Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

Mateusz Dyndal (DESY)

10th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

22 Nov 2016

Motivation

- Euler-Heisenberg (effective) Lagrangian [Z. Phys. 98 (1936) 714]
- Original motivation: calculate the rate for light-by-light (LbyL) scattering
 - Applying it for LbyL corresponds to a tree-level calculations (valid only in low-energy limit i.e. p << m_e):

- Exact calculations: <u>loops</u>
 - Box diagrams involve charged fermions and W bosons

Motivation

- LbyL scattering can be tested in hadron-hadron collisions
- Recent phenomenological studies/preditions for SM rates in pp/Pb-Pb collisions:
 - [PRL 111 (2013) 080405]
 - [PRC 93 (2016) no.4, 044907]
- (Relatively) high m_{γγ} can be probed here
 -> proposed as a possible channel to study
 - Anomalous gauge couplings
 - Contributions from BSM particles (axions etc.)

Theory: ZZ ($\gamma\gamma$) \rightarrow ZZ X scattering

[Fermi, Nuovo Cim. 2 (1925) 143]

[Weizsacker, Z. Phys. 88 (1934) 612] [Williams, Phys. Rev. 45 (10 1934) 729]

The cross section for ZZ ($\gamma\gamma$) \rightarrow ZZ X process is calculated using:

(1) Number of equivalent photons (EPA) by integration of relevant EM form factors:

$$n(b,\omega) = \frac{Z^2 \alpha_{em}}{\pi^2 \omega} \left| \int \mathrm{d}q_\perp q_\perp^2 \frac{F(Q^2)}{Q^2} J_1(bq_\perp) \right|^2$$
$$Q^2 < 1/R^2 \quad \omega_{\max} \approx \gamma/R$$

(2) EW $\gamma\gamma \rightarrow X$ (elementary) cross section

$$\sigma_{A_1A_2(\gamma\gamma)\to A_1A_2X}^{\text{EPA}} = \iint d\omega_1 \ d\omega_2 \ n_1(\omega_1) \ n_2(\omega_2) \ \sigma_{\gamma\gamma\to X}(W_{\gamma\gamma})$$

Testing EPA at the LHC

- Non-resonant $\gamma\gamma \rightarrow \ell^+\ell^-$ is a good benchmark process
- Studied by both ALICE and ATLAS
- Good agreement with Starlight (EPA + LO elementary cross section) is found [ATLAS-CONF-2016-025]

Previous experiments

- Experimental status prior to the ATLAS result Not observed Elastic LbyL scattering $\gamma\gamma \rightarrow \gamma\gamma$ **Delbruck scattering** $\gamma Z \rightarrow \gamma Z$ Observed ('53 - '98) Observed (2002) Photon splitting in Z field $\gamma Z \rightarrow \gamma \gamma Z$ $\gamma F \rightarrow \gamma F$ Not observed Vacuum electric/magnetic birefringence $\gamma F \rightarrow \gamma \gamma F$ Not observed Photon splitting in electric/magnetic field "Observed" Muon (electron) g-2 $B\ell \rightarrow \ell$
- Formally, LbyL scattering in heavy-ion collisions can be treated as ZZ -> γγ ZZ process
- However, the initial photons have very small virtualities, Q² < 10⁻³ GeV² (they are quasi-real) -> Quasi-elastic LbyL scattering

Photon splitting

- ROKK-1M facility at the VEPP-4M collider
- Tagged photon beam experiment (BGO target)
- Photon energy region: 120-450 MeV
- ~400 candidate events are observed, in agreement with QED expectations

 $\Theta = 2.4 \div 20 \text{ mrad}$

Muon g-2

Significant contribution of LbyL graphs with electron loop

- Dominate sixth-order QED contributions
- "Surprisingly large" factor $a_{\mu}^{(6)}(lbl,e) = \frac{2}{3}\pi^2 \ln \frac{m_{\mu}}{m_e} + \cdots$

 $\begin{aligned} a_{\mu}^{(6)}(\text{lbl},e) &\simeq 20.947\,924\,89(16)\,\left(\frac{\alpha}{\pi}\right)^3 = 2.625\,351\,02(2)\times10^{-7} & a_{\mu} = (g_{\mu}-2)/2 \\ a_{\mu}^{(6)\ \text{QED}} &= 24.050\,509\,64\,(46)\,\left(\frac{\alpha}{\pi}\right)^3 & \text{[Phys.Rept. 477 (2009) 1-110]} \end{aligned}$

- "Hadronic" LbyL contribution is relatively small
 - Dominated by pseudoscalar exchange diagrams $a_{\mu}^{\text{LbL;PS}} = (99 \pm 16) \times 10^{-11} \implies a_{\mu}^{\text{LbL;had}} = (116 \pm 39) \times 10^{-11}$

Current experimental status:

$$a_{\mu}^{\exp} = 1.16592080(63) \times 10^{-3}$$

$$a_{\mu}^{\text{the}} = 1.16591790(65) \times 10^{-3}$$

$$\delta a_{\mu}^{\text{NP?}} = a_{\mu}^{\exp} - a_{\mu}^{\text{the}} = (290 \pm 90) \times 10^{-11}$$

~3\sigma discrepancy

 π^0, η, η'

The ATLAS detector

Evidence for light-by-light scattering in heavy-ion collisions at the LHC

Data and MC samples

- Data: 34 runs from 2015 Pb+Pb campaign are used
- Total integrated luminosity: 0.48 nb⁻¹
 - 6% relative uncertainty
- MC simulated events
 - Signal MC sample to study event characteristics and correction factor
 - Several background MC samples are used for processes:

Object definition

• $\gamma\gamma \rightarrow \gamma\gamma$ cross section decreases very fast with $m_{\gamma\gamma}$ and/or E_T

Low-E_T photons need to be used

- Photons
 - $E_T > 3$ GeV, $|\eta| < 2.37$ (crack region excluded), OQ requirements, photon PID based on three shower-shape variables is used:

E _{ratio}	Ratio of the energy difference associated with the largest and second largest energy deposits to the sum of these energies in the first EM calo layer
f ₁	Fraction of energy reconstructed in the first layer with respect to the total energy of the cluster
W _{eta2}	Lateral width of the shower in the middle layer

- Charged-particle tracks (help to reduce γγ -> ee part)
 - $p_T > 100 \text{ MeV}$, |eta| < 2.5, $N_{pix} \ge 1$
- Electrons (to study e.g. photon reconstruction efficiency in hardbremsstrahlung process)
 - (EM)Loose PID, E_T > 2.5 GeV, |eta| < 2.47 (crack region excluded), OQ requirements

Trigger

- Dedicated trigger is used to select γγ -> γγ event candidates
 - Unprescaled in full 2015 data-taking period
 - L1_TE5_VTE200 at L1
 - Veto on signals in inner MBTS
 - Between 0-10 hits in the pixel detector
- Efficiency is estimated with γγ -> ℓ+ℓevents passing supporting trigger (ZDC-based)
 - L1_TE5 reaches 100% at (E_{Tcl1}+E_{Tcl2}) = 9 GeV
 - MBTS veto is estimated to be (98 ± 2)%
 - Due to low noise, very high hit reconstruction
 ET THE ET
 efficiency and low conversion probability of signal photons in the pixel detector, the requirement for its minimal activity is ~100% efficient with negligible uncertainty

Photon performance cross-checks

- $\gamma\gamma \rightarrow \ell^+\ell^-(\gamma)$ events used to cross-check low- E_T photon performance
 - This includes: PID/reco efficiency, energy scale/resolution
- Example: yy -> ee events with hard-bremstrahlung photon are used to extract photon reconstruction efficiency (Tag-and-Probe)
- Tag selection:
 - ==1 identified electron with $E_T > 5 \text{ GeV}$
 - ==2 tracks, where p_T of track unmatched with electron < 2 GeV
- Probe selection:
 - Check how many times we reconstruct hard-bremsstrahlung photon
 - $E_T(y) \approx (E_T(e) \text{second track } p_T)$
- Photon reco efficiency extracted from data in agreement with MC

$\gamma\gamma \rightarrow \gamma\gamma$ event characteristics

Run: 287931 Event: 461251458 2015-12-13 09:51:07 CEST

Event selection

- Using signal events characteristics, defining a set of cuts for background reduction
 - == 2 photons with photon $E_T > 3$ GeV, $m_{vv} > 6$ GeV -> event preselection
 - $N_{trk} = 0$ -> almost no impact on signal MC events, significant reduction of $\gamma\gamma$ -> ee misID events
 - $p_T(\gamma\gamma) < 2 \text{ GeV} \rightarrow \text{fake photon background reduction (dominated by cosmic-ray muons inducing EM clusters), no impact on signal events$
 - Diphoton acoplanarity < 0.01 -> to reduce/control CEP gg->yy background

Backgrounds

- γγ -> ee misID events
 - Occur when the electron track is not reconstructed or the electron emits a hard bremsstrahlung photon

- N_{trk} = 0 cut is used to suppress $\gamma\gamma$ -> ee misID events
- ==2 photons with N_{trk} = 1(2) is a good control region for γγ -> ee misID background

Backgrounds

- Central exclusive yy production
 - Similar exclusive topology
 - Relatively flat yy acoplanarity distribution (wrt signal), since the transverse momentum
 transferred by the photon exchange is much smaller than that due to the colour-singlet state gluons
- CEP gg -> yy is reducibe with yy acoplanarity cut
- Idea: define Aco < Aco_cut as a signal region and use events with Aco > Aco_cut for CEP gg->yy background normalization (due to large theory uncertainties)

Backgrounds

• For CEP gg -> yy normalization, the following formula is used: $f_{gg \rightarrow \gamma\gamma}^{\text{norm},b} = (N_{\text{data}}(\text{Aco} > b) - N_{\text{sig}}(\text{Aco} > b) - N_{\gamma\gamma \rightarrow e^+e^-}(\text{Aco} > b))/N_{gg \rightarrow \gamma\gamma}(\text{Aco} > b)$ where b = 0.02 is used for the central value and b = 0.01 and b = 0.03 for systematic checks • It is found that $f_{gg \rightarrow \gamma\gamma}^{\text{norm},b=0.02} = 0.5 \pm 0.3$

Other backgrounds

- Other (negligible) backgrounds being studied:
 - Fake photons from hadronic processes: highly suppressed due to MBTS veto and N_{trk} = 0 requirements
 -> studied using Minimum Bias events in data extrapolated to signal region
 - yy->qq (exclusive hadrons) -> MC estimation -> considered negligible
 - CEP dimeson production (e.g. gg->pi0pi0->4y, gg->ηη->4y etc.)
 -> estimated with MC models to be below 10% of CEP gg->yy in the same kinematic region -> considered negligible
 - Other fake photons (mostly induced by cosmic-ray muons) -> estimated to be negligible (0.1 ± 0.1 evts in the signal region) using ABCD method
 - A events passing f₁ cuts on photons, p_T (yy) < 2 GeV</p>
 - B events failing f₁ cuts on photons, p_T (yy) < 2 GeV</p>
 - C events passing f₁ cuts on photons, p_T (yy) > 2 GeV
 - D events failing f₁ cuts on photons, p_T (yy) > 2 GeV
 - Results are cross-checked wrt other shower-shape variables and additional muon activity in MS

Systematic uncertainties

- Trigger efficiency uncertainty: dominated by yy-> l+l⁻ event statistics passing supporting trigger
- Photon reco/PID efficiency uncertainty: large impact from limited statistics of FSR/hard-bremsstrahlung photon samples
- Photon energy scale: ±5%
- Photon energy resolution: ±15%
- Impact on the C-factor:

Source of uncertainty	Detector correction (C)
	0.31
Trigger	5%
Photon reco efficiency	12%
Photon PID efficiency	16%
Photon energy scale	7%
Photon energy resolution	11%
Total	24%

Results

13 events observed in data

Signal

9.1

8.7

8.5

7.3

1.5

Data

105

39

21

13

 $\gamma\gamma \to e^+e^-$

74

4.0

3.5

1.3

0.3

 $\overrightarrow{\text{CEP } gg} \rightarrow \gamma\gamma$

4.7

4.5

4.4

0.9

0.5

- 7.3 signal events and 2.6 \pm 0.7 background events are expected
- Significance is estimated using profile likelihood method (asymptothic formulae)
- Observed significance: 4.4σ
 (3.8σ expected)

Hadronic fakes

6

6

3

0.3

0.3

Other fakes

19

19

1.3

0.1

0.1

Total expected

113

42

21

9.9

Results

- Fiducial cross section is estimated in the region:
 - p_T(y) > 3 GeV, |η(y)| < 2.4
 - m_{yy} > 6 GeV, p_T(yy) < 2 GeV,
 - Aco < 0.01

σ_{fid} = 70 ± 20 (stat.) ± 17(syst.) nb

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bkg}}{C \times \int L {\rm d}t}$$

- SM predictions:
 - 45 ± 9 nb
 [PRL 111 (2013) 080405]
 - 49 ± 10 nb
 [PRC 93 (2016) no.4, 044907]

A look forward

Example: expected sensitivity for ALP searches

Summary

- A search for very rare QED process, light-by-light scattering, is performed in Pb+Pb collisions using 0.48 nb⁻¹ of 2015 data
- 13 events observed in data, where 7.3 signal events and 2.6 ± 0.7 background events are expected
 - Observed significance over background-only hypothesis: 4.4σ (3.8σ expected)
- Fiducial cross section is measured to be: 70 ± 20 (stat.) ± 17(syst.) nb
 - SM predictions: 45 ± 9 nb [PRL 111 (2013) 080405], 49 ± 10 nb [PRC 93 (2016) no.4, 044907]
- More details available at: ATLAS-CONF-2016-111

Backup

Photon performance cross-checks

- γγ -> ℓ⁺ℓ⁻γ (FSR) events are used for data-driven photon PID efficiency estimation
- Event selection:
 - Trigger: signal or supporting triggers are used
 - 2 OS tracks in back-to-back configuration, each with $p_T > 1 \text{ GeV}$
 - ΔR(tγ) > 0.2 to suppress
 e-bremsstrahlung photons
 - p_T(ttγ) < 1 GeV
- Photon PID efficiency is estimated as a function of photon E_T and compared with MC

Photon performance cross-checks

- Photon energy scale/resolution is cross-checked using yy -> ee event properties
- Idea: measure $E_T(cl1) \pm E_T(cl2)$ distributions in yy -> ee process
- Initial "theory" smearing very small (σ_{pT(e1) pT(e2)} below 0.03 GeV for E_T(cluster) > 3 GeV):
 - $\sigma_{\text{Et(cluster)}} \approx (\sigma_{\text{Et(cluster1)} \text{Et(cluster2)}})/\text{sqrt(2)}$
 - $\sigma_{Et}/E_T \approx 8\%$ at low- E_T (< 10 GeV)
 - Data agrees with yy -> yy MC within 15% at low-E_τ
- E_T(cluster1) + E_T(cluster2) distribution sensitive to photon energy scale
 - Et scale is conservatively varied by ±5% in MC
 - Simple chi2 test can be used to check the data/MC improvement
 - Data nicely covered by ±5% bands in MC

