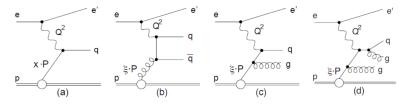
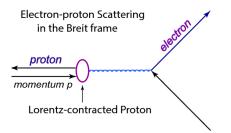
DIS Dijets @ NNLO 10th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Jan Niehues, in collaboration with the NNLOJET collaboration.

November 22, 2016


Topics


- DIS and dijet observables
- 2 Antenna subtraction formalism
- **③** The NNLOJET program
- Predictions for jet cross sections in NC DIS at NNLO

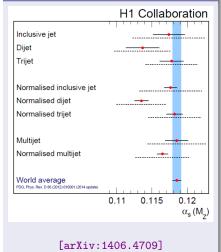
Outlook

Neutral Current Deep-Inelastic Scattering

• Deep-inelastic scattering gives a clean probe pf proton structure.

Breit-frame

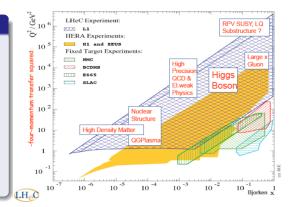
Frame in which the photon momentum is completely space-like \rightarrow two jets of same P_T @LO.


HERA Status

Applications

HERA measurements can be used to:

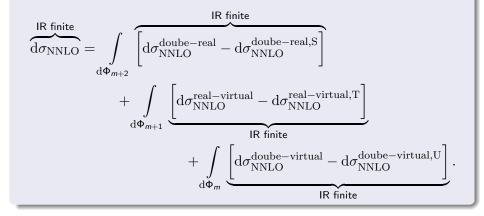
- Determination of strong coupling constant α_S: Experimental uncertainty (solid line) is much smaller than theoretical error (dashed line) → NNLO calculation needed!
- Dominant process for jet production is boson-gluon fusion → Precise HERA jet data provide high constraint on gluon PDFs.


HERA α_S measurement

A Future e-p Collider (LHeC or EIC)

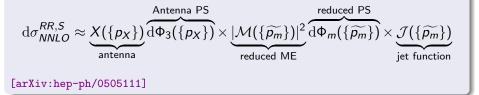
Precision QCD

- With $Q^2 > 1$ TeV, $x \sim 0.5$.
- Higgs measurements in clean environment.
- Determination of $\alpha_{\rm S}\sim 0.1\%$.
- Determination of PDF uncertainties to $\sim 1\%$.


Jet Cross Sections

Cross sections at different orders:

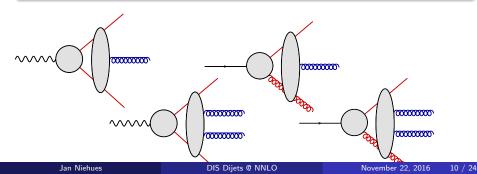
$$\begin{split} \mathrm{d}\sigma_{\mathrm{LO}} &= \int\limits_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\mathrm{NLO}} \\ \mathrm{d}\sigma_{\mathrm{NLO}} &= \int\limits_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{\mathrm{NLO}}^{\mathrm{real}} + \int\limits_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\mathrm{NLO}}^{\mathrm{virtual}} + \int\limits_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\mathrm{NLO}}^{\mathrm{mass-factorisation}}, \\ \mathrm{d}\sigma_{\mathrm{NNLO}} &= \int\limits_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{double-real}} + \int\limits_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{real-virtual}} + \int\limits_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{double-virtual}} \\ &+ \int\limits_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{mass-factorisation},1} + \int\limits_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{mass-factorisation},2}. \end{split}$$


Subtraction method I

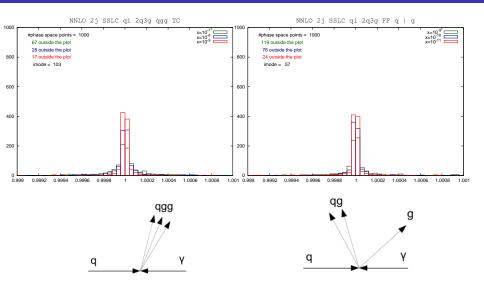
Adding a zero

Construction principle

Subtraction terms are constructed according to **factorisation** of infrared divergences in unresolved limits as well as the factorisation of phase space under suitable momentum maps from $\{p_{m+1}\} \rightarrow \{\widetilde{p_m}\}$ with $\{p_X\} \subset \{p_{m+1}\}$:


This allows:

- Cancellation of infrared divergences against matrix elements in numerical phase space integration.
- Analytic integration of antenna functions over the antenna phase space:
 - O Move subtraction terms across phase spaces of different multiplicities.
 - Check explicit cancellation of poles between subtraction term and virtual matrix element.


Subtraction method IV

Antenna functions

- Antennae have two hard radiators and are derived from physical processes.
- Antennae mimic all soft/collinear divergences of real emissions.
- Reproduce *e*-poles of virtual corrections.
- Have all been analytically integrated over antenna phase space!

Validation Of The Subtraction / Spike Plots

Validation II

Consistency checks

- Subtraction gives right limits in all singular regions / spike plots,
- $\sigma^{\text{RR,RV}} + \sigma^{\text{S,T}}$ is stable under variation of technical phase space cut,
- Analytic pole cancellation against virtual matrix elements.

SHERPA

Validated LO and NLO 2- and 3-jet cross sections against SHERPA, including validation of differential distributions. Results also agree with NLOJET++.

Scale variation

Dependence of the total cross section on the scales was checked against analytic expressions.

NNLOJET is a semi-automated Monte Carlo for NNLO phenomenology.

Processes

Many processes are already included at NNLO:

- pp \rightarrow H($\gamma\gamma$)+ 0,1 jets [arXiv:hep-ph/0505111],
- $pp \rightarrow Z(l^+l^-) + 0,1$ jets [arXiv:1607.01749],
- NC DIS dijets [arXiv:1606.03991],
- pp→jets[arXiv:1611.01460].
- + More to follow.

Current priority is to generate **grids** for phenomenological studies (Daniel's talk)!

HERA High-Q2 Analysis

The H1 collaboration measured dijet and inclusive 1 jet distributions as described in [arXiv:1406.4709] in the following kinematic ranges:

Cuts in Breit frame

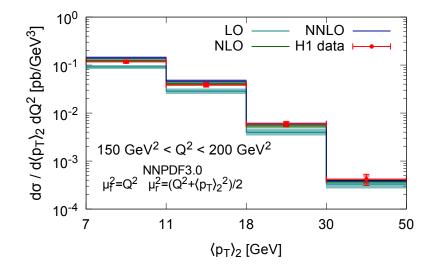
- 5 GeV $< p_{jet}^{T}$,
- $M_{12} > 16 \text{ GeV}$, for di and trijet measurements only,
- Using the kt/anti-kt jet algorithm.

Cuts in HERA frame

•
$$-1.0 < \eta^{
m jet}_{
m lab} < 2.5$$
 ,

•
$$0.2 < y < 0.7$$
.

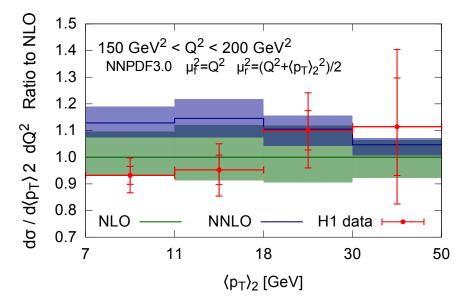
Observables


Dijet observables:

•
$$\xi_2 = x_{bj}(1 + M_{12}/Q^2)$$
,

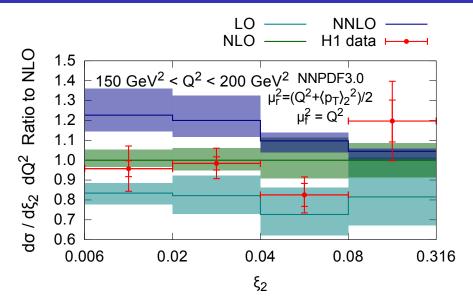
•
$$\langle P_T \rangle_2 = \left(P_T^1 + P_T^2 \right) / 2$$

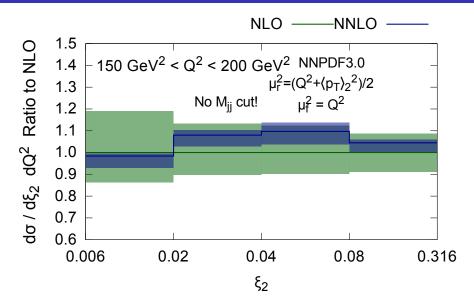
Inclusive jets measure individual jet P_T .


High-Q2 Results I

[PhysRevLett.177.042001]

Jan Niehues


High-Q2 Results II


HERA cuts

- H1 uses $P_{\text{jet}}^T > 5$ GeV on all jets.
- $M_{\rm jj} > 16~{\rm GeV}$ cuts (minimally) into first bin.
- Phase space opens up at NLO
 - \rightarrow large NLO/LO factor!
 - \rightarrow large NNLO correction + large NNLO scale uncertainty.
- Should use asymmetric $P_{\rm jet}^{\mathcal{T}}$ cuts for leading and subleading jet and no $M_{\rm jj}$ cut!

Results With Symmetric Cuts

Results With Asymmetric Cuts

The H1 collaboration measured dijet and inclusive 1 jet distributions as described in [arXiv:1611.03421] in the following kinematic ranges:

Cuts in Breit frame

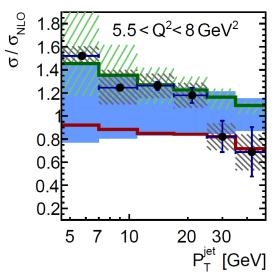
- 4 $\text{GeV} < p_{\text{jet}}^{\text{T}}$,
- kt jet algorithm.

Cuts in HERA frame

$$ullet$$
 $-1.0 < \eta_{
m lab}^{
m jet} < 2.5$,

•
$$0.2 < y < 0.6$$
.

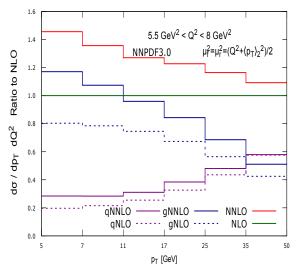
And examined the following distributions:


Observables

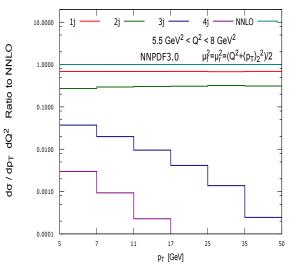
Dijet observables

•
$$\langle P_T \rangle_2 = \left(P_T^1 + P_T^2 \right) / 2$$
,

Inclusive jets measure individual jet P_T .


Low Q2 inclusive jets

[arXiv:1611.03421]


- Scale uncertainty significantly reduced at high-pT.
- Large NNLO correction at low scales.
- NNLO predictions within NLO uncertainties.
- Scale uncertainty still sizeable at low pT.

Relevance of subprocesses

- Gluon contribution dominates at low p_T.
- Quark contribution increases with p_T and is of similar size as the gluonic contribution in highest p_T bin.

Jet multiplicities in inclusive production

- 1st and 2nd jets dominate the contribution to the cross sections.
- 3rd jet contribution is smaller by an order of magnitude.
- 4th jet contribution is negligible particularly at high p_T.

Future

- The program is ready and part of NNLOJET \rightarrow interfaces to APPLGRID and FASTNLO are implemented.
- Program can now be applied to:
 - **1** Extract α_s from DIS jet data.
 - Incorporate disjets into NNLO PDF fits
 - \rightarrow This may have a significant effect for parton distributions.
- Work on charged current DIS.