

Direct Top-Quark Decay Width Measurement in the $t\bar{t}$ Lepton+Jets Channel at 8 TeV

Helmholtz Alliance Meeting

Tomas Dado
Universität Göttingen, II. Physikalisches Institut
Comenius University, Bratislava
November, 2016

The Top Quark

Top Quark

- Discovered in 1995 at Tevatron
- Produced abundantly at LHC → precision measurements by ATLAS and CMS
- Heaviest known elementary particle $(m_t \approx 173 \text{ GeV})$
- Extremely short mean lifetime ($\approx 10^{-25}$ s)
 - Decays before hadronization

Top quark decays

- $t \rightarrow W + b$ almost 100%
- Lepton+jets channel: Lepton = $e, \mu(\tau \rightarrow e, \mu)$
- Signature: 4 jets (with 2 b jets), $t\overline{t} \rightarrow WbWb \rightarrow bbqq\ell\nu$

2 / 11

Top Quark Decay Width

Introduction

- Top quark decay width has not been measured directly at ATLAS
- Indirect measurements
 - Indirect CMS measurement Phys. Lett. B 736 (2014) 33
 - Using cross-section from single top events $\sigma_{t-{\rm ch}}$ and branching ratio from $t\bar{t}$ dileptonic events $\mathcal{B}(t \to Wb)$
 - Model dependent!
 - \bullet Result: $\Gamma_t=1.36^{+0.14}_{-0.11}~\text{GeV}~(\sqrt{s}=8~\text{TeV},~\mathcal{L}_{\text{int}}=19.7~\text{fb}^{-1})$
- Direct measurements model independent, can probe wider classes of BSM physics
 - CDF measurement Phys. Rev. Lett 111 (2013) 202001
 - Template fit, $\ell+$ jets $t\overline{t}$ events ($\sqrt{s}=1.96$ TeV, $\mathcal{L}_{\mathsf{int}}=8.7$ fb $^{-1}$)
 - In-situ calibration with $m_W^{\rm reco}$
 - Result: $1.10 < \Gamma_t < 4.05 \, \text{GeV}$ at 68% C.L.
 - CMS measurement CMS PAS TOP-16-019
 - Dileptonic events, $\sqrt{s}=13$ TeV, $\mathcal{L}_{\text{int}}=12.9$ fb $^{-1}$
 - Profile-likelihood fit using $m_{\ell b}$
 - Result: $0.6 < \Gamma_t < 2.4 \, \text{GeV}$ at 95% C.L.

Event Selection Cuts, MC Samples, Data

• ATLAS ℓ +jets $t\bar{t}$ events at $\sqrt{s}=8$ TeV

Event selection: Cuts

- Trigger cuts & trigger matching
- \bullet \geq 4 good jets ($p_{\mathsf{T}} > 25$ GeV, $|\eta| < 2.5$)
- Exactly one good e/μ , no good μ/e ($p_T > 25$ GeV and η cuts)
- $E_{\rm T}^{\rm miss} >$ 40 GeV (0 *b*-tag events), $E_{\rm T}^{\rm miss} >$ 20 GeV (1 *b*-tag events)
- \bullet $E_{\rm T}^{
 m miss} + m_W^{
 m T} > 60~{
 m GeV}~(0{+}1~b{-}{
 m tag})$
- b-Tagging: MV1-tagger 70 % eff.

Considered background

W+jets

W+jets normalisation: categorised by heavy flavour content (W+light, W+c, W+bb/cc) with data-driven calibration factors applied

Z+jets

Diboson

Single top

Fake leptons

Using data-driven matrix method

Data

- Events with 4 jets (incl.), $\sqrt{s} = 8$ TeV with $\mathcal{L}_{int} = 20.2$ fb⁻¹
- Events split by lepton type (e, μ) and by b-tag multiplicity: 1excl., 2incl

Event Reconstruction

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Algorithms and Options

Challenge

• Identify second b-jet and associate jets to their corresponding partons

KLFitter: → NIM A 748 (2014) 18

 \Rightarrow Likelihood-based reconstruction method with extensions: b-tagging information, fixed top quark mass $m_t = 172.5 \text{ GeV}$

KLFitter options for ℓ +jets channel

- 4 or 5 jets in reconstruction (jets considered in permutations)
- Additional cut on LogLikelihood to improve fraction of correctly reconstructed events
- Additional cut on reconstructed m_W^{reco} to further improve fraction of correctly reconstructed events

Tomas Dado 5 / 11

Analysis Strategy

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Basic Idea

Templates

- Find observable sensitive to top quark decay width
- ullet Create templates with different top widths: $\Gamma_t=0.1-15~{
 m GeV}~(\Delta\Gamma_tpprox0.1~{
 m GeV})$
- Reweight signal distributions of observables based on Breit-Wigner function ($m_{\text{top}} = 172.5 \text{ GeV}$)

Template Fit

One Observable Fit

- Combination of el. and muon channel and 1excl. + 2incl. b-tag bins
- Each signal/background contribution included in the fit
- Background normalization constrained by Gaussian priors (with width equal to expected uncertainty)
- Likelihood: $\mathcal{L}(\langle obs. \rangle | \Gamma_t) = (\sum_{S+B} P_t(\langle obs. \rangle | \Gamma_t)) \cdot \prod_B P_{pr}(Gauss)$

Two Observables Fit

- Fit two observables simultaneously
- One observable from hadronic branch and one from leptonic branch uncorrelated
- Reduce statistical and/or systematic uncertainty

7 / 11

Further Improvements

Jet Related Uncertainties

- JES and JER are expected to be dominant systematic uncertainties
- Ways to reduce JES/JER
 - Choose observables with low sensitivity to JES/JER
 - Focus on phase space regions with better detector resolution

Decisions, decisions

- Different observables:
 - "Direct" mass related observables: m_t^{had} , $m_{\ell b}$
 - Ratios R32; ratio of top mass divided by the peak mass in the sample, ...
 - ΔR related observables
- Different phase space regions (better detector resolution, lower pile-up)
 - **Split** events by jet $|\eta|$ ($|\eta| = 0.8, 1, 1.2$ tested)
 - **Split** events by jet energy ($E_b = 100 \text{ GeV} \& E_{\text{light}} = 50 \text{ GeV}$)
 - Fit different regions simultaneously

Choice of the Observables

- All mass observables from hadronic branch suffer from large ISR/FSR uncertainty
- Many observables sensitive to JES uncertainty
- Need to compromise between large systematic uncertainties and width sensitivity
- $m_{\ell b}$ shows good results: sensitive to width and low uncertainties
- Use $m_{\ell b}$ with combination of hadronic observable
 - Decided to use ΔR related observables: low jet energy related systematics, but smaller width sensitivity

Tomas Dado 9 / 11

Fit validation

Linearity Tests

- ullet Generate 1000 Pseudo-experiments for different widths: 0.5 GeV $\geq \Gamma_t \leq$ 5.0 GeV
- PE: Poisson fluctuations in each bin + Gaussian fluctuations for bkg. normalization
- Fit each distribution using all templates (signal + bkg.)
- Interpolation with three values around minimum to estimate top decay width
- Linearity tests to check for problems/biases
- \Rightarrow Sharpe edge at $\Gamma_t = 0$ leads to shift at low reco. Γ_t

Conclusions

- Direct top quark width measurement is important test of SM and it can probe of BSM physics
- Top width has not been measured directly at ATLAS
- Tested different reconstruction settings and observables

Outlook

- Need to rerun full software chain for the final settings
- Need to run a lot of pseudoexperiments (very CPU intensive)

Backup

Tomas Dado 1 / 6

Comparison with CDF

CDF measurement (Phys. Rev. Lett 111 (2013) 202001)

- CDF observed the same behaviour of PE distributions for small width values
- Gaussian shape "deformed" due to edge at $\Gamma_t = 0$ GeV since negative width values not allowed in our measurement

Tomas Dado 2 / 6

 \Rightarrow Maximisation of a likelihood for all permutations in the $\ell+$ iets channel:

$$\begin{split} L &= B(m_{q_1q_2q_3}|m_t, \Gamma_t) \cdot B(m_{q_1q_2}|m_W\Gamma_W) \cdot B(m_{q_4\ell\nu}|m_t, \Gamma_t) \cdot B(m_{\ell\nu}|m_W\Gamma_W) \\ &\quad \cdot \prod_{i=1}^4 W_{jet}(E_i^{\mathsf{mess}}|E_i) \cdot W_\ell(E_\ell^{\mathsf{mess}}|E_\ell) \cdot W_{\mathsf{miss}}(E_x^{\mathsf{miss}}|p_x^{\nu}) \cdot W_{\mathsf{miss}}(E_y^{\mathsf{miss}}|p_y^{\nu}) \end{split}$$

- Free parameters: m_t , E_i , E_ℓ , p_i^{ν}
- Breit-Wigner functions B; transfer functions W with Double-Gaussian resolution
- \Rightarrow Permutation with largest L chosen as estimate for jet-to-particle association

Tomas Dado 3 / 6

KLFitter Performance Compare Different KLFitter Options

Comparison: KLFitter with 4 or 5 jets used for reconstruction

- Compare reco. efficiencies of individual particles for both KLFitter jet options based on full sim. Powheg+Pythia $t\bar{t}$ signal sample in different b-tag bins
- ⇒ KLFitter with 5 jets used for reconstruction performs better
 - Studies ongoing: Systematic effects are sensitive to KLFitter option

Tomas Dado 4 / 6

Template Fit

Settings

Setting up a 1D fit

- ullet 1D fit with combination of el. and muon channel and 1excl. + 2 incl. b-tag bins
- Fit parameters for signal and all background contributions
- Background normalisations constrained by Gaussian priors
- \Rightarrow Likelihood: $\mathcal{L}(< obs. > | \Gamma_t) = (\sum_{\mathsf{S}+\mathsf{B}} P_t(< obs. > | \Gamma_t)) \cdot \prod_{\mathsf{B}} P_{\mathsf{pr}}(\mathsf{Gauss})$
- Code based on <u>RooFit</u> using RooHistPdfs to build likelihood

Background treatment

- Fit parameters: $n_{W+light}$, $n_{W+bb/cc}$, n_{W+c} , n_{QCD} , $n_{singletop}$, $n_{diboson}$, n_{Z+jets}
- ...each constrained by Gaussian with width of expected uncertainty:
- W+light: 4%
- W+bb/cc: 11%
- *W*+*c*: 27%

• Diboson: 48%

Single Top: 3.2%

• Z+jets: 48%

• QCD: 30%

ISR/FSR effect on mass distributions GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

