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Introduction

Advantages of Polarized Beams

I International Linear Collider (ILC)
I e−e+ collider with polarized beams of |80%| and |30% - 60%|, respectively
I Selectable polarization sign −→ choice of spin configuration

I Advantages:
I Sensitive to new observables (e.g. left-right-asymmetry)
I Reduction of background processes and simultaneously increase of signal processes
I Deep insights into the chiral structure of the weak-interaction

for known and unknown particle

All event rates depend linearly on the polarization!
⇒ Has to be known as precisely as the luminosity!

Robert Karl | Polarimetry | 21.11.2016 | 3/19



Introduction

ILC Polarimetry Concept
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1. Measurement of the time-resolved beam polarization before and after the e−e+ IP
I Via laser-Compton polarimeter

Ref.: Jenny List, Annika Vauth, and Benedikt Vormwald:
A Quartz Cherenkov Detector for Compton-Polarimetry at Future e+e−Colliders (https://bib-pubdb1.desy.de/record/221054)
A Calibration System for Compton Polarimetry at e+e−Colliders(https://bib-pubdb1.desy.de/record/289025)

2. Extrapolating the beam polarization to the e−e+ IP
I Via Spin Tracking

Ref.: Moritz Beckmann, Jenny List, Annika Vauth, and Benedikt Vormwald:

Spin transport and polarimetry in the beam delivery system of the international linear collider

(http://iopscience.iop.org/article/10.1088/1748-0221/9/07/P07003/pdf)

3. Determination of the luminosity-weighed averaged polarization from collision data
I Calculating the polarization from known standard model processes
⇒ Discussed in the following
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Introduction

Determination of the Polarization from Collision Data

Goal:

General strategy for the polarization determination
which yields the best precision per measurement time

I Previous Work:
I Using the information from W-pair production

Ref.: Theses Ivan Marchesini
(http://pubdb.xfel.eu/record/94888)

I Using the information from single W , γ, Z events
Ref.: Talk Graham W. Wilson

(https://agenda.linearcollider.org/event/5468/contributions/24027/)

I Current Work:
I Combining all relevant processes, including all uncertainties and their correlations
I Compensating for a non-perfect helicity reversal
I Including constraints from the polarimeter measurement
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Polarization Measurement using Collision Data

Concept

Example Processes:

W-pair production:

e+
R

e−L

ν

W +

W−

σLL = σRR = σRL = 0

s-channel spin-1 particle:

e+
R

(
e+

L

)

e−L
(
e−R
)

γ, Z

f

f̄

σLL = σRR = 0

I Calculation of the P from polarized σ measurement
of well known SM-process
→ Using the information of their chiral structure

I Requirement to consider a process:
I Theoretical very well known

→ Reduction of theoretical uncertainties
I High absolute cross section (high rate)

→ Minimizing the statistical error
I Large left-right-asymmetry

→ Minimizing the influence of systematic uncertainties
I Well separable from possible BSM-effects

I Feature of the ILC:
Using 4 different polarization configuration
(→ signs of the polarizations)

⇒ Task: Providing the absolute scale calibration
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Polarization Measurement using Collision Data

Special Case: The Modified Blondel Scheme (MBS)
I Constraints for the Modified Blondel Scheme:

I Process must fulfill: σLL ≡ σRR ≡ 0

I Perfect helicity reversal: + |P| ←→ − |P| ⇒ |P| ≡ const.

I Unique solution:
4 possible cross section measurements: σ−+, σ+−, σ−−, σ++

Maximal 4 unknown quantities: σLR, σRL, |Pe− | , |Pe+ |

I Solve for |Pe∓ |:

σ±± = (1±|Pe− |)
2

(1∓|Pe+ |)
2 · σRL + (1∓|Pe− |)

2
(1±|Pe+ |)

2 · σLR

I Modified Blondel-Scheme:

|Pe∓ | =
√

(σ−+ + σ+− − σ−− − σ++) (±σ−+ ∓ σ+− + σ−− − σ++)
(σ−+ + σ+− + σ−− + σ++) (±σ−+ ∓ σ+− − σ−− + σ++)

I Uncertainties are calculated via analytic error propagation
Robert Karl | Polarimetry | 21.11.2016 | 8/19



Polarization Measurement using Collision Data

The Unified Approach: χ2-Method

I Desire for a more general approach:
I Consider any process with a polarization dependence + using several processes at once

I Compensate non-perfect helicity reversal: +
∣∣PR
∣∣←→ − ∣∣PL

∣∣
I Consider a χ2-Method: Using all 4 chiral cross sections

χ2 =
∑
process

{∑
±±

[(
σdata − σtheory)2

∆σ2

]}

I Compensate non-perfect helicity reversal: 4 free parameters

P−L = −80%,︸ ︷︷ ︸
left-handed e−-beam

P−R = 80%,︸ ︷︷ ︸
right-handed e−-beam

P+
L = −30%,︸ ︷︷ ︸

left-handed e+-beam

P+
R = 30%,︸ ︷︷ ︸

right-handed e+-beam

I Error determination via toy experiments
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Polarization Measurement using Collision Data Comparison of the Statistical Precision for Different Methods

Comparison to the Previous W-Pair Study

Study by Ivan Marchesini:
I Using e−e+ →W +W− → qq̄lν

I Statistical uncertainties only

I Consider equal absolute polarizations (MBS)

I Including full background study

Adjustment of the current study:
I Limited to e−e+ →W +W− → qq̄lν

I Forced equal absolute polarizations(∣∣PL
∣∣ ≡ ∣∣PR

∣∣)
I Including same background estimation and

selection efficiency

Comparison:
⇒ χ2-method yields better precision under

same conditions than the MBS
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Polarization Measurement using Collision Data Comparison of the Statistical Precision for Different Methods

Comparison to Previous Single W±, γ, Z Study

Study by Graham W. Wilson
I Using 4 Processes simultaneously:

e−e+ → νν̄γ; e−e+ → νν̄Z
e−e+ → e+νW− → e+νµ−ν̄

e−e+ → e−ν̄W + → e−ν̄µ+ν

I Consider equal absolute polarizations
2 Parameters: Pe− ,Pe+

I Consider deviations: 4 Parameters

PL
e± = − |Pe± |+ 1

2δ±

PR
e± = |Pe± |+ 1

2δ±

parameters ∆P/P, L = 2ab−1

# P Previous Current

2 Pe− 0.07% 0.051%

Pe+ 0.22% 0.21%

4 Pe− 0.085% 0.088%

δe− 0.12% 0.19%

Pe+ 0.22% 0.23%

δe+ 0.32% 0.56%

L equally distributed between σ±±

Statistical precision only
Comparison to Current analysis

I Differences:
Previous: Constraint on δ: ∆δ < 10−3

Current: direct fit of PL,R
e±

I Very similar precision even without
additional constraint on δ
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Polarization Measurement using Collision Data Comparison of the Statistical Precision for Different Methods

Combining W-Pair + Single W ,Z , γ

Combined vs. W-Pairs alone

I W-Pair yields only enough information
for 2 parameter fit Pe− ,Pe+

I Large improvement
→ due to additional processes

I Combined: fit of 4 parameters is
possible PL

e− , PR
e− , PL

e+ , PR
e+

⇒ Compensation for a non-perfect helicity
reversal

Combined vs. Single Boson

I The 4 processes Single W±, Single Z ,
Single γ yields a large analysis power

I Combined precision dominated by single
boson processes

L [1/fb]
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 / 

P
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%
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∆
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 W-pair alone-eP
 W-pair alone+eP
 combined-eP
 combined+eP

∆P/P, L = 2ab−1

single W ,Z , γ Combined

Pe− 0.088% 0.079%

δe− 0.19% 0.18%

Pe+ 0.23% 0.16%

δe+ 0.56% 0.51%
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Polarization Measurement using Collision Data Impact of Systematic Uncertainties and their Correlations

Systematic Uncertainties and their Correlations

Systematic quantity related to:

Integrated luminosity L accelerator

Selection efficiency ε detector

Background estimate B theory

L[1/fb]

10 210 310

P∆

3−10

2−10

L
-eP With fast helicity reversal

Without fast helicity reversal

L
-eP

Remark:
A non-perfect helicity reversal has close to no
influence on the precision due to compensation
of the unified approach

I Uncertainties influenced by
I Detector calibration and alignment
I Machine performance
I etc.
⇒ ∆L, ∆ε are time dependent

I Correlations:
I Data sets taken concurrently
I Generate correlations
⇒ Lead to cancellation of systematic

uncertainties

⇒ Fast helicity reversal
I Fast switch between σ±±

measurements e.g. train-by-train
⇒ Faster than changes in calibrations,

alignments, etc.
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Improvement by Constraints from Polarimeter Measurement

Consider Polarimeter Information

1650m

150m

e⁻ e⁺

e⁺e⁻
collisions

③
upstream
polarimeter

①

downstream
polarimeter

①spin tracking②

Simplified approach: (as a first step)
I Assume polarimeter measure directly

at IP (neglect spin transport)
I Use nominal polarimeter uncertainty

∆P/P = 0.25%:
I Toy polarimeter measurement:

Gaus-smeared
I Mean: Pe− = 80%, Pe+ = 30%
I Width: ∆P

Implementation

χ2+=
∑

P

[(
PL,R

e± − P
L,R
e±
)2

∆P2

]

I PL,R
e± : 4 fitted Parameter

I PL,R
e± : Polarimeter measurement

I ∆P: Polarimeter uncertainty
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Improvement by Constraints from Polarimeter Measurement

Impact of the Polarimeter Constraint

L[1/fb]

210 310 410

P∆

3−10

2−10

L
-eP

witout polarimeter

with polarimeter
-1L = 500 fb

-1L = 4 ab

L
-eP

For idealized situation:

I Better polarization precision,
especially for lower integrated
luminosities

I More robust against large Poisson
fluctuations in the cross section
measurement

Next step: add more realism

I Spin tracking including misalignments in the BDS

I Include impact of collision effect

I Use upstream and downstream polarimeter separately
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Summary

Summary

I Polarization provides a deep insight in the chiral structure of the standard model and
beyond

⇒ A permille-level precision of the luminosity-weighted average polarization at the IP is
required

I New unified approach combing all suitable cross sections and the polarimeter
measurement

⇒ Higher analysis power by consider various processes

⇒ Further improvement of precision due to polarimeter constraint

I Unified approach also compensate a non-perfect helicity reversal due to direct fit of:

PL
e− , PR

e− , PL
e+ , PR

e+

I A fast helicity reversal improves the polarization precision due to cancellation of
systematic uncertainties
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Backup Slides
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Polarization at a e−e+ Collider

I Helicity is the projection of the spin vector on the direction of motion
I In case of massless particles, helicity is equal to chirality
I If Ekin � E0 −→ me ≈ 0

e− e+

σRR JΦ = 0
σLL

σRL JΦ = 1
σLR

I For a bunch of particles the polarization is defined as:

P := NR −NL

NR + NL
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Laser-Compton Polarimeters

Laser-Compton Polarimeters

Magnetic chicane of the upstream polarimeters

24 cm

45.6 GeV

Laser IP

Dipole Dipole

DipoleDipole

total length: ~75 m

IPe⁺/e⁻

Čerenkov detector

250 GeV

I Compton scattering of the
beam with a polarized Laser

I O(103) particles per bunch
(2 · 1010) are scattered

I Magnetic chicane:
energy spectrum
⇒ spatial distribution

I Energy spectrum measurement:
⇒ Counting the scattered particles at different positions

I Design of the magnetic Chicane:
I Laser-bunch interaction point moves with beam energy
−→ position of the Compton edge stays the same

I Orbit of the non-scattered particles is unaffected by the magnetic chicane
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Laser-Compton Polarimeters

Differential Compton Cross Section
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Energy dependence:

dσC

dyC
= 2πr2

e

xC
(aC + λP · bC ) ; yC := 1− E ′

E

e− Polarization: P; Laser Polarization: λ
DarkBlue: λP = +1

Cyan: λP = −1

Calculating Pi of the i-th channel with
asymmetry Ai , analysing power Πi

Ai := N−i −N +
i

N−i + N +
i

; Πi = I
−
i − I

+
i

I−i + I+
i

; I±i :=

Ei+∆/2∫
Ei−∆/2

dσC

dyC

∣∣∣∣
λP=±1

dyC

N± := #eCompton for λP = ±1; Ei : energy of i-th channel; ∆ : energy width

⇒ λPi = Ai

Πi
⇒ P = 〈Pi〉
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Spin Tracking
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Spin Tracking

Spin Precession

PP'P

quadrupole magnets

I Polarimeters are 1.65 km and 150m away from IP

→ Particles propagate through magnets
→ Magnets influence the spin, as well
→ Described by Thomas precession

I if ~B‖ = ~E = 0:

d
dt
~S = − q

mγ
(
(1 + aγ) ~B⊥

)
× ~S

I Effects from focusing and defocusing can cancel

I For a series of quadrupole magnets
P described by the angular divergence θr

f (θr) = |~P|max · cos ((1 + aγ) · θr)

Robert Karl | Polarimetry | 21.11.2016 | 26/19



Spin Tracking

Systematic Polarization Uncertainty

contribution uncertainty
[
10−3]

Beam and polarization alignment at polarimeters and IP
(∆ϑbunch = 50µrad, ∆ϑpol = 25mrad)

0.72

Variation in beam parameters (10% in the emittances) 0.03

Bunch rotation to compensate the beam crossing angle < 0.01

Longitudinal precession in detector magnets 0.01

Emission of synchrotron radiation 0.005

Misalignments (10 µ) without collision effects 0.43

Total (quadratic sum) 0.85

Collision effects in absence of misalignments < 2.2

[Ref.:] Thesis Moritz Beckmann (http://bib-pubdb1.desy.de/record/155874)
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Collision Data

Polarized Cross Section

I Theoretical polarized cross section:

σ (Pe− ,Pe+ ) = (1−Pe−)
2

(1−Pe+ )
2 · σLL + (1+Pe−)

2
(1+Pe+ )

2 · σRR

+(1−Pe−)
2

(1+Pe+ )
2 · σLR + (1+Pe−)

2
(1−Pe+ )

2 · σRL
I Measured polarized cross section:

σ (Pe− ,Pe+ ) = N
ε · L = D − 〈B〉

ε · L ;

Statistic quantity : selected data D, number of events N

Systematic quantity : background B, selection efficiency ε,

integrated luminosity L

I Cross section of the 4 polarization configurations

σ−− := σ (−|Pe− |,−|Pe+ |) σ++ := σ (+|Pe− |,+|Pe+ |)
σ−+ := σ (−|Pe− |,+|Pe+ |) σ+− := σ (+|Pe− |,−|Pe+ |)
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Collision Data

Previous Single W±, Z , γ Study: Leading Diagrams

Single W + Single W− Single Z

e− e−

e+ νe

γ

W +

W +

e− νe

e+ e+

W−

γ

W−

e− νe

e+ νe

W−

W +

Z

Single γ

e+
γ

νe

W

e− νe e− νe

e+ νe

W−

W +

γ

e+
γ

e−

Z
νe

νe
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Collision Data

Consider Correlated Uncertainty

Implementing correlated uncertainty:

χ2 =
∑
process

∑
i∈±±

(
σdata

i − σtheory
i

)2

∆σ2
i

−→
∑
process

(~σdata − ~σtheory)T Ξ−1 (~σdata − ~σtheory)

~σ :=
(
σ−+ σ+− σ−− σ++

)T

Ξ := ΞN + ΞB + Ξε + ΞL; e.g. (Ξε)ij = corr
(
~σεi , ~σ

ε
j
) ∂~σi

∂εi

∂~σj

∂εj
∆εi∆εj

Occurrence of correlated uncertainties:
I Fast switch between σ±±
I Faster than change in e.g δL
→ ∆σ±± (∆L) becomes correlated
⇒ corr

(
~σLi , ~σ

L
j
)
6= 0 ∀i 6= j

Consider disadvantageous situation:
I ε = 0.6
I ∆ε/ε = 0.01
I ∆L/L = 0.001

→ Studying the impact of correlations
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Collision Data

Outlook

I Open issues

I Implementing fiducial cuts for all processes → correct description of all systematics

I Including a complete background analyses

I Further Improvement

I Consider also differential cross sections

I Study the possibility to use fiducial and differential cross sections simultaneously
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