

Measurement of t-channel single-top production at 8 TeV and 13 TeV

Gunnar Jäkel

Supervisors: Dominic Hirschbühl, Wolfgang Wagner

Physics at the Terascale – DESY Hamburg

22.11.2016

Single Top-Quarks

 t-channel (tq): dominant production channel NLO Predictions 8 TeV:

$$\sigma(tq) = 54.9 \pm 2.3 \text{ pb}$$

 $\sigma(\bar{t}q) = 29.7 \pm 1.7 \text{ pb}$

NLO Predictions 13 TeV:

$$\sigma(tq) = 136.0 \pm 5.4 \text{ pb}$$

$$\sigma(\bar{t}q) = 81.0 \pm 4.1 \text{ pb}$$

$$\tau_{\ell}$$

$$\tau_{\ell}$$

PDF-information of u-, dand b-quarks

b $x(ta) \propto |V_{t}|^2 \text{ and test of}$

 $\sigma(tq) \propto |V_{tb}|^2$ and test of V-A structure of W_{tb} vertex

Top-Quark mass

Event Yield @ 13 TeV

- 1 charged lepton
 - $p_T > 30 \text{ GeV}$; $|\eta| < 2.5$
- 2 jets
 - $p_T > 35 \text{ GeV}$; $|\eta| < 3.5$
 - 1 b-tagged
- $E_T^{miss} > 30 \text{ GeV}$
- $m_T(l E_T^{miss}) > 50 \text{ GeV}$

Separate in l^+ and l^- channel to measure tq and $\bar{t}q$ cross sections

Process	ℓ^+ channel	ℓ^- channel	
tq	4 200 ± 170	8 ± 3	
$\bar{t}q$	5 ± 2	2710 ± 140	
$t\bar{t}$	13100 ± 790	13100 ± 790	
Wt	1640 ± 110	1640 ± 110	
$tar{b}$ + $ar{t}b$	298 ± 25	199 ± 18	
W^+ +jets	10500 ± 2200	<1	
W^- +jets	<1	8730 ± 1800	
Z, VV+jets	1530 ± 320	1410 ± 300	
Multijets	2400 ± 1200	2400 ± 1200	
Total expected	33600 ± 2600	30200 ± 2300	
Data observed	34 459	31 056	

Dominating backgrounds: $t\bar{t}$ and W+jets

arxiv: 1609.03920

Neural network

 $t\bar{t}$ and W + jets

 $\frac{\text{Variable}}{m(\ell u h)}$

 $m(\ell \nu b)$

m(jb)

 $m_{\rm T}(\ell E_{\rm T}^{\rm miss})$

 $|\eta(j)|$

 $m(\ell b)$

 $\eta(\ell\nu)$

 $\Delta R(\ell \nu b, j)$

 $\cos \theta^*(\ell,j)$

 $\begin{array}{l} \Delta p_{\mathrm{T}}(\ell\nu b, j) \\ \Delta R(\ell, j) \end{array}$

Use 10 variables with good separation power and data/MC agreement

Good separation

Inclusive cross section

Source	$\frac{\Delta\sigma(tq)}{\sigma(tq)} \ [\%]$	$\frac{\Delta\sigma(\bar{t}q)}{\sigma(\bar{t}q)} \ [\%]$	5]		
Data statistics	± 2.9	± 4.1			
Monte Carlo statistics	± 2.8	± 4.2			
Reconstruction efficiency and calibration uncertainties					
Muon uncertainties	± 0.8	± 0.9			
Electron uncertainties	< 0.5	± 0.5			
JES	± 3.4	± 4.1			
Jet energy resolution	± 3.9	± 3.1			
$E_{\mathrm{T}}^{\mathrm{miss}}$ modelling	± 0.9	± 1.2			
b-tagging efficiency	± 7.0	± 6.9			
c-tagging efficiency	< 0.5	± 0.5			
Light-jet tagging efficiency	< 0.5	< 0.5			
Pile-up reweighting	± 1.5	± 2.2			
Monte Carlo generators					
tq parton shower generator	± 13.0	± 14.3			
tq NLO matching	± 2.1	$\pm \ 0.7$			
tq radiation	± 3.7	± 3.4			
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ parton shower generator	± 3.2	± 4.4			
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ NLO matching	± 4.4	\pm 8.6			
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ radiation	< 0.5	± 1.1	M		
PDF	± 0.6	± 0.9	σ (
Background normalisation					
Multijet normalisation	± 0.3	± 2.0			
Other background normalisation	± 0.4	± 0.5	σ (
Luminosity	± 2.1	± 2.1			
Total systematic uncertainty	± 17.5	$\pm \ 20.0$			
Total uncertainty	± 17.8	± 20.4			

Maximum Likelihood (ML) fit

Measured cross sections:

$$\sigma(tq) = 156 \pm 5(stat) \pm 27(syst) \pm 3(lumi)$$
pb

$$\sigma(\bar{t}q) = 91 \pm 4(stat) \pm 18(syst) \pm 2(lumi)$$
pb

Fiducial cross section @ 8 TeV

- Measure the tq cross section widely independent of the choice of signal MC-generator
- Define a fiducial phase-space close to the phase-space of selected data events

Potentially significant reduction of some acceptance uncertainties

- Measure fiducial cross section
- Extrapolate to inclusive cross section

Same strategy

- 1 charged lepton
 - $p_T > 25 \,\mathrm{GeV}$; $|\eta| < 2.5$
- 2 jets
 - $p_T > 30 \, \text{GeV}$; $|\eta| < 4.5$
 - 1 b-tagged
- $E_T^{miss} > 30 \text{ GeV}$
- $m_T(l E_T^{miss}) > 50 \text{ GeV}$
- $m(l \ b) < 160 \text{GeV}$

ML fit

Variable symbol

m(jb) $|\eta(j)|$ $m(\ell \nu b)$ $m_{\mathrm{T}}(\ell E_{\mathrm{T}}^{\mathrm{miss}})$ $|\Delta \eta(\ell \nu, b)|$ $m(\ell b)$

 $\cos \theta^*(\ell, j)$

Optimised for minimal number of needed variables without loss in uncertainty little bit more inclusive

Additional cut to avoid off-shell top-quarks

8TeV fiducial cross sections

Measured fiducial cross sections:

$$\sigma_{fid}(tq) = 10.08 \pm 0.17(stat) \pm 0.53(syst) \pm 0.18(lumi)$$
pb

$$\sigma_{fid}(\bar{t}q) = 5.86 \pm 0.15(stat) \pm 0.42(syst) \pm 0.11(lumi)$$
pb

bug was found regarding neutrinos in jet reconstruction -> leading to smaller acceptance

8TeV inclusive cross sections

Measured extrapolated cross sections using Powheg+Pythia6:

$$\begin{split} \sigma_{tot}(tq) &= 56.7 \pm 0.9(stat) \pm \\ 2.7(exp) &\pm 3.0(theo) \pm 1.1(lumi) \text{pb} \end{split}$$

$$\sigma_{tot}(\bar{t}q) = 32.8 \pm 0.8(stat) \pm 2.2(exp) \pm 1.7(theo) \pm 0.6(lumi)$$
pb

Cross section ratio

•
$$R_t = \sigma(t)/\sigma(\bar{t})$$

Sensitive to ratio of the up and down quarks in proton

Measured ratios:

$$R_t^{8 \ TeV} = 1.73 \pm 0.05(stat) \pm 0.07(syst)$$

 $R_t^{13 \ TeV} = 1.72 \pm 0.09(stat) \pm 0.18(syst)$

Summary

- Precise measurement of fiducial and total cross sections at 8 TeV
- For differential cross section see next talk from Pienpen

- First measurement of total cross section at 13 TeV
- Using larger dataset and fiducial measurement can improve uncertainties