NLO CORRECTIONS WITH THE OPP METHOD

Costas G. Papadopoulos

NCSR "Demokritos", Athens

April 1, 2009, ZEUTHEN, Germany

1 INTRODUCTION: WISHLISTS AND TROUBLES

2 OPP Reduction

Rational terms

3 NUMERICAL TESTS

- 4-photon amplitudes
- 6-photon amplitudes
- VVV production

AUTOMATED 1-LOOP HELAC 1-loop

5 OUTLOOK

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)
- As a result, a big effort has been devoted by several groups to the problem of an efficient computation of one-loop corrections for multi-particle processes!

[from G. Heinrich's Summary talk]

Wishlist Les Houches 20071.
$$pp \rightarrow V V + jet$$
2. $pp \rightarrow t\bar{t}b\bar{b}$ 3. $pp \rightarrow t\bar{t} + 2 jets$ 4. $pp \rightarrow W W W$ 5. $pp \rightarrow V V b\bar{b}$ 6. $pp \rightarrow V V + 2 jets$ 7. $pp \rightarrow V + 3 jets$ 8. $pp \rightarrow t\bar{t}b\bar{b}$ 9. $pp \rightarrow 4 jets$

Processes for which a NLO calculation is both desired and feasible

Will we "finish" in time for LHC?

Costas G. Papadopoulos (Athens)

OPP Reduction

What has been done? (2005-2007)

Some recent results \rightarrow Cross Sections available

- $pp \rightarrow Z Z Z pp \rightarrow t \overline{t} Z$ [Lazopoulos, Melnikov, Petriello]
- $pp \rightarrow H + 2$ jets [Campbell, et al., J. R. Andersen, et al.]
- $pp \rightarrow VV + 2$ jets via VBF [Bozzi, Jäger, Oleari, Zeppenfeld]
- $pp \rightarrow VV + 1$ jet [S. Dittmaier, S. Kallweit and P. Uwer]
- $pp \rightarrow t\bar{t} + 1$ jet [S. Dittmaier, P. Uwer and S. Weinzierl]
- $pp \rightarrow V V V$ [BOPP and Campanario et al.]

Mostly 2 \rightarrow 3, very few 2 \rightarrow 4 complete calculations.

- $e^+ e^- \rightarrow$ 4 fermions [Denner, Dittmaier, Roth]
- $e^+ \ e^-
 ightarrow H H
 u \ ar{
 u}$ [GRACE group (Boudjema et al.)]
- $q \ \bar{q} \rightarrow t \bar{t} b \bar{b}$ [Bredenstein et al.]

This is NOT a complete list

(A lot of work has been done at NLO \rightarrow calculations & new methods)

 R. K. Ellis, K. Melnikov and G. Zanderighi, "Generalized unitarity at work: first NLO QCD results for hadronic W⁺ 3jet production," arXiv:0901.4101 [hep-ph]

What has been done? 2009

Figure 1: Inclusive W^+ +3 jet cross-section at the LHC and the K-factor defined as $K = \sigma_{\rm NLO}/\sigma_{\rm LO}$ as a function of the renormalization and factorization scales. Jets are defined with k_T algorithm with R = 0.7 and $p_T > 50$ GeV. Jet rapidities satisfy $|\eta| < 3$. The LO and NLO cross-sections are computed with CTEO6L1 and CTEO6M parton distributions, respectively.

Costas G. Papadopoulos (Athens)

OPP Reduction

CAPP 2009 6 / 84

• C. F. Berger *et al.*, "Precise Predictions for *W* + 3 Jet Production at Hadron Colliders," arXiv:0902.2760 [hep-ph]

What has been done? 2009

FIG. 3: The theoretical prediction for the H_T distribution in W + 3-jet production. The curves and bands are labeled as in fig. 2.

Costas G. Papadopoulos (Athens)

OPP Reduction

CAPP 2009 6 / 84

Problems arising in NLO calculations

- Large Number of Feynman diagrams
- Reduction to Scalar Integrals (or sets of known integrals)
- Numerical Instabilities (inverse Gram determinants, spurious phase-space singularities)
- Extraction of soft and collinear singularities (we need virtual and real corrections)

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
 - general applicability major achievements
 - but major problem: not designed @ amplitude level

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
- Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) → Reduction to set of well-known integrals
- Numerical Approach (Numerical/Partly Algebraic) \rightarrow Compute tensor integrals numerically
 - Ellis, Giele, Glover, Zanderighi;
 - Binoth, Guillet, Heinrich, Schubert;
 - Denner, Dittmaier; Del Aguila, Pittau;
 - Ferroglia, Passera, Passarino, Uccirati;
 - Nagy, Soper; van Hameren, Vollinga, Weinzierl;

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
- Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) → Reduction to set of well-known integrals
- Numerical Approach (Numerical/Partly Algebraic) \rightarrow Compute tensor integrals numerically
- Analytic Approach (Twistor-inspired)
 - \rightarrow extract information from lower-loop, lower-point amplitudes
 - \rightarrow determine scattering amplitudes by their poles and cuts
 - * major advantage: designed to work @ amplitude level
 - \star quadruple and triple cuts major simplifications
 - Bern, Dixon, Dunbar, Kosower, Berger, Forde;
 - Anastasiou, Britto, Cachazo, Feng, Kunszt, Mastrolia;

- Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction:
- Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) → Reduction to set of well-known integrals
- Numerical Approach (Numerical/Partly Algebraic) \rightarrow Compute tensor integrals numerically
- Analytic Approach (Twistor-inspired)
 → extract information from lower-loop, lower-point amplitudes
 > determine scattering amplitudes by their poles and suts
 - \rightarrow determine scattering amplitudes by their poles and cuts
- * OPP Integrand-level reduction combine: reduction@integrand + n-particle cuts

OPP REDUCTION - INTRO

G. Ossola., C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763, 147 (2007) - arXiv:hep-ph/0609007

and JHEP 0707 (2007) 085 - arXiv:0704.1271 [hep-ph]

R. K. Ellis, W. T. Giele and Z. Kunszt, JHEP 0803, 003 (2008)

Any *m*-point one-loop amplitude can be written, before integration, as

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

A bar denotes objects living in $n = 4 + \epsilon$ dimensions

$$ar{D}_i = (ar{q}+p_i)^2 - m_i^2$$
 $ar{q}^2 = q^2 + ar{q}^2$
 $ar{D}_i = D_i + ar{q}^2$

External momenta p_i are 4-dimensional objects

Costas G. Papadopoulos (Athens)

$$\int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2)$$

$$+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1)$$

$$+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0)$$

$$+ \text{ rational terms}$$

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

$$N(q)
ightarrow q^{\mu_1} \dots q^{\mu_m}
ightarrow g^{\mu_1 \mu_2} p_i^{\mu_3} \dots$$

G. Passarino and M. J. G. Veltman, "One Loop Corrections For E+ E- Annihilation Into Mu+ Mu- In The Weinberg Model," Nucl. Phys. B 160 (1979) 151.

$$\begin{split} T^{N}_{\mu_{1}...\mu_{P}}(p_{1},\ldots,p_{N-1},m_{0},\ldots,m_{N-1}) &= \frac{(2\pi\mu)^{4-D}}{i\pi^{2}} \int d^{D}q \frac{q_{\mu_{1}}\cdots q_{\mu_{P}}}{D_{0}D_{1}\cdots D_{N}} \\ T^{N}_{\mu_{1}...\mu_{P}}(p_{1},\ldots,p_{N-1},m_{0},\ldots,m_{N-1}) &= \sum_{i_{1},\ldots,i_{P}}^{N-1} T^{N}_{i_{1}...i_{P}}p_{i_{1}\mu_{1}}\cdots p_{i_{P}\mu_{P}} \\ D_{\mu} &= \sum_{i=1}^{3} p_{i\mu}D_{i}, \\ D_{\mu\nu} &= g_{\mu\nu}D_{00} + \sum_{i_{j}=1}^{3} p_{i\mu}p_{j\nu}D_{ij}, \\ D_{\mu\nu\rho} &= \sum_{i=1}^{3} (g_{\mu\nu}p_{i\rho} + g_{\nu\rho}p_{i\mu} + g_{\mu\rho}p_{i\nu})D_{00i} + \sum_{i,j,k=1}^{3} p_{i\mu}p_{j\nu}p_{k\rho}D_{ijk}, \\ D_{\mu\nu\rho\sigma} &= (g_{\mu\nu}g_{\rho\sigma} + g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho})D_{0000} \\ &+ \sum_{i,j=1}^{3} (g_{\mu\nu}p_{i\rho}p_{j\sigma} + g_{\nu\rho}p_{i\mu}p_{j\sigma} + g_{\mu\rho}p_{i\nu}p_{j\sigma} \\ &+ g_{\mu\sigma}p_{i\nu}p_{j\rho} + g_{\nu\sigma}p_{i\mu}p_{j\rho} + g_{\rho\sigma}p_{i\mu}p_{j\nu})D_{00ij} \\ &+ \sum_{i,j=1}^{3} p_{i\mu}p_{j\nu}p_{k\rho}p_{l\sigma}D_{ijk}. \end{split}$$

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

$$N(q)
ightarrow q^{\mu_1} \dots q^{\mu_m}
ightarrow g^{\mu_1 \mu_2} p_i^{\mu_3} \dots$$

G. Passarino and M. J. G. Veltman, "One Loop Corrections For E+ E- Annihilation Into Mu+ Mu- In The Weinberg Model," Nucl. Phys. B 160 (1979) 151.

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q_{\cdot} p_1 + \epsilon^{p_1 \mu p_3 p_4} Q_{\cdot} p_2 + \epsilon^{p_1 p_2 \mu p_4} Q_{\cdot} p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q_{\cdot} p_4 .$$
(6)

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

$$N(q)
ightarrow q^{\mu_1} \dots q^{\mu_m}
ightarrow g^{\mu_1 \mu_2} p_i^{\mu_3} \dots$$

G. Passarino and M. J. G. Veltman, "One Loop Corrections For E+ E- Annihilation Into Mu+ Mu- In The Weinberg Model," Nucl. Phys. B 160 (1979) 151.

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q \cdot p_1 + \epsilon^{p_1 \mu p_3 p_4} Q \cdot p_2 + \epsilon^{p_1 p_2 \mu p_4} Q \cdot p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q \cdot p_4 .$$
(6)

which yields the final formula for the scalar one-loop five-point function:

$$E_{01234}(w^2 - 4\Delta_4 m_0^2) = D_{1234}[2\Delta_4 - w \cdot (v_1 + v_2 + v_3 + v_4)]$$

$$+ D_{0234} v_1 \cdot w + D_{0134} v_2 \cdot w + D_{0124} v_3 \cdot w + D_{0123} v_4 \cdot w .$$
⁽¹⁹⁾

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

$$N(q)
ightarrow q^{\mu_1} \dots q^{\mu_m}
ightarrow g^{\mu_1 \mu_2} p_i^{\mu_3} \dots$$

G. Passarino and M. J. G. Veltman, "One Loop Corrections For E+ E- Annihilation Into Mu+ Mu- In The Weinberg Model," Nucl. Phys. B 160 (1979) 151.

W. L. van Neerven and J. A. M. Vermaseren, "Large Loop Integrals," Phys. Lett. B 137, 241 (1984)

The derivation of the reduction formula starts as in ref. [1] with the Schouten identity which is a relation between five Levi-Civita tensors:

$$\epsilon^{p_1 p_2 p_3 p_4} Q_{\mu} = \epsilon^{\mu p_2 p_3 p_4} Q \cdot p_1 + \epsilon^{p_1 \mu p_3 p_4} Q \cdot p_2 + \epsilon^{p_1 p_2 \mu p_4} Q \cdot p_3 + \epsilon^{p_1 p_2 p_3 \mu} Q \cdot p_4 . \tag{6}$$

which yields the final formula for the scalar one-loop five-point function:

$$E_{01234}(w^2 - 4\Delta_4 m_0^2) = D_{1234}[2\Delta_4 - w \cdot (v_1 + v_2 + v_3 + v_4)]$$

$$+ D_{0234} v_1 \cdot w + D_{0134} v_2 \cdot w + D_{0124} v_3 \cdot w + D_{0123} v_4 \cdot w .$$
⁽¹⁹⁾

This method is completely different from the one used in ref. [3].

Costas G. Papadopoulos (Athens)

CAPP 2009 11 / 84

UNITARITY

Started in 90's, mainly QCD, amplitude level (analytical results)
Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower,
[arXiv:hep-ph/9403226].
Gluing tree amplitudes plus colinear limits → extract coefficients

$$\mathcal{C} * \int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) \mathcal{C} * D_0(i_0 i_1 i_2 i_3)$$

$$+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) \mathcal{C} * C_0(i_0 i_1 i_2)$$

$$+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) \mathcal{C} * B_0(i_0 i_1)$$

	Integral	Unique Function
a	$I_4^{0\mathrm{m}}(s,t)$	$\ln(-s)\ln(-t)$
b	$I_{3}^{1m}(s)$	$\ln(-s)^2$
с	$I_{3}^{1m}(t)$	$\ln(-t)^2$
d	$I_2(s)$	$\ln(-s)$
е	$I_2(t)$	$\ln(-t)$

Table 1: The set of integral functions that may appear in a cut-constructible massless four-point amplitude, together with the independent logarithms.

UNITARITY

	Integral	Unique Function
а	$I^{3\mathrm{m}}_{4:r,r';i}$	$\ln(-t_i^{[r]})\ln(-t_{i+r+r'}^{[n-r-r'-1]})$
b	$I_{4:r;i}^{2m e}$	$\ln(-t_i^{[r]})\ln(-t_{i+r+1}^{[n-r-2]})$
с	$I_{4:r,r',r'';i}^{4m}$	$\ln(-t_i^{[r]})\ln(-t_{i+r+r'}^{[r'']})$
d	$I_{4:r;i}^{2 \le h}$	$\ln(-t_i^{[r]})\ln(-t_{i+r}^{[n-r-1]})$
е	$I_{4;i}^{1\mathrm{m}}$	$\ln(-t_i^{[r]})\ln(-t_i^{[r+1]})$
f	$I^{3m}_{3:r,r';i}$	$\ln(-t_i^{[r]}) \ln(-t_{i+r}^{[r']})$

Table 2: Following the ordering shown and taking large $t_i^{[r]}$ makes the proof of uniqueness of the cuts straightforward.

R. Britto, F. Cachazo and B. Feng, [arXiv:hep-th/0412103]. Quadruple cut with complex momenta $\rightarrow d(i_0i_1i_2i_3)$

General expression for the 4-dim N(q) at the integrand level in terms of D_i

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

- The quantities $d(i_0i_1i_2i_3)$ are the coefficients of 4-point functions with denominators labeled by i_0 , i_1 , i_2 , and i_3 .
- c(i₀i₁i₂), b(i₀i₁), a(i₀) are the coefficients of all possible 3-point, 2-point and 1-point functions, respectively.

OPP "MASTER" FORMULA - II

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0i_1i_2i_3) + \tilde{d}(q;i_0i_1i_2i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0i_1i_2) + \tilde{c}(q;i_0i_1i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0i_1) + \tilde{b}(q;i_0i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q;i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

The quantities \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} are the "spurious" terms

- They still depend on q (integration momentum)
- They should vanish upon integration

What is the explicit expression of the spurious term?

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

• Express any q in N(q) as

$$q^{\mu} = -p_0^{\mu} + \sum_{i=1}^4 G_i \, \ell_i^{\mu} \, , \, \, \ell_i^2 = 0$$

$$k_{1} = \ell_{1} + \alpha_{1}\ell_{2}, \quad k_{2} = \ell_{2} + \alpha_{2}\ell_{1}, \quad k_{i} = p_{i} - p_{0}$$
$$\ell_{3}^{\mu} = <\ell_{1}|\gamma^{\mu}|\ell_{2}], \quad \ell_{4}^{\mu} = <\ell_{2}|\gamma^{\mu}|\ell_{1}]$$

• The coefficients G_i either reconstruct denominators D_i

 \rightarrow They give rise to *d*, *c*, *b*, *a* coefficients

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

• Express any q in N(q) as

$$q^{\mu} = -p_0^{\mu} + \sum_{i=1}^4 G_i \, \ell_i^{\mu} \, , \, \, \ell_i^2 = 0$$

$$k_{1} = \ell_{1} + \alpha_{1}\ell_{2}, \quad k_{2} = \ell_{2} + \alpha_{2}\ell_{1}, \quad k_{i} = p_{i} - p_{0}$$
$$\ell_{3}^{\mu} = <\ell_{1}|\gamma^{\mu}|\ell_{2}], \quad \ell_{4}^{\mu} = <\ell_{2}|\gamma^{\mu}|\ell_{1}]$$

• The coefficients G_i either reconstruct denominators D_i or vanish upon integration

 \rightarrow They give rise to *d*, *c*, *b*, *a* coefficients \rightarrow They form the spurious \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} coefficients • $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \not l_1 \not l_2 \not k_3 \gamma_5]$$
• $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \ell_1 \ell_2 k_3 \gamma_5]$$

• $\tilde{c}(q)$ terms (they are 6)

$$ilde{c}(q) = \sum_{j=1}^{j_{max}} \left\{ ilde{c}_{1j} [(q+p_0) \cdot \ell_3]^j + ilde{c}_{2j} [(q+p_0) \cdot \ell_4]^j
ight\}$$

In the renormalizable gauge, $j_{max} = 3$

• $\tilde{d}(q)$ term (only 1)

$$\check{d}(q) = \check{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \ell_1 \ell_2 k_3 \gamma_5]$$

• $\tilde{c}(q)$ terms (they are 6)

$$ilde{c}(q) = \sum_{j=1}^{j_{max}} \left\{ ilde{c}_{1j} [(q+p_0) \cdot \ell_3]^j + ilde{c}_{2j} [(q+p_0) \cdot \ell_4]^j
ight\}$$

In the renormalizable gauge, $j_{max} = 3$

• $\tilde{b}(q)$ and $\tilde{a}(q)$ give rise to 8 and 4 terms, respectively

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$
$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\frac{1}{D_{i_0}(q^+)} + \frac{1}{D_{i_0}(q^-)} \right)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\frac{1}{D_{i_4}(q^+)} + \frac{1}{D_{i_4}(q^-)} \right)$$

Melrose, Nuovo Cim. 40 (1965) 181
G. Källén, J.Toll, J. Math. Phys. 6, 299 (1965)

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

$$\begin{vmatrix} T_0^5 & -T_0^4(0) & -T_0^4(1) & -T_0^4(2) & -T_0^4(3) & -T_0^4(4) \\ 1 & Y_{00} & Y_{01} & Y_{02} & Y_{03} & Y_{04} \\ 1 & Y_{10} & Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ 1 & Y_{20} & Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ 1 & Y_{30} & Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ 1 & Y_{40} & Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{vmatrix} = 0,$$

GENERAL STRATEGY

Now we know the form of the spurious terms:

$$\begin{split} \mathsf{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[\mathbf{a}(i_0) + \tilde{\mathbf{a}}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

Our calculation is now reduced to an algebraic problem

GENERAL STRATEGY

Now we know the form of the spurious terms:

$$\begin{split} \mathsf{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[\mathbf{a}(i_0) + \tilde{\mathbf{a}}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

Our calculation is now reduced to an algebraic problem

Extract all the coefficients by evaluating N(q) for a set of values of the integration momentum q

GENERAL STRATEGY

Now we know the form of the spurious terms:

$$\begin{split} \mathsf{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[\mathbf{a}(i_0) + \tilde{\mathbf{a}}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

Our calculation is now reduced to an algebraic problem

Extract all the coefficients by evaluating N(q) for a set of values of the integration momentum q

There is a very good set of such points: Use values of q for which a set of denominators D_i vanish \rightarrow The system becomes "triangular": solve first for 4-point functions, then 3-point functions and so on

$$\begin{split} \mathcal{N}(q) &= d + \tilde{d}(q) + \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q;i) \right] D_{i} + \sum_{i_{0} < i_{1}}^{3} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] D_{i_{0}} D_{i_{1}} \\ &+ \sum_{i_{0}=0}^{3} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] D_{i \neq i_{0}} D_{j \neq i_{0}} D_{k \neq i_{0}} \end{split}$$

We look for a q of the form $q^{\mu}=-p_{0}^{\mu}+x_{i}\ell_{i}^{\mu}$ such that

$$D_0 = D_1 = D_2 = D_3 = 0$$

 \rightarrow we get a system of equations in χ_i that has two solutions q_0^{\pm}

$N(q) = d + \tilde{d}(q)$

Our "master formula" for $q = q_0^{\pm}$ is:

 $N(q_0^{\pm}) = [d + \tilde{d} T(q_0^{\pm})]$

ightarrow solve to extract the coefficients d and $ilde{d}$

$$\begin{split} \mathcal{N}(q) - d - \tilde{d}(q) &= \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q;i) \right] D_{i} + \sum_{i_{0} < i_{1}}^{3} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] D_{i_{0}} D_{i_{1}} \\ &+ \sum_{i_{0}=0}^{3} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] D_{i \neq i_{0}} D_{j \neq i_{0}} D_{k \neq i_{0}} \end{split}$$

Then we can move to the extraction of *c* coefficients using

$$N'(q) = N(q) - d - \tilde{d}T(q)$$

and setting to zero three denominators (ex: $D_1 = 0, D_2 = 0, D_3 = 0$)

$N(q) - d - \tilde{d}(q) = [c(0) + \tilde{c}(q; 0)] D_0$

We have infinite values of q for which

$$D_1 = D_2 = D_3 = 0$$
 and $D_0 \neq 0$

 \rightarrow Here we need 7 of them to determine c(0) and $\tilde{c}(q; 0)$

• Let's go back to the integrand

$$A(ar{q}) = rac{N(q)}{ar{D}_0 ar{D}_1 \cdots ar{D}_{m-1}}$$

• Insert the expression for $N(q) \rightarrow$ we know all the coefficients

$$N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d + \tilde{d}(q) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c + \tilde{c}(q) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i + \cdots$$

• Finally rewrite all denominators using

$$rac{D_i}{ar{D}_i} = ar{Z}_i\,, \hspace{1em} ext{with} \hspace{1em} ar{Z}_i \equiv \left(1 - rac{ ilde{q}^2}{ar{D}_i}
ight)$$

$$\begin{split} \mathcal{A}(\bar{q}) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \frac{d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3)}{\bar{D}_{i_0} \bar{D}_{i_1} \bar{D}_{i_2} \bar{D}_{i_3}} \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{Z}_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \frac{c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2)}{\bar{D}_{i_0} \bar{D}_{i_1} \bar{D}_{i_2}} \prod_{i \neq i_0, i_1, i_2}^{m-1} \bar{Z}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \frac{b(i_0 i_1) + \tilde{b}(q; i_0 i_1)}{\bar{D}_{i_0} \bar{D}_{i_1}} \prod_{i \neq i_0, i_1}^{m-1} \bar{Z}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \frac{a(i_0) + \tilde{a}(q; i_0)}{\bar{D}_{i_0}} \prod_{i \neq i_0}^{m-1} \bar{Z}_i \end{split}$$

The rational part is produced, after integrating over $d^n q$, by the \tilde{q}^2 dependence in \bar{Z}_i

$$\bar{Z}_i \equiv \left(1 - \frac{\tilde{q}^2}{\bar{D}_i}\right)$$

Costas G. Papadopoulos (Athens)

The "Extra Integrals" are of the form

$$I_{s;\mu_1\cdots\mu_r}^{(n;2\ell)} \equiv \int d^n q \, \tilde{q}^{2\ell} \frac{q_{\mu_1}\cdots q_{\mu_r}}{\bar{D}(k_0)\cdots \bar{D}(k_s)},$$

where

$$\bar{D}(k_i) \equiv (\bar{q} + k_i)^2 - m_i^2, k_i = p_i - p_0$$

These integrals:

- have dimensionality $\mathcal{D} = 2(1 + \ell s) + r$
- contribute only when $\mathcal{D} \geq 0$, otherwise are of $\mathcal{O}(\epsilon)$

Expand in D-dimensions ?

$$\bar{D}_i = D_i + \tilde{q}^2$$

Expand in D-dimensions ?

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2; \tilde{q}^2) + \tilde{c}(q; i_0 i_1 i_2; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1; \tilde{q}^2) + \tilde{b}(q; i_0 i_1; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1}^{m-1} \bar{D}_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0; \tilde{q}^2) + \tilde{a}(q; i_0; \tilde{q}^2) \right] \prod_{i \neq i_0}^{m-1} \bar{D}_i + \tilde{P}(q) \prod_i^{m-1} \bar{D}_i \end{split}$$

Expand in D-dimensions ?

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2; \tilde{q}^2) + \tilde{c}(q; i_0 i_1 i_2; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1; \tilde{q}^2) + \tilde{b}(q; i_0 i_1; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1}^{m-1} \bar{D}_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0; \tilde{q}^2) + \tilde{a}(q; i_0; \tilde{q}^2) \right] \prod_{i \neq i_0}^{m-1} \bar{D}_i + \tilde{P}(q) \prod_i^{m-1} \bar{D}_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0; \tilde{q}^2) + \tilde{a}(q; i_0; \tilde{q}^2) \right] \prod_{i \neq i_0}^{m-1} \bar{D}_i + \tilde{P}(q) \prod_i^{m-1} \bar{D}_i \end{split}$$

Polynomial dependence on \tilde{q}^2

$$b(ij; \tilde{q}^2) = b(ij) + \tilde{q}^2 b^{(2)}(ij), \quad c(ijk; \tilde{q}^2) = c(ijk) + \tilde{q}^2 c^{(2)}(ijk).$$

Polynomial dependence on \tilde{q}^2

$$b(ij; \tilde{q}^2) = b(ij) + \tilde{q}^2 b^{(2)}(ij), \quad c(ijk; \tilde{q}^2) = c(ijk) + \tilde{q}^2 c^{(2)}(ijk).$$

$$\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j} = -\frac{i\pi^2}{2} \left[m_i^2 + m_j^2 - \frac{(p_i - p_j)^2}{3} \right] + \mathcal{O}(\epsilon) ,$$

$$\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j \bar{D}_k} = -\frac{i\pi^2}{2} + \mathcal{O}(\epsilon) , \quad \int d^n \bar{q} \frac{\tilde{q}^4}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} = -\frac{i\pi^2}{6} + \mathcal{O}(\epsilon) .$$

Furthermore, by defining

$$\mathcal{D}^{(m)}(q, \tilde{q}^2) \equiv \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i ,$$

the following expansion holds

$$\mathcal{D}^{(m)}(q, \tilde{q}^2) = \sum_{j=2}^m \tilde{q}^{(2j-4)} d^{(2j-4)}(q) \, ,$$

where the last coefficient is independent on q

$$d^{(2m-4)}(q) = d^{(2m-4)}$$

In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of \tilde{q}^2 , in order to determine $b^{(2)}(ij)$, $c^{(2)}(ijk)$ and $d^{(2m-4)}$.

$$\begin{aligned} \mathrm{R}_{1} &= -\frac{i}{96\pi^{2}}d^{(2m-4)} - \frac{i}{32\pi^{2}}\sum_{i_{0} < i_{1} < i_{2}}^{m-1}c^{(2)}(i_{0}i_{1}i_{2}) \\ &- \frac{i}{32\pi^{2}}\sum_{i_{0} < i_{1}}^{m-1}b^{(2)}(i_{0}i_{1})\left(m_{i_{0}}^{2} + m_{i_{1}}^{2} - \frac{(p_{i_{0}} - p_{i_{1}})^{2}}{3}\right). \end{aligned}$$

G. Ossola, C. G. Papadopoulos and R. Pittau,arXiv:0802.1876 [hep-ph]

A different source of Rational Terms, called R_2 , can also be generated from the ϵ -dimensional part of N(q)

$$ar{N}(ar{q}) = N(q) + ilde{N}(ar{q}^2,\epsilon;q)$$
 $\mathrm{R}_2 \equiv rac{1}{(2\pi)^4} \int d^n \, ar{q} rac{ ilde{N}(ilde{q}^2,\epsilon;q)}{ar{D}_0 ar{D}_1 \cdots ar{D}_{m-1}} \equiv rac{1}{(2\pi)^4} \int d^n \, ar{q} \, \mathcal{R}_2$
 $ar{q} = q + ar{q},$
 $ar{\gamma}_{ar{\mu}} = \gamma_{\mu} + ar{\gamma}_{ar{\mu}},$
 $ar{g}^{ar{\mu}ar{
u}} = g^{\mu
u} + ar{g}^{ar{\mu}ar{
u}}.$

New vertices/particles or GKM-approach

RATIONAL TERMS - R_2

$$\begin{split} \bar{N}(\bar{q}) &\equiv e^3 \left\{ \bar{\gamma}_{\bar{\beta}} \left(\bar{\mathcal{Q}}_1 + m_e \right) \gamma_\mu \left(\bar{\mathcal{Q}}_2 + m_e \right) \bar{\gamma}^{\bar{\beta}} \right\} \\ &= e^3 \left\{ \gamma_\beta (\mathcal{Q}_1 + m_e) \gamma_\mu (\mathcal{Q}_2 + m_e) \gamma^\beta \\ &- \epsilon \left(\mathcal{Q}_1 - m_e \right) \gamma_\mu (\mathcal{Q}_2 - m_e) + \epsilon \tilde{q}^2 \gamma_\mu - \tilde{q}^2 \gamma_\beta \gamma_\mu \gamma^\beta \right\} \,, \end{split}$$

RATIONAL TERMS - R_2

$$\begin{split} &\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_0 \bar{D}_1 \bar{D}_2} &= -\frac{i\pi^2}{2} + \mathcal{O}(\epsilon) \,, \\ &\int d^n \bar{q} \frac{q_\mu q_\nu}{\bar{D}_0 \bar{D}_1 \bar{D}_2} &= -\frac{i\pi^2}{2\epsilon} g_{\mu\nu} + \mathcal{O}(1) \,, \end{split}$$

$$\mathbf{R}_2 = -\frac{ie^3}{8\pi^2}\gamma_\mu + \mathcal{O}(\epsilon)\,,$$

$$\mu \qquad = -\frac{ie^3}{8\pi^2}\gamma_{\mu}$$

Costas G. Papadopoulos (Athens)

RATIONAL TERMS - R_2

Rational counterterms

$$\mu \stackrel{p}{\longrightarrow} \dots \qquad = -\frac{ie^2}{8\pi^2} g_{\mu\nu} \left(2m_e^2 - p^2/3\right)$$

$$\stackrel{p}{\longrightarrow} \qquad = \frac{ie^2}{16\pi^2} \left(-p + 2m_e\right)$$

$$\mu \stackrel{\nu}{\longrightarrow} \qquad = \frac{ie^4}{12\pi^2} \left(g_{\mu\nu}g_{\rho\sigma} + g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho}\right)$$
Calculate N(q)

Calculate N(q)

• We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

• by evaluating N(q) at certain values of integration momentum

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

• by evaluating N(q) at certain values of integration momentum

Evaluate scalar integrals

Calculate N(q)

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate N(q) numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

by evaluating N(q) at certain values of integration momentum

Evaluate scalar integrals

- massive integrals \rightarrow FF [G. J. van Oldenborgh]
- massless+massive integrals \rightarrow OneLOop [A. van Hameren]

• Unitarity Methods:

• N(q) or A(q) hasn't to be known analytically

• Unitarity Methods:

- N(q) or A(q) hasn't to be known analytically
- No computer algebra
- Unitarity Methods:

- N(q) or A(q) hasn't to be known analytically
- No computer algebra
- $\bullet \ \ \mathsf{Mathematica} \to \mathsf{Numerica}$
- Unitarity Methods:

- N(q) or A(q) hasn't to be known analytically
- No computer algebra
- Mathematica \rightarrow Numerica
- Unitarity Methods:
 - A more transparent algebraic method

- N(q) or A(q) hasn't to be known analytically
- No computer algebra
- Mathematica \rightarrow Numerica
- Unitarity Methods:
 - A more transparent algebraic method
 - A solid way to get all rational terms

- N(q) or A(q) hasn't to be known analytically
- No computer algebra
- Mathematica \rightarrow Numerica
- Unitarity Methods:
 - A more transparent algebraic method
 - A solid way to get all rational terms

Cuttools

G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 0803, 042 (2008) [arXiv:0711.3596 [hep-ph]]

• Polynomial equation in q

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 2$ compared to m as a function of q

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 2$ compared to m as a function of q
- Zeros of (a tower of) polynomial equations

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 2$ compared to m as a function of q
- Zeros of (a tower of) polynomial equations
- Different ways of solving it, besides 'unitarity method'

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 2$ compared to m as a function of q
- Zeros of (a tower of) polynomial equations
- Different ways of solving it, besides 'unitarity method'

The $N \equiv N$ test

A tool to efficiently treat phase-space points with numerical instabilities

General expression for the 4-dim N(q) at the integrand level in terms of D_i

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

4-photon and 6-photon amplitudes

As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m_f)

Input parameters for the reduction:

- External momenta p_i
- Masses of propagators in the loop
- Polarization vectors

Costas G. Papadopoulos (Athens)

4-photon and 6-photon amplitudes

As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m_f)

Input parameters for the reduction:

- External momenta $p_i \rightarrow$ in this example massless, i.e. $p_i^2 = 0$
- Masses of propagators in the loop \rightarrow all equal to m_f
- Polarization vectors → various helicity configurations

Costas G. Papadopoulos (Athens)

OPP Reduction

$$\frac{F_{++++}^f}{\alpha^2 Q_f^4} = -8$$

Rational Part

Costas G. Papadopoulos (Athens)

$$\begin{array}{rcl} \frac{F_{++++}^{f}}{\alpha^{2}Q_{f}^{4}} & = & -8 + 8 \left(1 + \frac{2\hat{u}}{\hat{s}}\right) B_{0}(\hat{u}) + 8 \left(1 + \frac{2\hat{t}}{\hat{s}}\right) B_{0}(\hat{t}) \\ & & -8 \left(\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}\right) \left[\hat{t}C_{0}(\hat{t}) + \hat{u}C_{0}(\hat{u})\right] \\ & & -4 \left[\begin{array}{c} & \frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} \end{array} \right] D_{0}(\hat{t}, \hat{u}) \end{array}$$

Massless four-photon amplitudes

Costas G. Papadopoulos (Athens)

CAPP 2009 42 / 84

$$\begin{aligned} \frac{F_{++++}^{f}}{\alpha^{2}Q_{f}^{4}} &= -8 + 8\left(1 + \frac{2\hat{u}}{\hat{s}}\right)B_{0}(\hat{u}) + 8\left(1 + \frac{2\hat{t}}{\hat{s}}\right)B_{0}(\hat{t}) \\ &- 8\left(\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} - \frac{4m_{f}^{2}}{\hat{s}}\right)[\hat{t}C_{0}(\hat{t}) + \hat{u}C_{0}(\hat{u})] \\ &- 4\left[4m_{f}^{4} - (2\hat{s}m_{f}^{2} + \hat{t}\hat{u})\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} + \frac{4m_{f}^{2}\hat{t}\hat{u}}{\hat{s}}\right]D_{0}(\hat{t},\hat{u}) \\ &+ 8m_{f}^{2}(\hat{s} - 2m_{f}^{2})[D_{0}(\hat{s},\hat{t}) + D_{0}(\hat{s},\hat{u})] \end{aligned}$$

Massive four-photon amplitudes

Costas G. Papadopoulos (Athens)

CAPP 2009 42 / 84

$$\begin{aligned} \frac{F_{++++}^{f}}{\alpha^{2}Q_{f}^{4}} &= -8 + 8\left(1 + \frac{2\hat{u}}{\hat{s}}\right)B_{0}(\hat{u}) + 8\left(1 + \frac{2\hat{t}}{\hat{s}}\right)B_{0}(\hat{t}) \\ &- 8\left(\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} - \frac{4m_{f}^{2}}{\hat{s}}\right)[\hat{t}C_{0}(\hat{t}) + \hat{u}C_{0}(\hat{u})] \\ &- 4\left[4m_{f}^{4} - (2\hat{s}m_{f}^{2} + \hat{t}\hat{u})\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} + \frac{4m_{f}^{2}\hat{t}\hat{u}}{\hat{s}}\right]D_{0}(\hat{t},\hat{u}) \\ &+ 8m_{f}^{2}(\hat{s} - 2m_{f}^{2})[D_{0}(\hat{s},\hat{t}) + D_{0}(\hat{s},\hat{u})] \end{aligned}$$

Massive four-photon amplitudes

Results also checked for
$$F_{+++-}^{f}$$
 and F_{++--}^{f}

Costas G. Papadopoulos (Athens)

SIX PHOTONS – COMPARISON WITH Nagy-Soper and Mahlon

Massless case: [+ + - - -] and [+ - - + + -]

Plot presented by Nagy and Soper hep-ph/0610028 (also Binoth et al., hep-ph/0703311)

SIX PHOTONS – COMPARISON WITH Nagy-Soper and Mahlon

Analogous plot produced with OPP reduction

SIX PHOTONS - COMPARISON WITH Binoth, Heinrich, Gehrmann, Mastrolia

Same plot as before for a wider range of θ

Massless case: [+ + - - -] and [+ + - - + -]

• Massless result [Mahlon]

Massless result [Mahlon]
m = 0.5 GeV

- Massless result [Mahlon]
- *m* = 0.5 GeV
- *m* = 4.5 GeV

- Massless result [Mahlon]
- *m* = 0.5 GeV
- *m* = 4.5 GeV
- *m* = 12.0 GeV
SIX PHOTONS WITH MASSIVE FERMIONS

- Massless result [Mahlon]
- *m* = 0.5 GeV
- *m* = 4.5 GeV
- *m* = 12.0 GeV
- *m* = 20.0 GeV

Costas G. Papadopoulos (Athens)

NLO corrections to tri-boson production

•
$$pp \rightarrow ZZZ$$

• $pp \rightarrow W^+ZZ$
• $pp \rightarrow W^+W^-Z$
• $pp \rightarrow W^+W^-W^+$

T. Binoth, G. Ossola, C. G. Papadopoulos and R. Pittau, arXiv:0804.0350 [hep-ph]

$pp \rightarrow ZZZ$ virtual corrections

A. Lazopoulos, K. Melnikov and F. Petriello, [arXiv:hep-ph/0703273]

Poles $1/\epsilon^2$ and $1/\epsilon$

$$\sigma^{\rm NLO, virt}|_{\rm div} = -C_F \frac{\alpha_s}{\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} (s_{12})^{-\epsilon} \left(\frac{1}{\epsilon^2} + \frac{3}{2\epsilon}\right) \sigma^{\rm LO}$$

Costas G. Papadopoulos (Athens)

$pp \rightarrow WWZ$ VIRTUAL CORRECTIONS

Hankele and Zeppenfeld arXiv:0712.3544 [hep-ph]

$pp \rightarrow VVV$ virtual corrections

A still naive implementation

$pp \rightarrow VVV$ virtual corrections

A still naive implementation

• Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !

- Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R_1 terms by CutTools

- Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

- Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

Comparison with LMP

A. Lazopoulos, K. Melnikov and F. Petriello, [arXiv:hep-ph/0703273]

- Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R_1 terms by CutTools
- R₂ terms added by hand

Comparison with LMP

A. Lazopoulos, K. Melnikov and F. Petriello, [arXiv:hep-ph/0703273]

 \bullet Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms

- Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

Comparison with LMP

A. Lazopoulos, K. Melnikov and F. Petriello, [arXiv:hep-ph/0703273]

- Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms
- An 'easy' agreement for all graphs with up to 4-point loop integrals

- Calculate the *N*(*q*) by brute (numerical) force namely multiplying gamma matrices !
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

Comparison with LMP

A. Lazopoulos, K. Melnikov and F. Petriello, [arXiv:hep-ph/0703273]

- Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms
- An 'easy' agreement for all graphs with up to 4-point loop integrals
- A bit more work to uncover the differences in scalar function normalization that happen to show to order e² thus influence only 5-point loop integrals.

$pp \rightarrow VVV$ VIRTUAL CORRECTIONS

Typical precision:

$pp \rightarrow VVV$ virtual corrections

Typical precision:

• LMP: 9.573(66) about 1% error

Typical precision:

- LMP: 9.573(66) about 1% error

Typical precision:

• LMP: 9.573(66) about 1% error

Typical time: 10⁴ times faster (for non-singular PS-points)

$$\sigma_{q\bar{q}}^{NLO} = \int_{VVVg} \left[d\sigma_{q\bar{q}}^{R} - d\sigma_{q\bar{q}}^{A} \right] + \int_{VVV} \left[d\sigma_{q\bar{q}}^{B} + d\sigma_{q\bar{q}}^{V} + \int_{g} d\sigma_{q\bar{q}}^{A} + d\sigma_{q\bar{q}}^{C} \right]$$

$$\sigma_{q\bar{q}}^{NLO} = \int_{VVVg} \left[d\sigma_{q\bar{q}}^{R} - d\sigma_{q\bar{q}}^{A} \right] + \int_{VVV} \left[d\sigma_{q\bar{q}}^{B} + d\sigma_{q\bar{q}}^{V} + \int_{g} d\sigma_{q\bar{q}}^{A} + d\sigma_{q\bar{q}}^{C} \right]$$

$$\mathcal{D}^{q_1 g_6, \bar{q}_2} = \frac{8\pi \alpha_s C_F}{2\tilde{x} \, \rho_1 \cdot \rho_6} \left(\frac{1+\tilde{x}^2}{1-\tilde{x}}\right) |\mathcal{M}^B_{q\bar{q}}(\tilde{p}_{16}, p_2, \tilde{p}_3, \tilde{p}_4, \tilde{p}_5)|^2$$

$$\sigma_{q\bar{q}}^{NLO} = \int_{VVVg} \left[d\sigma_{q\bar{q}}^{R} - d\sigma_{q\bar{q}}^{A} \right] + \int_{VVV} \left[d\sigma_{q\bar{q}}^{B} + d\sigma_{q\bar{q}}^{V} + \int_{g} d\sigma_{q\bar{q}}^{A} + d\sigma_{q\bar{q}}^{C} \right]$$

$$\mathcal{D}^{q_1 g_6, \bar{q}_2} = \frac{8\pi \alpha_s C_F}{2\tilde{x} \, p_1 \cdot p_6} \left(\frac{1+\tilde{x}^2}{1-\tilde{x}}\right) |\mathcal{M}^B_{q\bar{q}}(\tilde{p}_{16}, p_2, \tilde{p}_3, \tilde{p}_4, \tilde{p}_5)|^2$$

$$\begin{split} \tilde{x} &= \frac{p_{1} \cdot p_{2} - p_{2} \cdot p_{6} - p_{1} \cdot p_{6}}{p_{1} \cdot p_{2}} \\ \tilde{p}_{16} &= \tilde{x} p_{1} , \quad K = p_{1} + p_{2} - p_{6} , \quad \tilde{K} = \tilde{p}_{16} + p_{2} \\ \Lambda^{\mu\nu} &= g^{\mu\nu} - \frac{2(K^{\mu} + \tilde{K}^{\mu})(K^{\nu} + \tilde{K}^{\nu})}{(K + \tilde{K})^{2}} + \frac{2\tilde{K}^{\mu}K^{\nu}}{K^{2}} \\ \tilde{p}_{j} &= \Lambda p_{j} \end{split}$$

$$d\sigma_{q\bar{q}}^{R} - d\sigma_{q\bar{q}}^{A} = \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[C_{F} |\mathcal{M}_{q\bar{q}}^{R}(\{p_{j}\}')|^{2} - \mathcal{D}^{q_{1}g_{6},\bar{q}_{2}} - \mathcal{D}^{\bar{q}_{2}g_{6},q_{1}} \Big] d\Phi_{VVVg}$$

$$d\sigma_{q\bar{q}}^{R} - d\sigma_{q\bar{q}}^{A} = \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[C_{F} |\mathcal{M}_{q\bar{q}}^{R}(\{p_{j}\}')|^{2} - \mathcal{D}^{q_{1}g_{6},\bar{q}_{2}} - \mathcal{D}^{\bar{q}_{2}g_{6},q_{1}} \Big] d\Phi_{VVVg}$$

$$d\sigma_{q\bar{q}}^{C} + \int_{g} d\sigma_{q\bar{q}}^{A} = \frac{\alpha_{s}C_{F}}{2\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} \left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon} \left[\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} - \frac{2\pi^{2}}{3}\right] d\sigma_{q\bar{q}}^{B}$$
$$+ \frac{\alpha_{s}C_{F}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{q,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1},p_{2}) + \frac{\alpha_{s}C_{F}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{\bar{q},\bar{q}}(x) \, d\sigma_{q\bar{q}}^{B}(p_{1},xp_{2})$$

$$\mathcal{K}^{q,q}(x) = \mathcal{K}^{\tilde{q},\tilde{q}}(x) = \left(\frac{1+x^2}{1-x}\right)_+ \log\left(\frac{s_{12}}{\mu_F^2}\right) + \left(\frac{4\log(1-x)}{1-x}\right)_+ + (1-x) - 2(1+x)\log(1-x)$$

$$\sigma_{gq}^{NLO} = \int_{VVV} \left[\int_{q} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int_{VVVq} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right]$$

$$\sigma_{gq}^{NLO} = \int_{VVV} \left[\int_{q} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int_{VVVq} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right]$$

$$d\sigma_{gq}^{R} - d\sigma_{gq}^{A} = \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[T_{R} |\mathcal{M}_{gq}^{R}|^{2} - \mathcal{D}^{g_{1}q_{6},q_{2}} \Big] d\Phi_{VVVq}$$

$$\sigma_{gq}^{NLO} = \int_{VVV} \left[\int_{q} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int_{VVVq} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right]$$

$$d\sigma_{gq}^{R} - d\sigma_{gq}^{A} = \frac{C_{S}}{N} \frac{1}{2s_{12}} \Big[T_{R} |\mathcal{M}_{gq}^{R}|^{2} - \mathcal{D}^{g_{1}q_{6},q_{2}} \Big] d\Phi_{VVVq}$$

$$\mathcal{D}^{g_1q_6,q_2} = \frac{8\pi\alpha_s T_R}{\tilde{x} 2 p_1 \cdot p_6} [1 - 2\tilde{x} (1 - \tilde{x})] |\mathcal{M}^B_{q\bar{q}}(\tilde{p}_j)|^2$$

$$d\sigma_{gq}^{C} + \int_{q} d\sigma_{gq}^{A} = \frac{\alpha_{s} T_{R}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{g,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1}, p_{2})$$
$$\mathcal{K}^{g,q}(x) = [x^{2} + (1-x)^{2}] \log\left(\frac{s_{12}}{\mu_{F}^{2}}\right) + 2x(1-x) + 2[x^{2} + (1-x)^{2}] \log(1-x)$$

$$d\sigma_{gq}^{C} + \int_{q} d\sigma_{gq}^{A} = \frac{\alpha_{s} T_{R}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{g,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1}, p_{2})$$
$$\mathcal{K}^{g,q}(x) = [x^{2} + (1-x)^{2}] \log\left(\frac{s_{12}}{\mu_{F}^{2}}\right) + 2x(1-x) + 2[x^{2} + (1-x)^{2}] \log(1-x)$$

$$d\sigma(P_1, P_2) = \sum_{ab} \int dz_1 dz_2 f_a(z_1, \mu_F) f_b(z_2, \mu_F) d\sigma_{ab}(z_1 P_1, z_2 P_2)$$

 $q\bar{q}, \bar{q}q, gq, qg, g\bar{q}, \bar{q}g$

$$d\sigma_{gq}^{C} + \int_{q} d\sigma_{gq}^{A} = \frac{\alpha_{s} T_{R}}{2\pi} \int_{0}^{1} dx \, \mathcal{K}^{g,q}(x) \, d\sigma_{q\bar{q}}^{B}(xp_{1}, p_{2})$$
$$\mathcal{K}^{g,q}(x) = [x^{2} + (1-x)^{2}] \log\left(\frac{s_{12}}{\mu_{F}^{2}}\right) + 2x(1-x) + 2[x^{2} + (1-x)^{2}] \log(1-x)$$

$$d\sigma(P_1, P_2) = \sum_{ab} \int dz_1 dz_2 f_a(z_1, \mu_F) f_b(z_2, \mu_F) d\sigma_{ab}(z_1 P_1, z_2 P_2)$$

 $q\bar{q}, \ \bar{q}q, \ gq, \ gq, \ qg, \ g\bar{q}, \ \bar{q}g$

• check also with phase-space slicing method

- Virtual contributions obtained with Cuttools
- O(100ms) per "event" ightarrow factor $O(10-10^2)$

- Virtual contributions obtained with Cuttools
- O(100ms) per "event" ightarrow factor $O(10-10^2)$
- Real contributions obtained with Helac
- Positive/negative (un)weighted events

- Virtual contributions obtained with Cuttools
- O(100ms) per "event" ightarrow factor $O(10-10^2)$
- Real contributions obtained with Helac
- Positive/negative (un)weighted events

Process	scale μ	Born cross section [fb]	NLO cross section [fb]
ZZZ	3 <i>M</i> _Z	9.7(1)	15.3(1)
WZZ	$2M_Z + M_W$	20.2(1)	40.4(2)
WWZ	$M_Z + 2M_W$	96.8(6)	185.5(8)
WWW	3 <i>M</i> _W	82.5(5)	146.2(6)

Agreement with Hankele and Zeppenfeld.

Costas G. Papadopoulos (Athens)

OPP Reduction

Costas G. Papadopoulos (Athens)

OPP Reduction

scale	σ_B	σ_{NLO}	K
$\mu = M/2$	82.7(5)	153.2(6)	1.85
$\mu = M$	81.4(5)	144.5(6)	1.77
$\mu = 2M$	81.8(5)	139.1(6)	1.70

scale	σ_B	σ_{NLO}	K
$\mu = M/2$	20.2(1)	43.0(2)	2.12
$\mu = M$	20.0(1)	39.7(2)	1.99
$\mu = 2M$	19.7(1)	37.8(2)	1.91

• Still using Feynman Graphs, but a new (OPP) reduction approach

- Still using Feynman Graphs, but a new (OPP) reduction approach
- Unitarity-like approach
- Still using Feynman Graphs, but a new (OPP) reduction approach
- Unitarity-like approach
- Dyson-Schwinger recursion

AMPLITUDE CALCULATION-I

Amplitude calculation-II

Amplitude calculation-III

HELAC - PHEGAS : automatic helicity amplitude calculation and parton level generation

• Reliable cross section computation and event generation for multiparticle processes, with $\sim 10-12$ particles in the final state.

- Reliable cross section computation and event generation for multiparticle processes, with $\sim 10-12$ particles in the final state.
- HELAC: A.Kanaki and C.G.Papadopoulos, CPC 132 (2000) 306, hep-ph/0002082.
 Matrix element computation algorithm, based on Dyson-Schwinger equations, including: EWK, QCD, fermion masses, reliable arithmetic, running couplings and masses

- Reliable cross section computation and event generation for multiparticle processes, with $\sim 10-12$ particles in the final state.
- HELAC: A.Kanaki and C.G.Papadopoulos, CPC 132 (2000) 306, hep-ph/0002082.
 Matrix element computation algorithm, based on Dyson-Schwinger equations, including: EWK, QCD, fermion masses, reliable arithmetic, running couplings and masses

PHEGAS:C.G.Papadopoulos, CPC 137 (2001) 247, hep-ph/0007335Monte-Carlo phase space integration/generation basedon optimized multichannel approach.

- Reliable cross section computation and event generation for multiparticle processes, with $\sim 10-12$ particles in the final state.
- HELAC: A.Kanaki and C.G.Papadopoulos, CPC 132 (2000) 306, hep-ph/0002082.
 Matrix element computation algorithm, based on Dyson-Schwinger equations, including: EWK, QCD, fermion masses, reliable arithmetic, running couplings and masses

PHEGAS: C.G.Papadopoulos, CPC 137 (2001) 247, hep-ph/0007335 Monte-Carlo phase space integration/generation based on optimized multichannel approach.

hep-ph/0012004 and Tokyo 2001, (CPP2001) Computational particle physics, p. 20-25

T. Gleisberg, et al. Eur. Phys. J. C 34 (2004) 173

Old Feynman graphs \rightarrow computational cost $\sim n!$

Old Feynman graphs \rightarrow computational cost $\sim n!$

New Dyson-Schwinger \rightarrow computational cost $\sim 3^n$

P.Draggiotis, R.H.Kleiss and C.G.Papadopoulos, Phys. Lett. B439 (1998) 157

F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332

F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

Old Feynman graphs \rightarrow computational cost $\sim n!$

New Dyson-Schwinger \rightarrow computational cost $\sim 3^n$

P.Draggiotis, R.H.Kleiss and C.G.Papadopoulos, Phys. Lett. B439 (1998) 157

F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332

F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

• Example: $e^-e^+ \rightarrow e^-e^+e^-e^+$ in QED:

The Dyson-Schwinger recursion

• Imagine a theory with 3- and 4- point vertices and just one field. Then it is straightforward to write an equation that gives the amplitude for $1 \rightarrow n$

- Dirac algebra simplification: 2-dim vs 4-dim and chiral representation, including $m_f \neq 0$.
- The sign factor:

$$\epsilon(P_1,P_2)
ightarrow \epsilon(m_1,m_2)$$

we define

$$\epsilon(m_1,m_2) = (-1)^{\chi(m_1,m_2)}
onumber \ \chi(m_1,m_2) = \sum_{i=n}^2 \hat{m}_{1i} \left(\sum_{j=1}^{i-1} \hat{m}_{2j}
ight)$$

where hatted components are set to 0 if the corresponding external particle is a boson.

• Full EWK theory, both Unitary and Feynman gauges.

A. Denner, Fortsch. Phys. 41, 307 (1993).

HELAC

- Construction of the skeleton solution of the Dyson-Schwinger equations. At this stage only integer arithmetic is performed. This is part of the initialization phase.
- Dressing-up the skeleton with momenta, provided by PHEGAS and wave functions, propagators, *n*-point functions in general.
- Unitary and Feynman gauges implemented. Due to multi-precision arithmetic, tests of gauge invariance can be extended to arbitrary precision.
- All fermions masses can be non-zero.
- All Electroweak and QCD vertices are implemented, including Higgs and would-be Goldstone bosons.

• Ordinary approach SU(N)-type

$$\mathcal{A}^{a_1...a_n} = \sum Tr(T^{a_{\sigma_1}}...T^{a_{\sigma_n}}) \quad A(\sigma_1...\sigma_n)$$

$$\mathcal{C}_{ij} = \sum Tr(T^{a_{\sigma_1}} \dots T^{a_{\sigma_n}})Tr(T^{a_{\sigma'_1}} \dots T^{a_{\sigma'_n}})$$

• Ordinary approach SU(N)-type

$$\mathcal{A}^{a_1...a_n} = \sum Tr(T^{a_{\sigma_1}}\dots T^{a_{\sigma_n}}) \quad A(\sigma_1\dots\sigma_n)$$

$$\mathcal{C}_{ij} = \sum Tr(T^{a_{\sigma_1}} \dots T^{a_{\sigma_n}}) Tr(T^{a_{\sigma'_1}} \dots T^{a_{\sigma'_n}})$$

Quarks and gluons treated differently

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where σ_i represents the *i*-th permutation of the set $1, 2, \ldots, n$.

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where σ_i represents the *i*-th permutation of the set $1, 2, \ldots, n$.

- \star quarks $1 \dots n$
- \star antiquarks $\sigma_i(1 \dots n)$ and
- \star gluons = $q\bar{q}$

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where σ_i represents the *i*-th permutation of the set $1, 2, \ldots, n$.

- \star quarks $1 \dots n$
- \star antiquarks $\sigma_i(1 \dots n)$ and
- \star gluons = $q\bar{q}$

$$\mathcal{C}_{ij} = \sum D_i D_j = N^lpha_c \;,\;\; lpha = \langle \sigma_1, \sigma_2
angle$$

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where σ_i represents the *i*-th permutation of the set $1, 2, \ldots, n$.

- \star quarks $1 \dots n$
- \star antiquarks $\sigma_i(1 \dots n)$ and
- \star gluons = $q\bar{q}$

$$\mathcal{C}_{ij} = \sum D_i D_j = N^lpha_c \;,\;\; lpha = \langle \sigma_1, \sigma_2
angle$$

\blacklozenge exact color treatment \Rightarrow low color charge

Problem: number of colour connection configurations: $\sim n!$ where n is the number of gluons or $q\bar{q}$ pairs. \Rightarrow Monte-Carlo over continuous colour-space.

• Extra version with HG^n and $\mathrm{H}\gamma^n$ couplings

Costas G. Papadopoulos (Athens)

=

HELAC COLOR TREATMENT

$$\mathcal{M}_{j_{2},...,j_{k}}^{a_{1},i_{2},...,i_{k}} t_{i_{1}j_{1}}^{a_{1}} \to \mathcal{M}_{j_{1},j_{2},...,j_{k}}^{i_{1},i_{2},...,i_{k}}$$

$$\mathcal{M}_{j_{1},j_{2},...,j_{k}}^{i_{1},i_{2},...,i_{k}} = \sum_{\sigma} \delta_{i_{\sigma_{1}},j_{1}} \delta_{i_{\sigma_{2}},j_{2}} \dots \delta_{i_{\sigma_{k}},j_{k}} A_{\sigma}$$

$$\sum_{\{i\},\{j\}} |\mathcal{M}_{j_{1},j_{2},...,j_{k}}^{i_{1},i_{2},...,i_{k}}|^{2}$$

$$\sum_{\sigma,\sigma'} \mathcal{A}_{\sigma}^{*} \mathcal{C}_{\sigma,\sigma'} \mathcal{A}_{\sigma'}$$

$$\mathcal{C}_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} \delta_{i_{\sigma_{1}},j_{1}} \delta_{i_{\sigma_{2}},j_{2}} \dots \delta_{i_{\sigma_{k}},j_{k}} \delta_{i_{\sigma_{1}'},j_{1}} \delta_{i_{\sigma_{2}'},j_{2}} \dots \delta_{i_{\sigma_{k}'},j_{k}}$$

 $(x_1, y_1) \dots (x_n, y_n)$

where y_i take the values $\{1, 2, ..., n_l\}$ if *i* is a gluon or an outgoing quark (incoming anti-quark) otherwise $y_i = 0$, whereas x_i take the values $\{\sigma_1, \sigma_2, ..., \sigma_{n_l}\}$ if *i* is a gluon or an incoming quark (outgoing anti-quark) otherwise $x_i = 0$. So for instance for a $q\bar{q} \rightarrow gg$ process, $n_l = 3$ and a possible color connection is given by (3,0)(0,1)(1,2)(2,3)

HELAC COLOR TREATMENT

whereas for $gg \rightarrow ggg$, $n_l = 5$ and a possible color connection is given by (2,1)(3,2)(4,3)(5,4)(1,5)

$$\mathcal{C}_{\sigma,\sigma'} = \mathit{N}_{c}^{m(\sigma,\sigma')}$$

where $m(\sigma, \sigma')$ count the number of common cycles of the two permutations.

HELAC COLOR TREATMENT - 1 LOOP

HELAC R2 TERMS

$$\begin{array}{l} \frac{p}{70000000000} \\ \mu_{1,a_{1}} \mu_{2,a_{2}} \end{array} = \frac{ig^{2}N_{col}}{48\pi^{2}} \delta_{a_{1}a_{2}} \left[\frac{p^{2}}{2}g_{\mu_{1}\mu_{2}} + \lambda_{HV} \left(g_{\mu_{1}\mu_{2}}p^{2} - p_{\mu_{1}}p_{\mu_{2}}\right) \right. \\ \left. + \frac{N_{f}}{N_{col}} \left(p^{2} - 6m_{q}^{2}\right)g_{\mu_{1}\mu_{2}} \right] \end{array}$$

$$\prod_{\substack{p_1 \\ p_2 \\ p_3 \\ p_4, a_1 \\ p_5 \\ \mu_3, a_3}}^{p_2 \\ p_2 \\ \mu_2, a_5} = -\frac{g^3 N_{col}}{48\pi^2} \left(\frac{7}{4} + \lambda_{HV} + 2\frac{N_f}{N_{col}}\right) f^{a_1 a_2 a_3} V_{\mu_1 \mu_2 \mu_3}(p_1, p_2, p_3)$$

$$\begin{split} & \overset{\mu_{1,a_{1}}}{\overset{\mu_{1,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}}{\overset{\mu_{2,a_{2}}}}{\overset$$

$$\frac{p}{l} = \frac{ig^2 N_{cd} - 1}{16\pi^2 2N_{cd}} \delta_{kl} (-p + 2m_q) \lambda_{HV}$$

$$\mu, a \cos k = \frac{ig^3 N_{cd}^2 - 1}{16\pi^2 2N_{cd}} t_k^a \gamma_\mu (1 + \lambda_{HV})$$

Costas G. Papadopoulos (Athens)

OPP Reduction

HELAC R2 TERMS

Costas G. Papadopoulos (Athens)

OPP Reduction

Killan,	, nec	, Inci	~ 0 /		10														
INFO										====									
INFO	COL	OR 1	out	ot	6	1	-	1			Ter-				-		1		
INFO	1	12	35	7		1	4	-4	3	8	4	4	0	0	0	0	1	2	
INFO	1	48	35	8	1	1	16	-8	5	32	8	6	0	0	0	0	1	2	
INFO	2	14	-3	9	1	1	12	35	7	2	-3	2	0	0	0	1	1	2	
INFO	2	14	-3	9	0	1	12	35	7	2	-3	2	0	0	0	2	1	2	
INFO	2	28	-8	10	1	1	12	35	7	16	-8	5	0	0	0	1	1	2	
INFO	2	28	-8	10	0	1	12	35	7	16	-8	5	0	0	0	2	1	2	
INFO	3	44	8	11	1	1	12	35	7	32	8	6	0	0	0	1	1	2	
INFO	3	44	8	11	0	1	12	35	7	32	8	6	0	0	0	2	1	2	
INFO	2	50	-3	12	1	1	48	35	8	2	-3	2	0	0	0	1	1	2	
INFO	2	50	-3	12	0	1	48	35	8	2	-3	2	0	0	0	2	1	2	
INFO	2	52	-4	13	1	1	48	35	8	4	-4	3	Ó	Ō	Ō	1	1	2	
INFO	2	52	-4	13	Ó	1	48	35	8	4	-4	3	Ó	Ō	Ō	2	1	2	
INFO	3	56	4	14	1	1	48	35	8	8	4	4	0	0	Ō	1	1	2	
INFO	3	56	4	14	0	1	48	35	8	8	4	4	0	0	0	2	1	2	
INFO	1	60	35	15	1	4	4	-4	3	56	4	14	0	0	0	0	1	2	
INFO	1	60	35	15	2	4	16	-8	5	44	8	11	Ō	õ	õ	Õ	1	2	
INFO	1	60	35	15	3	4	28	-8	10	32	8	6	ō	Ō	Ō	Ō	1	2	
INFO	1	60	35	15	4	4	52	-4	13	8	4	4	ō	ō	Ō	Ō	1	2	
INFO	2	62	-3	16		3	12	35	7	50	-3	12	ō	Ō	Ō	1	1	2	
INFO	2	62	-3	16	ò	3	12	35	7	50	-3	12	ō	Ō	Ō	2	1	2	
TNEO	2	62	-3	16	2	3	48	35	8	14	-3	9	õ	õ	õ	1	1	2	
INFO	2	62	-3	16	ō	3	48	35	8	14	-3	9	õ	õ	õ	2	1	2	
INFO	2	62	-3	16	3	3	60	35	15	2	-3	2	õ	õ	õ	1	i	2	
TNEO	2	62	-3	16	Ő	3	60	35	15	2	-3	2	õ	õ	ñ	2	1	2	
INFO																	1 13	200	
TNEO	COL	OR 2	out	of	6														
INFO	1	12	35	7	1	1	4	-4	3	8	4	4	0	0	0	0	1	1	
INFO		48	35	8			16	-8	5	32	8	6	ñ	ñ	ñ	ñ	2		
					1.2	1000											1000	the second second second	and the second se

	papad	opo@ aiol	os:/tmp - S	hell - K	onsole
--	-------	-----------	-------------	----------	--------

			Ó RÌ		\$																	
INFO	===			====					-===:		====	==					Cord.		Trank's	0-2		
INFO	COL	OR 4	out	t of	6																	
INFO	nun	nber	of I	nums	143																	
INFO	NUN	41	of	143	10																	
INFO	3	96	8	9	1	1	64	35	7	32	8	6	0	0	0	1	1	2				
INFO	3	96	8	9	0	1	64	35	7	32	8	6	0	0	0	2	1	2				
INFO	1	112	35	10	1	1	16	-8	5	96	8	9	0	0	0	0	1	1				
INFO	3	120	4	11	1	1	112	35	10	8	4	4	0	0	0	1	1	1				
INFO	3	120	4	11	0	1	112	35	10	8	4	4	0	0	0	2	1	1				
INFO	1	124	35	12	1	1	4	-4	3	120	4	11	0	0	0	0	1	1				
INFO	2	126	-3	13	1	1	124	35	12	2	-3	2	0	0	0	1	1	1				
INFO	2	126	-3	13	0	1	124	35	12	2	-3	2	0	0	0	2	1	1				
INFO	2	254	-3	14	15 . 1	1	128	35	8	126	-3	13	0	0	0	1	1	2				
INFO	2	254	-3	14	0	1	128	35	8	126	-3	13	0	0	0	2	1	2				
INFO	6	32	16	8	4	2		35	8	35	4	35	-3	0	0	0	3					
INFOY	Υ	1	1																			
INFO	NUM	12	ot	143	10				2			-		-		200	6.4	2010				
INFO	3	96	8	9	1	1	64	35	~	32	8	6	0	U	U	1		1				
INFO	3	96	8	9	U		64	35	4	32	8	0	U	U	U	4	1900	100000				
INFO	1	112	35	10	214	1	110	-8	5	96	8	9	0	U	U	U	1	100				
INFO	3	120	4	11	1	1	112	35	10	8	4	4	U O	U O	0	-	-					
TNEO	2	120	25	11	ų,		112	35	10	120	4	- 4	0	Ň	0	-	19					
TNEO	-	124	33	12	18	-	174	25	12	120	7	11	0	N.	0	ų		5				
TNEO	5	120	-3	12		100	124	25	12	5	-3	5	0	ő	0	-	1997	5				
TNEO	5	254		14	1	-	129	33	14	126	_2	12	ö	ő	0	4		1				
TNEO	5	254	-3	14		-	120	25	0	126	-3	12	ö	ŏ		5						
TNEO	6	234	16	14	4	2	120	25	°	25	-3	25	-3	ŏ	0	6	2	6.8				
TNEOV	v	1 1	10	0	1	4	1000	33	•	35	-	33	-3			0	3					
TNEO	NUM	1 3	of	143	10																	
11110	1101		~	1 73		-			aller -			1.1.1.1.1.1	11		1000							

🖾 paj	padop	oo@ ai	iolos:	:/tmp	- Sh	ell	- Kon	sole											
<u>.</u>	5	r (3 💌	r 7															
INFO	NUM	127	of	143	15	1.20	and and	Ser. 2		Streep.	1000	Sile	2.0.0	2437	1		No.2	100	
INFO	1	48	35	9	1	1	16	-8	5	32	8	6	0	0	0	0	1	1	
INFO	3 1	112	3	10	1	1	48	35	9	64	3	7	0	0	0	1	1	1	
INFO	3 1	112	3	10	0	1	48	35	9	64	3	7	0	0	0	2	1	1	
INFO	1	12	35	11	1	1	4	-4	3	8	4	4	0	0	0	0	1	1	
INFO	1 2	240	35	12	1	1	128	-3	8	112	3	10	0	0	0	0	-1	1	
INFO	2 2	242	-3	13	1	1	240	35	12	2	-3	2	0	0	0	1	1	1	al the and the share the she
INFO	2 2	242	-3	13	0	1	240	35	12	2	-3	2	0	0	0	2	1	1	
INFO	3 2	248	4	14	1	1	240	35	12	8	4	4	0	0	0	1	1	1	
INFO	3 2	248	4	14	0	1	240	35	12	8	4	4	0	0	0	2	1	1	and the state of the
INFO	1 2	252	35	15	1	2	4	-4	3	248	4	14	0	0	0	0	1	1	dente a proper a state and a state
INFO	4 ;	252	35	15	2	2	12	35	11	240	35	12	0	0	0	0	1	1	
INFO	2 2	254	-3	16	1	2	12	35	11	242	-3	13	0	0	0	1	1	1	8 12 15 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1
INFO	2 2	254	-3	16	0	2	12	35	11	242	-3	13	0	0	0	2	1	1	
INFO	2 2	254	-3	16	2	2	252	35	15	2	-3	2	0	0	0	1	1	1	and the state of the state of the state
INFO	2 2	254	-3	16	0	2	252	35	15	2	-3	2	0	0	0	2	1	1	
INFO	2	48	15	3	3	0	0	0	0	0	0	0	0	0	0	0	2	5	
INFOY	Y !	5																	
INFO	NUM	128	of	143	11														
INFO	1	12	35	7	1	1	4	-4	3	8	4	4	0	0	0	0	1	1	and a second
INFO	1	48	35	8	1	1	16	-8	5	32	8	6	0	0	0	0	1	1	
INFO	2	28	-8	9	1	1	12	35	7	16	-8	5	0	0	0	1	1	1	The Carlo Contraction of the Carlo
INFO	2	28	-8	9	0	1	12	35	7	16	-8	5	0	0	0	2	1	1	2011年1月 1日日 1日日 1日日日
INFO	3	56	4	10	1	1	48	35	8	8	4	4	0	0	0	1	1	1	
INFO	3	56	4	10	0	1	48	35	8	8	4	4	0	0	0	2	1	1	
INFO	1	60	35	11	1	3	4	-4	3	56	4	10	0	0	0	0	1	1	
INFO	4	60	35	11	2	3	12	35	7	48	35	8	0	0	0	0	1	1	
INFO	1	60	35	11	3	3	28	-8	9	32	8	6	0	0	0	0	1	1	a na a a a a a a a a a
INFO	25	62	-3	12	1	1	60	35	11	2	-3	2	0	0	0	1	1	1	
INFO	25	62	-3	12	0	1	60	35	11	2	-3	2	0	0	0	2	1	1	
INFO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	and the state of the
INFOY	Y 1	1																	destruction of the second second
INFO	NUM	129	of	143	12														
TNEO	23	12	35	7	1	1	4	-4	3	8	4	4	0	0	0	0	1	1	

Costas G. Papadopoulos (Athens)

OPP Reduction

	$pp ightarrow tar{t}bar{b}$							
$uar{u} o tar{t}bar{b}$								
	ϵ^{-2}	ϵ^{-1}	ϵ^0					
HELAC-1L	-2.347908989000179E-07	-2.082520105681483E-07	3.909384299635230E-07					
$I(\epsilon)$	-2.347908989000243E-07	-2.082520105665445E-07						
		$gg ightarrow t ar{t} b ar{b}$						
HELAC-1L	-1.435108168334016E-06	-2.085070773763073E-06	3.616343483497464E-06					
$I(\epsilon)$	-1.435108168334035E-06	-2.085070773651439E-06						

	p _×	p_y	p _z	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
t	12.99421901255723	-9.591511769543683	75.05543670827210	190.1845561691092
Ŧ	53.73271578143694	-0.2854146459513714	17.68101382654795	182.9642163285034
Ь	-41.57664370692741	3.895531135098977	-91.94931862397770	100.9874727883170
Б	-25.15029108706678	5.981395280396083	-0.7871319108423604	25.86375471407044

$pp ightarrow VVbar{b}$ and $pp ightarrow VV+$ 2 jets									
$uar{u} o W^+W^-bar{b}$									
ϵ^{-2} ϵ^{-1} ϵ^{0}									
HELAC-1L	-2.493916939359002E-07	-4.885901774740355E-07	1.592538533368835E-07						
$I(\epsilon)$	-2.493916939359001E-07	-4.885901774752593E-07							
	g	$g ightarrow W^+ W^- b ar{b}$							
HELAC-1L -2.686310592221201E-07 -6.078682316434646E-07 -2.43162444034663									
$I(\epsilon)$	-2.686310592221206E-07	-6.078682340168020E-07							

	p _x	p_y	pz	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
W^+	22.40377113462118	-16.53704884550758	129.4056091248114	154.8819879118765
W^{-}	92.64238702192333	-0.4920930146078141	30.48443210132545	126.4095336206695
Ь	-71.68369328357026	6.716416578342183	-158.5329205583824	174.1159068988160
Ъ	-43.36246487297426	10.31272528177322	-1.357120667754454	44.59257156863792

pp ightarrow V+ 3 jets								
$uar{d} o W^+ ggg$								
ϵ^{-2} ϵ^{-1} ϵ^{0}								
HELAC-1L	-1.995636628164684E-05	-5.935610843551600E-05	-5.323285370666314E-05					
$I(\epsilon)$	-1.995636628164686E-05	-5.935610843566534E-05						
		$u ar{u} ightarrow Zggg$						
HELAC-1L	-7.148261887172997E-06	-2.142170009323704E-05	-1.906378375774021E-05					
$I(\epsilon)$	-7.148261887172976E-06	-2.142170009540120E-05						

	p_{x}	ρ_y	pz	E
и	0	0	250	250
đ	0	0	-250	250
W^+	23.90724239064912	-17.64681636854432	138.0897548661186	162.5391101447744
g	98.85942812363483	-0.5251163702879512	32.53017998659339	104.0753327455388
g	-76.49423931754684	7.167141557113385	-169.1717405928078	185.8004692730082
g	-46.27243119673712	11.00479118171890	-1.448194259904179	47.58508783667868

$pp ightarrow tar{t}+$ 2 jets								
$uar{u} o tar{t}gg$								
ϵ^{-2} ϵ^{-1} ϵ^{0}								
HELAC-1L	-6.127108113312741E-05	-1.874963444741646E-04	-3.305349683690902E-04					
$I(\epsilon)$	-6.127108113312702E-05	-1.874963445081074E-04						
		$gg ightarrow tar{t}gg$						
HELAC-1L	-3.838786514961561E-04	-9.761168899507888E-04	-5.225385984750410E-04					
$I(\epsilon)$	-3.838786514961539E-04	-9.761168898436521E-04						

	p_{\times}	p _y	pz	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
t	12.99421901255723	-9.591511769543683	75.05543670827210	190.1845561691092
ī	53.73271578143694	-0.2854146459513714	17.68101382654795	182.9642163285034
g	-41.57664370692741	3.895531135098977	-91.94931862397770	100.9874727883170
g	-25.15029108706678	5.981395280396083	-0.7871319108423604	25.86375471407044

$ ho p ightarrow b ar{b} b ar{b}$						
$uar{u} ightarrow ar{b}ar{b}ar{b}$						
	ϵ^{-2}	ϵ^{-1}	ϵ^0			
HELAC-1L	-9.205269484951069E-08	-2.404679886692200E-07	-2.553568662778129E-07			
$I(\epsilon)$	-9.205269484951025E-08	-2.404679886707971E-07				
$gg ightarrow bar{b}bar{b}$						
HELAC-1L	-2.318436429821683E-05	-6.958360737366907E-05	-7.564212339279291E-05			
$I(\epsilon)$	-2.318436429821662E-05	-6.958360737341511E-05				

	p _x	p_y	pz	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
Ь	24.97040523056789	-18.43157602837212	144.2306511496888	147.5321146846735
Б	103.2557390255471	-0.5484684659584054	33.97680766420219	108.7035966213640
Ь	-79.89596300367462	7.485866671764871	-176.6948628845280	194.0630765341365
Ъ	-48.33018125244035	11.49417782256567	-1.512595929362970	49.70121215982584

OPP

OPP

• changes the computational approach at one loop

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

• Automatize through Dyson-Schwinger equations Full one-loop amplitudes (color, rational)

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations Full one-loop amplitudes (color, rational)
- Several calculations

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations Full one-loop amplitudes (color, rational)
- Several calculations

Future

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations Full one-loop amplitudes (color, rational)
- Several calculations

Future

• Automatize the real contributions (dipoles)

OPP

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations Full one-loop amplitudes (color, rational)
- Several calculations

Future

• Automatize the real contributions (dipoles)

A generic NLO calculator ante portas

Costas G. Papadopoulos (Athens)

OPP Reduction

BlackHat

C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maitre, arXiv:0803.4180 [hep-ph]

Rocket

W. T. Giele and G. Zanderighi, arXiv:0805.2152 [hep-ph]

CutTools

G. Ossola, C. G. Papadopoulos and R. Pittau, [arXiv:0711.3596 [hep-ph]].

HELAC-1LOOP

A. van Hameren, C. G. Papadopoulos and R. Pittau [arXiv:0903.4665 [hep-ph]].