer in MS-bar

.sort

On Statistics;

Multiply ep^2;

Print +s;

.end

Time = 0.14 sec Generated terms = 12

F Terms in output = 12

Bytes used = 212

F =

- 3404689/20250

- 244/3*ep^-3

- 25871/45*ep^-2

- 207466/675*ep^-1

+ 18956/3*z3

+ 572858047/30375*ep

+ 8624*ep*z4

+ 1804357/45*ep*z3

+ 1402010104781/18225000*ep^2

+ 86352*ep^2*z5

+ 177698/3*ep^2*z4

+ 48870626/675*ep^2*z3

;

Note now the multiplication with 1/ǫ2 before the integration and with ǫ2 afterwards.
The program for a complete diagram we do somewhat differently. Here we feed the diagram

and the topology etc in via an include file. The reason is that we can generate such files for each
diagram in a calculation without having to change the actual program. We need now also an extra
procedure that substitutes the Feynman rules and that makes projections if needed. This is the
procedure treat.prc. It calls the necessary procedures in the MINCER library. Hence the program
looks like (calcdia.frm):

39

#-

#define GAUGE "0"

#define SCHEME "0"

#include mincer.h

*

* Now some variables that are calcdia specific

*

S sgn,n,[n-4],s,proexp,eq;

AutoDeclare Symbol xx, SGN, sgn, z, x, k, y, xdia;

AutoDeclare CFunction DL;

AutoDeclare index ii;

F fp,vqg;

CF signs,del,fxn,qpow,vgh,Dg,Dgh,v3g,epexp;

V Q,p;

S fermi1,fermi2,fermi3,gluon1,gluon2,gluon3,ghost1,ghost2,ghost3;

CF Dg,v2gp,v2gi,v2gc,v3g,v3gp,Ds,DL,v4g,V4G,v3gc,v3gi,v4g,v4gp,v4gc,withp;

I K1,K2;

Off Statistics;

.global

#include diagram.h

;

multiply ep^3;

multiply i_;

#call treat

.sort

#call integral(‘TOPO’)

id mncxi = 0;

id xi = 0;

.sort

On Statistics;

#call trim(‘TOPO’)

id xi = 0;

print;

.end

There are many declarations here. There are the functions for one, two and three loop propa-
gator subgraphs. There are functions for propagators and vertices etc. The parameter xi is a gauge
parameter. If we put the parameter GAUGE equal to -1 we get all powers of the gauge parameter.
If we want to calculate the diagram

this would lead to the file diagram.h with the contents

L d1c=+vqg(1,mu1)*fp(1,p6)*vqg(1,mu2)*fp(1,p7)*vqg(1,mu3)*fp(1,p2)*

vqg(1,mu4)*fp(1,p8)*vqg(1,mu5)*fp(1,p4)*

vqg(1,mu6)*Dg(mu1,mu3,p1)*Dg(mu2,mu5,p5)*Dg(mu4,mu6,p3)

#define NAME "d1c"

#define TOPO "la"

and the run would give

40

#-

~~~Answer in MS-bar

Time = 0.18 sec Generated terms = 5

d1c Terms in output = 5

Bytes used = 64

d1c =

- 1411/6 - 8/3*ep^-3 - 22/3*ep^-2 - 121/3*ep^-1 + 544/3*z3;

Having all this it becomes clear that taking the color factors into account when we add the
diagrams it should be easy now to calculate the three loop quark, gluon and ghost diagrams, even
with a gauge parameter. Actually the three loop quark and gluon propagators are already included
in the MINCER library. All steps in these calculations can be automatized:

• The Feynman diagrams are generated with a program named QGRAF.

• They can be given a notation with a FORM program.

• The color factor can be computed with the procedures in the library color.h.

• The ready to run diagrams are stored by a database program minos.

• The minos program then runs the diagrams one by one each time storing the result in a
database.

• Finally minos generates the sum of the diagrams taking into account the color factor and
other symmetry factors.

41


