Polarimetry at the ILC

Robert Karl 1,2 Jenny List 2

¹Deutsches Elektronen-Synchrotron (DESY)

 $^2 {\sf University} \,\, {\sf of} \,\, {\sf Hamburg}$

21.11.2016

Outline

Introduction

Polarization Measurement using Collision Data

Comparison of the Statistical Precision for Different Methods Impact of Systematic Uncertainties and their Correlations

Improvement by Constraints from Polarimeter Measurement

Summary

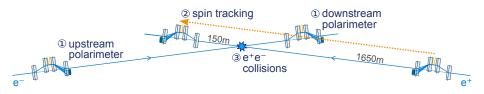
Advantages of Polarized Beams

- International Linear Collider (ILC)
 - e^-e^+ collider with polarized beams of |80%| and |30%| 60%, respectively
 - ▶ Selectable polarization sign → choice of spin configuration
- Advantages:
 - Sensitive to new observables (e.g. left-right-asymmetry)
 - Reduction of background processes and simultaneously increase of signal processes
 - Deep insights into the chiral structure of the weak-interaction for known and unknown particle

All event rates depend linearly on the polarization!

⇒ Has to be known as precisely as the luminosity!

ILC Polarimetry Concept



- Measurement of the time-resolved beam polarization before and after the e^-e^+ IP
 - Via laser-Compton polarimeter
 - Ref.: Jenny List, Annika Vauth, and Benedikt Vormwald: A Quartz Cherenkov Detector for Compton-Polarimetry at Future e^+e^- Colliders (https://bib-pubdb1.desy.de/record/221054) A Calibration System for Compton Polarimetry at e^+e^- Colliders(https://bib-pubdb1.desy.de/record/289025)
- Extrapolating the beam polarization to the e^-e^+ IP
 - Via Spin Tracking
 - Ref.: Moritz Beckmann, Jenny List, Annika Vauth, and Benedikt Vormwald:

Spin transport and polarimetry in the beam delivery system of the international linear collider (http://iopscience.iop.org/article/10.1088/1748-0221/9/07/P07003/pdf)

- 3. Determination of the luminosity-weighed averaged polarization from collision data
 - Calculating the polarization from known standard model processes
 - ⇒ Discussed in the following

Determination of the Polarization from Collision Data

Goal:

General strategy for the polarization determination which yields the best precision per measurement time

Previous Work:

Using the information from W-pair production

Ref.: Theses Ivan Marchesini

(http://pubdb.xfel.eu/record/94888)

▶ Using the information from single W, γ , Z events

Ref.: Talk Graham W. Wilson

(https://agenda.linearcollider.org/event/5468/contributions/24027/)

Current Work:

- Combining all relevant processes, including all uncertainties and their correlations
- Compensating for a non-perfect helicity reversal
- Including constraints from the polarimeter measurement

Introduction

Polarization Measurement using Collision Data

Comparison of the Statistical Precision for Different Methods Impact of Systematic Uncertainties and their Correlations

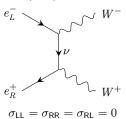
Improvement by Constraints from Polarimeter Measurement

Summary

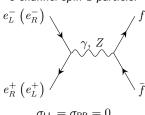
Concept

Example Processes:

W-pair production:



s-channel spin-1 particle:



$$\sigma_{LL} = \sigma_{RR} = 0$$

- \triangleright Calculation of the P from polarized σ measurement of well known SM-process
 - → Using the information of their chiral structure
- Requirement to consider a process:
 - Theoretical very well known
 - → Reduction of theoretical uncertainties
 - High absolute cross section (high rate)
 - \rightarrow Minimizing the statistical error
 - Large left-right-asymmetry
 - → Minimizing the influence of systematic uncertainties
 - Well separable from possible BSM-effects
- ► Feature of the II C: Using 4 different polarization configuration $(\rightarrow \text{signs of the polarizations})$
- Task: Providing the absolute scale calibration

Special Case: The Modified Blondel Scheme (MBS)

- Constraints for the Modified Blondel Scheme:
 - ▶ Process must fulfill: $\sigma_{LL} \equiv \sigma_{RR} \equiv 0$
 - ▶ Perfect helicity reversal: $+|P|\longleftrightarrow -|P|$ \Rightarrow $|P|\equiv const.$
- Unique solution:
 - 4 possible cross section measurements: $\sigma_{-+}, \sigma_{+-}, \sigma_{--}, \sigma_{++}$

Maximal 4 unknown quantities: $~\sigma_{\rm LR},~\sigma_{\rm RL},~|P_{e^-}|,~|P_{e^+}|$

▶ Solve for $|P_{e^{\mp}}|$:

$$\sigma_{\pm\pm} = \frac{\left(1\pm \left|P_{e^{-}}\right|\right)}{2} \frac{\left(1\mp \left|P_{e^{+}}\right|\right)}{2} \cdot \sigma_{RL} + \frac{\left(1\mp \left|P_{e^{-}}\right|\right)}{2} \frac{\left(1\pm \left|P_{e^{+}}\right|\right)}{2} \cdot \sigma_{LR}$$

Modified Blondel-Scheme:

$$|P_{e^{\mp}}| = \sqrt{\frac{(\sigma_{-+} + \sigma_{+-} - \sigma_{--} - \sigma_{++}) \left(\pm \sigma_{-+} \mp \sigma_{+-} + \sigma_{--} - \sigma_{++}\right)}{\left(\sigma_{-+} + \sigma_{+-} + \sigma_{--} + \sigma_{++}\right) \left(\pm \sigma_{-+} \mp \sigma_{+-} - \sigma_{--} + \sigma_{++}\right)}}$$

Uncertainties are calculated via analytic error propagation

The Unified Approach: χ^2 -Method

- Desire for a more general approach:
 - Consider any process with a polarization dependence + using several processes at once
 - \blacktriangleright Compensate non-perfect helicity reversal: $+\left|P^{R}\right|\longleftrightarrow-\left|P^{L}\right|$
- Consider a χ^2 -Method: Using all 4 chiral cross sections

$$\chi^2 = \sum_{\text{process}} \left\{ \sum_{\pm \pm} \left[\frac{\left(\sigma^{\text{data}} - \sigma^{\text{theory}}\right)^2}{\Delta \sigma^2} \right] \right\}$$

Compensate non-perfect helicity reversal: 4 free parameters

$$P_L^- = -80\%,$$

left-handed
$$e^-$$
-beam right-

$$P_R = 80\%,$$

right-handed
$$e^-$$
-beam

$$\underline{P_L^- = -80\%}, \qquad \underline{P_R^+ = 80\%}, \qquad \underline{P_L^+ = -30\%}, \qquad \underline{P_R^+ = 30\%},$$

left-handed
$$e^+$$
-beam

$$P_R^+ = 30\%,$$

left-handed e^+ -beam right-handed e^+ -beam

Error determination via toy experiments

Introduction

Polarization Measurement using Collision Data

Comparison of the Statistical Precision for Different Methods

Impact of Systematic Uncertainties and their Correlations

Improvement by Constraints from Polarimeter Measurement

Summary

Comparison to the Previous W-Pair Study

Study by Ivan Marchesini:

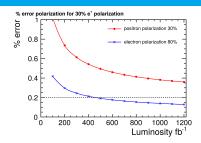
- ▶ Using $e^-e^+ \rightarrow W^+W^- \rightarrow q\bar{q}l\nu$
- Statistical uncertainties only
- Consider equal absolute polarizations (MBS)
- Including full background study

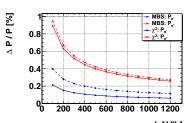
Adjustment of the current study:

- ▶ Limited to $e^-e^+ \to W^+W^- \to q\bar{q}l\nu$
- Forced equal absolute polarizations $\left(\left|P^L\right| \equiv \left|P^R\right|\right)$
- Including same background estimation and selection efficiency

Comparison:

 $\Rightarrow \chi^2$ -method yields better precision under same conditions than the MBS





L [1/fb]

Robert Karl | Polarimetry | 21.11.2016 | 11/19

Comparison to Previous Single W^{\pm} , γ , Z Study

Study by Graham W. Wilson

Using 4 Processes simultaneously:

$$e^{-}e^{+} \rightarrow \nu\bar{\nu}\gamma; \qquad e^{-}e^{+} \rightarrow \nu\bar{\nu}Z$$

$$e^{-}e^{+} \rightarrow e^{+}\nu W^{-} \rightarrow e^{+}\nu\mu^{-}\bar{\nu}$$

$$e^{-}e^{+} \rightarrow e^{-}\bar{\nu}W^{+} \rightarrow e^{-}\bar{\nu}\mu^{+}\nu$$

- Consider equal absolute polarizations 2 Parameters: P_{e^-}, P_{e^+}
- Consider deviations: 4 Parameters

$$\begin{split} P_{e^{\pm}}^{L} &= - \left| P_{e^{\pm}} \right| + \frac{1}{2} \delta_{\pm} \\ P_{e^{\pm}}^{R} &= - \left| P_{e^{\pm}} \right| + \frac{1}{2} \delta_{\pm} \end{split}$$

Comparison to Current analysis

Differences:

Previous: Constraint on δ : $\Delta \delta < 10^{-3}$ Current: direct fit of $P_{a+}^{L,R}$

parameters		$\Delta P/P, \mathcal{L}=2ab^{-1}$	
#	P	Previous	Current
2	P_{e^-}	0.07%	0.051%
	P_{e^+}	0.22%	0.21%
4	P_{e^-}	0.085%	0.088%
	δ_{e^-}	0.12%	0.19%
	P_{e^+}	0.22%	0.23%
	δ_{e^+}	0.32%	0.56%

 ${\cal L}$ equally distributed between $\sigma_{\pm\pm}$ Statistical precision only

 \blacktriangleright Very similar precision even without additional constraint on δ

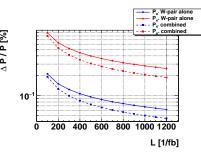
Combining W-Pair + Single W, Z, γ

Combined vs. W-Pairs alone

- \blacktriangleright W-Pair yields only enough information for 2 parameter fit P_{e^-}, P_{e^+}
- ▶ Large improvement→ due to additional processes
- Combined: fit of 4 parameters is possible $P_{e^-}^L$, $P_{e^-}^R$, $P_{e^+}^L$, $P_{e^+}^R$
- ⇒ Compensation for a non-perfect helicity reversal

Combined vs. Single Boson

- The 4 processes Single W^{\pm} , Single Z, Single γ yields a large analysis power
- Combined precision dominated by single boson processes



single

$$W, Z, \gamma$$
 Combined

 P_{e^-}
 0.088%
 0.079%

 δ =
 0.19%
 0.18%

 $\Delta P/P$, $\mathcal{L} = 2ab^{-1}$

$$P_{e^{+}}$$
 0.23% 0.16%

$$\delta_{e^{+}} = 0.56\% = 0.51\%$$

Introduction

Polarization Measurement using Collision Data

Comparison of the Statistical Precision for Different Methods

Impact of Systematic Uncertainties and their Correlations

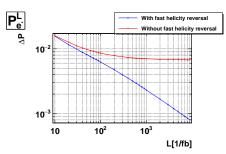
Improvement by Constraints from Polarimeter Measurement

Summary

theory

Systematic Uncertainties and their Correlations

Systematic quantity related to: Integrated luminosity accelerator Selection efficiency detector ε Background estimate В



Remark:

A non-perfect helicity reversal has close to no influence on the precision due to compensation of the unified approach

Uncertainties influenced by

- Detector calibration and alignment
- Machine performance
- etc.
- $\Rightarrow \Delta \mathcal{L}, \Delta \varepsilon$ are time dependent

Correlations:

- Data sets taken concurrently
- Generate correlations
- ⇒ Lead to cancellation of systematic uncertainties

Fast helicity reversal

- Fast switch between σ++ measurements e.g. train-by-train
- ⇒ Faster than changes in calibrations, alignments, etc.

15/19

Robert Karl | Polarimetry | 21.11.2016 |

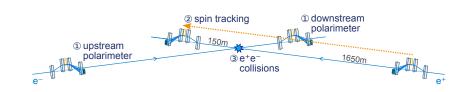
Introduction

Polarization Measurement using Collision Data

Improvement by Constraints from Polarimeter Measurement

Summary

Consider Polarimeter Information



Simplified approach: (as a first step)

- Assume polarimeter measure directly at IP (neglect spin transport)
- Use nominal polarimeter uncertainty $\Delta P/P = 0.25\%$:
- ► Toy polarimeter measurement:

Gaus-smeared

▶ Mean: $P_{e^-} = 80\%$, $P_{e^+} = 30\%$

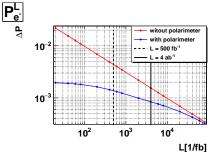
▶ Width: ∆P

Implementation

$$\chi^2 + = \sum_{P} \left[\frac{\left(P_{e^{\pm}}^{L,R} - \mathcal{P}_{e^{\pm}}^{L,R} \right)^2}{\Delta \mathcal{P}^2} \right]$$

- $\triangleright P_{e^{\pm}}^{L,R}$: 4 fitted Parameter
- $ightharpoonup \mathcal{P}^{L,R}_{e^\pm}$: Polarimeter measurement
- $ightharpoonup \Delta \mathcal{P}$: Polarimeter uncertainty

Impact of the Polarimeter Constraint



For idealized situation:

- Better polarization precision, especially for lower integrated luminosities
- More robust against large Poisson fluctuations in the cross section measurement

Next step: add more realism

- Spin tracking including misalignments in the BDS
- Include impact of collision effect
- Use upstream and downstream polarimeter separately

Summary

- Polarization provides a deep insight in the chiral structure of the standard model and beyond
 - ⇒ A permille-level precision of the luminosity-weighted average polarization at the IP is required
- New unified approach combing all suitable cross sections and the polarimeter measurement
 - → Higher analysis power by consider various processes
 - ⇒ Further improvement of precision due to polarimeter constraint
- Unified approach also compensate a non-perfect helicity reversal due to direct fit of:

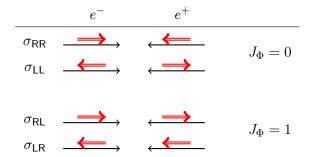
$$P_{e^{-}}^{L}, \qquad P_{e^{-}}^{R}, \qquad P_{e^{+}}^{L}, \qquad P_{e^{+}}^{R}$$

A fast helicity reversal improves the polarization precision due to cancellation of systematic uncertainties

Backup Slides

Polarization at a e^-e^+ Collider

- ▶ Helicity is the projection of the spin vector on the direction of motion
- ▶ In case of massless particles, helicity is equal to chirality
- ▶ If $E_{\text{kin}} \gg E_0 \longrightarrow m_e \approx 0$



For a bunch of particles the polarization is defined as:

$$P := \frac{N_R - N_L}{N_R + N_L}$$

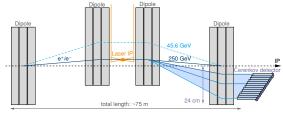
Laser-Compton Polarimeters

Spin Tracking

Collision Data

Laser-Compton Polarimeters

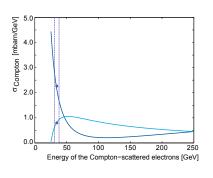
Magnetic chicane of the upstream polarimeters



- Compton scattering of the beam with a polarized Laser
- $\triangleright \mathcal{O}(10^3)$ particles per bunch $(2 \cdot 10^{10})$ are scattered
- Magnetic chicane: energy spectrum ⇒ spatial distribution

- Energy spectrum measurement:
 - ⇒ Counting the scattered particles at different positions
- Design of the magnetic Chicane:
 - Laser-bunch interaction point moves with beam energy --- position of the Compton edge stays the same
 - Orbit of the non-scattered particles is unaffected by the magnetic chicane

Differential Compton Cross Section



Energy dependence:

$$\frac{\mathrm{d}\sigma_C}{\mathrm{d}y_C} = \frac{2\pi r_e^2}{x_C} \left(a_C + \lambda \mathcal{P} \cdot b_C\right); \quad y_C := 1 - \frac{E'}{E}$$

 e^- Polarization: \mathcal{P} ; Laser Polarization: λ

DarkBlue: $\lambda \mathcal{P} = +1$

Cyan: $\lambda \mathcal{P} = -1$

Calculating \mathcal{P}_i of the i-th channel with asymmetry A_i , analysing power Π_i

$$A_i := \frac{N_i^- - N_i^+}{N_i^- + N_i^+}; \qquad \Pi_i = \frac{\mathcal{I}_i^- - \mathcal{I}_i^+}{\mathcal{I}_i^- + \mathcal{I}_i^+}; \qquad \mathcal{I}_i^{\stackrel{\bot}{=}} := \int\limits_{E_i - \Delta/2}^{\int\limits_{C}} \frac{\mathrm{d}\sigma_C}{\mathrm{d}y_C} \bigg|_{\lambda \mathcal{P} = \stackrel{\bot}{=} 1} \, \mathrm{d}y_C$$

 $N^{\pm}:=\#e_{\mathsf{Compton}}$ for $\lambda\mathcal{P}=\pm1;\quad E_i:$ energy of $i\text{-th channel};\quad \Delta:$ energy width

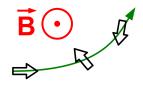
$$\Rightarrow \quad \lambda \mathcal{P}_i = \frac{A_i}{\Pi_i} \quad \Rightarrow \quad \mathcal{P} = \langle \mathcal{P}_i \rangle$$

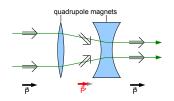
Laser-Compton Polarimeters

Spin Tracking

Collision Data

Spin Precession





- Polarimeters are 1.65 km and 150 m away from IP
 - $\rightarrow \ \, \text{Particles propagate through magnets}$
 - → Magnets influence the spin, as well
 - → Described by Thomas precession
- $\blacktriangleright \text{ if } \vec{B}_{\parallel} = \vec{E} = 0 :$

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{S} = -\frac{q}{m\gamma}\left(\left(1 + a\gamma\right)\vec{B}_{\perp}\right) \times \vec{S}$$

- Effects from focusing and defocusing can cancel
- For a series of quadrupole magnets $\mathcal P$ described by the angular divergence θ_r

$$f(\theta_r) = |\vec{\mathcal{P}}|_{\text{max}} \cdot \cos((1 + a\gamma) \cdot \theta_r)$$

Systematic Polarization Uncertainty

contribution	$uncertainty\big[10^{-3}\big]$
Beam and polarization alignment at polarimeters and IP ($\Delta\vartheta_{\rm bunch}=50\mu{\rm rad},~\Delta\vartheta_{\rm pol}=25{\rm mrad})$	0.72
Variation in beam parameters (10 $\%$ in the emittances)	0.03
Bunch rotation to compensate the beam crossing angle	< 0.01
Longitudinal precession in detector magnets	0.01
Emission of synchrotron radiation	0.005
Misalignments (10 μ) without collision effects	0.43
Total (quadratic sum)	0.85
Collision effects in absence of misalignments	< 2.2

[Ref.:] Thesis Moritz Beckmann (http://bib-pubdb1.desy.de/record/155874)

Laser-Compton Polarimeters

Spin Tracking

Collision Data

Polarized Cross Section

► Theoretical polarized cross section:

$$\begin{split} \sigma\left(P_{e^-},P_{e^+}\right) &= \frac{\left(1-P_{e^-}\right)}{2}\frac{\left(1-P_{e^+}\right)}{2} \cdot \sigma_{\mathrm{LL}} + \frac{\left(1+P_{e^-}\right)}{2}\frac{\left(1+P_{e^+}\right)}{2} \cdot \sigma_{\mathrm{RR}} \\ &+ \frac{\left(1-P_{e^-}\right)}{2}\frac{\left(1+P_{e^+}\right)}{2} \cdot \sigma_{\mathrm{LR}} + \frac{\left(1+P_{e^-}\right)}{2}\frac{\left(1-P_{e^+}\right)}{2} \cdot \sigma_{\mathrm{RL}} \end{split}$$

Measured polarized cross section:

$$\sigma\left(P_{e^{-}}, P_{e^{+}}\right) = \frac{N}{\varepsilon \cdot \mathcal{L}} = \frac{D - \langle B \rangle}{\varepsilon \cdot \mathcal{L}};$$

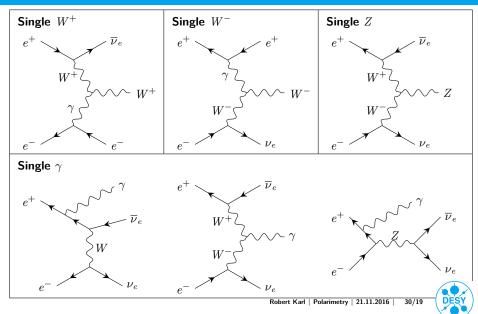
Statistic quantity: selected data D, number of events N

Systematic quantity: background B, selection efficiency ε , integrated luminosity $\mathcal L$

▶ Cross section of the 4 polarization configurations

$$\begin{split} \sigma_{--} &:= \sigma \left(-|P_{e^-}|, -|P_{e^+}| \right) \\ \sigma_{-+} &:= \sigma \left(-|P_{e^-}|, +|P_{e^+}| \right) \\ \end{split} \qquad \begin{aligned} \sigma_{++} &:= \sigma \left(+|P_{e^-}|, +|P_{e^+}| \right) \\ \sigma_{+-} &:= \sigma \left(+|P_{e^-}|, -|P_{e^+}| \right) \end{aligned}$$

Previous Single W^\pm , Z, γ Study: Leading Diagrams



Consider Correlated Uncertainty

Implementing correlated uncertainty:

$$\chi^2 = \sum_{\text{process}} \sum_{i \in ++} \frac{\left(\sigma_i^{\text{data}} - \sigma_i^{\text{theory}}\right)^2}{\Delta \sigma_i^2} \longrightarrow \sum_{\text{process}} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}}\right)^T \Xi^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}}\right)$$

$$\vec{\sigma} := \begin{pmatrix} \sigma_{-+} & \sigma_{+-} & \sigma_{--} & \sigma_{++} \end{pmatrix}^T$$

$$\Xi := \Xi_N + \Xi_B + \Xi_\varepsilon + \Xi_{\mathcal{L}}; \qquad \text{e.g. } (\Xi_\varepsilon)_{ij} = \operatorname{corr} \left(\vec{\sigma}_i^\varepsilon, \ \vec{\sigma}_j^\varepsilon \right) \frac{\partial \vec{\sigma}_i}{\partial \varepsilon_i} \frac{\partial \vec{\sigma}_j}{\partial \varepsilon_i} \Delta \varepsilon_i \Delta \varepsilon_j$$

Occurrence of correlated uncertainties:

- Fast switch between $\sigma_{\pm\pm}$
- Faster than change in e.g $\delta \mathcal{L}$
- $\rightarrow \Delta \sigma_{\pm\pm} (\Delta \mathcal{L})$ becomes correlated
- \Rightarrow corr $(\vec{\sigma}_i^{\mathcal{L}}, \ \vec{\sigma}_j^{\mathcal{L}}) \neq 0 \quad \forall i \neq j$

Consider disadvantageous situation:

- $\epsilon = 0.6$
- $\Delta \varepsilon / \varepsilon = 0.01$
- $\Delta \mathcal{L}/\mathcal{L} = 0.001$
- ightarrow Studying the impact of correlations

Outlook

Open issues

- lacktriangleright Implementing fiducial cuts for all processes ightarrow correct description of all systematics
- Including a complete background analyses

Further Improvement

- Consider also differential cross sections
- ▶ Study the possibility to use fiducial and differential cross sections simultaneously

