

Measurement of the W boson polarisation in $t\bar{t}$ events at \sqrt{S} = 8 TeV in the lepton+jets channel with ATLAS

10th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" 21-23 November, DESY

Mohammad Kareem, Supervised by Arnulf Quadt

Georg-August-Universität Göttingen

Bundesministerium für Bildung und Forschung

Mohammad J. Kareem

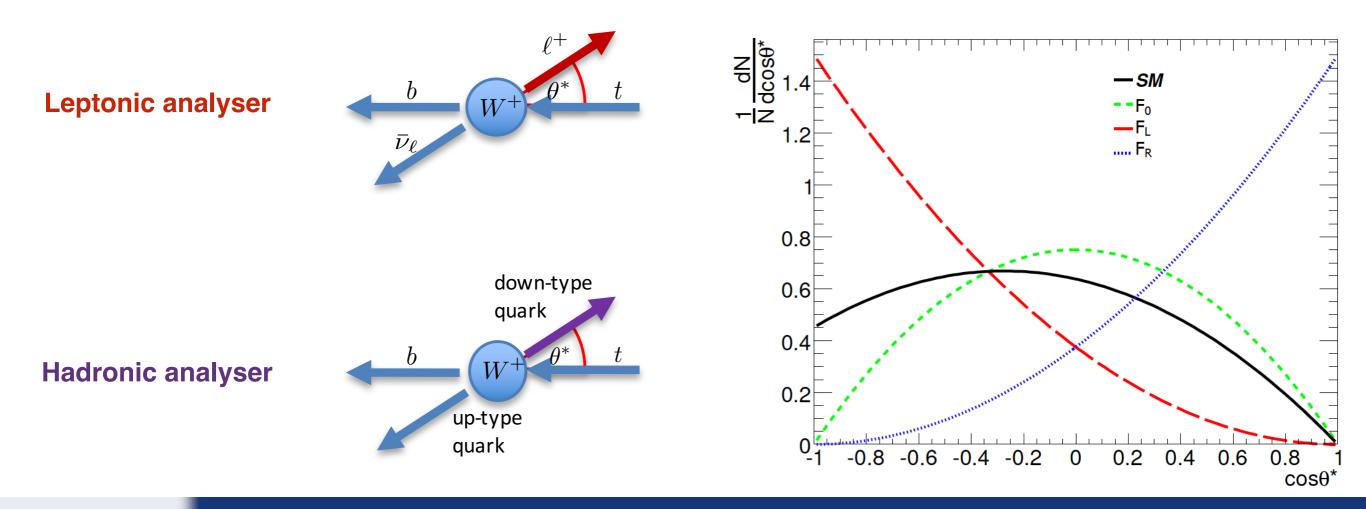
22 Nov. 2016



- Top quarks decay almost ~100% through $t \rightarrow Wb$
- The top quark decay vertex Lagrangian:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\mathrm{L}}P_{\mathrm{L}} + V_{\mathrm{R}}P_{\mathrm{R}}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}} (g_{\mathrm{L}}P_{\mathrm{L}} + g_{\mathrm{R}}P_{\mathrm{R}}) t W_{\mu}^{-} + \text{h.c.}, \qquad \textbf{b}$$
Anomalous couplings:

No SM contribution at tree-level
Any BSM contribution?
Direct impact on the the W boson polarisation (from top quark decay)


- Measuring W boson polarisation with high precision provides:
 - Good test of the Standard Model prediction
 - Probe for new physics processes

The angular distributions of the charged lepton and the down-type quark in W rest frame

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) F_0 + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 F_R$$

22 Nov. 2016

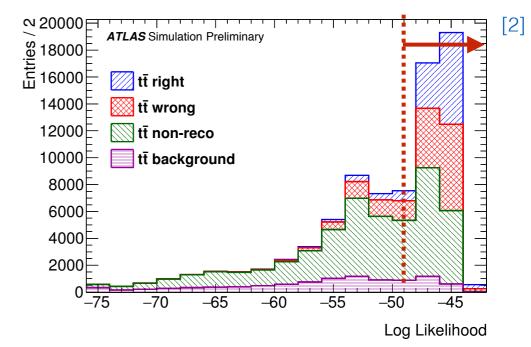
- 20.2 fb⁻¹ data from 8 TeV proton-proton collisions recorded by the ATLAS detector in 2012
- Monte Carlo simulations used for $t\overline{t}$ signal, W+jets, Z+jets, diboson, and single top
- Data-driven methods used to estimate fake lepton contribution and W+jets normalisation
 - W+jets categorised by heavy flavour content (W+light, W+c, W+bb/cc)

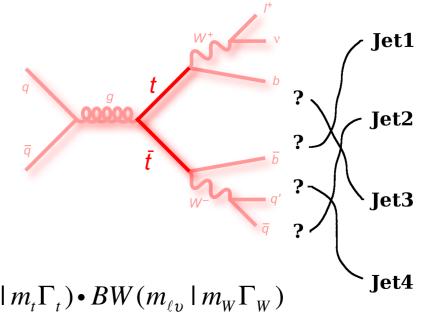
Object Selection

- Lepton: p_T > 25 GeV & |η| < 2.5, isolated</p>
- Jet: Anti-k_T R=0.4, p_T> 25 GeV & |η| < 2.5,</p>
 - |JVF| > 0.5 (for p_T> 50 GeV)
- MET(1 excl. b-tag only):
 - MET \ge 20 GeV, MET+M_T^W \ge 60 GeV

Event Selection

- Lepton trigger
- I primary vertex with > 5 tracks
- Exactly one lepton
- ≥ 4 jets (1 or ≥ 2 b-tagged)
- Reconstruction quality criteria

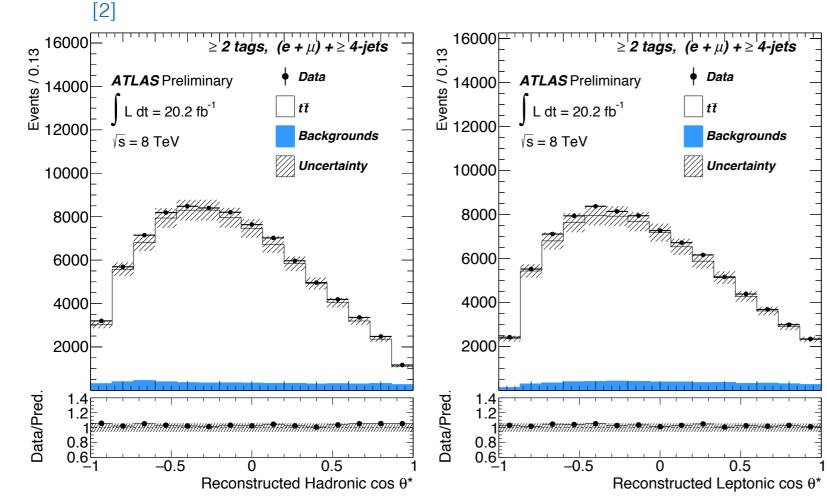



Event Reconstruction (I)

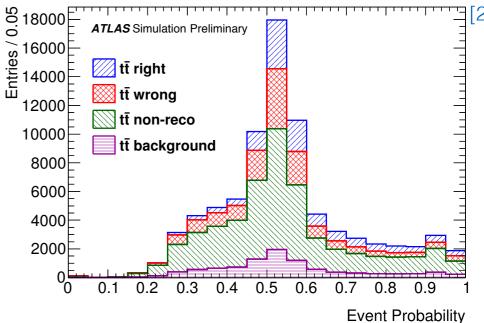
- Events reconstruction via extended kinematic likelihood fit [1]
- Permute two highest b-tag weight jets + next 2/3 jets leading in p_T jets => 4!(5!)=24(120) permutations
- Evaluate each permutation using:
 - Breit-Wigners for invariant masses as constraints
 - Transfer functions W to map energies from
 reconstructed to parton level

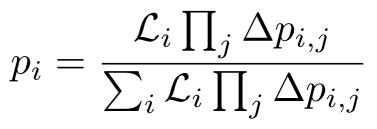
Require log likelihood > -48 to increase purity and maximise

sensitivity (required for hadronic analyser)


$$L = BW(m_{q1q2q3} \mid m_t \Gamma_t) \bullet BW(m_{q1q2} \mid m_W \Gamma_W) \bullet BW(m_{q4} \ell \upsilon \mid m_t \Gamma_t) \bullet BW(m_{\ell \upsilon} \mid m_W \Gamma_W)$$

$$\bullet \prod_{i=1}^4 W_{jet}(E_i^{meas.} \mid E_i) \bullet W_\ell(E_x^{meas.} \mid E_\ell) \bullet W_{miss}(E_x^{miss} \mid p_x^{\upsilon}) \bullet W_{miss}(E_y^{miss} \mid p_y^{\upsilon})$$


[2]: TOPQ-2016-02



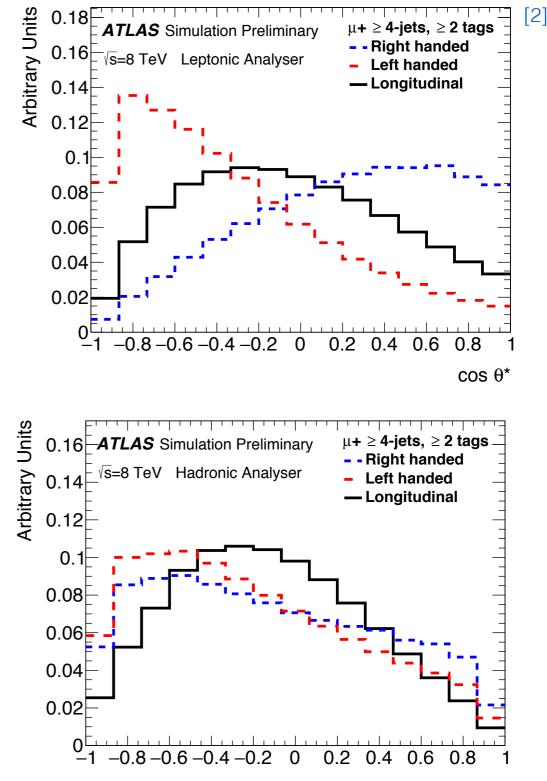
Event Reconstruction (II)

- Likelihood extended to a normalised event probability (adding b-tagging info.)
- up/down type jet separation
 - Use jet p_T dependent b-tag weight
 - Discrimination comes mainly from 50% $W \rightarrow cs$ decays
- Solution Choose jet permutation with highest event probability p_i

22 Nov. 2016

[2]: TOPQ-2016-02

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN


Template Fit Method

- Dedicated template for the difference polarisation states obtained by reweighing (3 sig. + 5 bkg. templates)
- Analytic reweighing function from fit to cos(θ*) truth distribution in full phase space (before selection)
- Fit parameters:
 - Yields of signal (n₀, n_L, n_R) and background (W+jets, QCD, Rem.bkg)
- A binned likelihood fit is performed

$$L = \prod_{k=1}^{N_{\text{bins}}} \text{Poisson}(n_{\text{data},k}, n_{\exp,k}) \prod_{j=1}^{N_{\text{bkg}}} \frac{1}{\sqrt{2\pi\sigma_{\text{bkg},j}}} e^{\frac{-(n_{\text{bkg},j} - \hat{n}_{\text{bkg},j})^2}{2\sigma_{\text{bkg},j}^2}}$$

Use normalisation uncertainties as Gaussian priors to constrain background normalisation (See backup slides)
 W boson polarisation extracted as

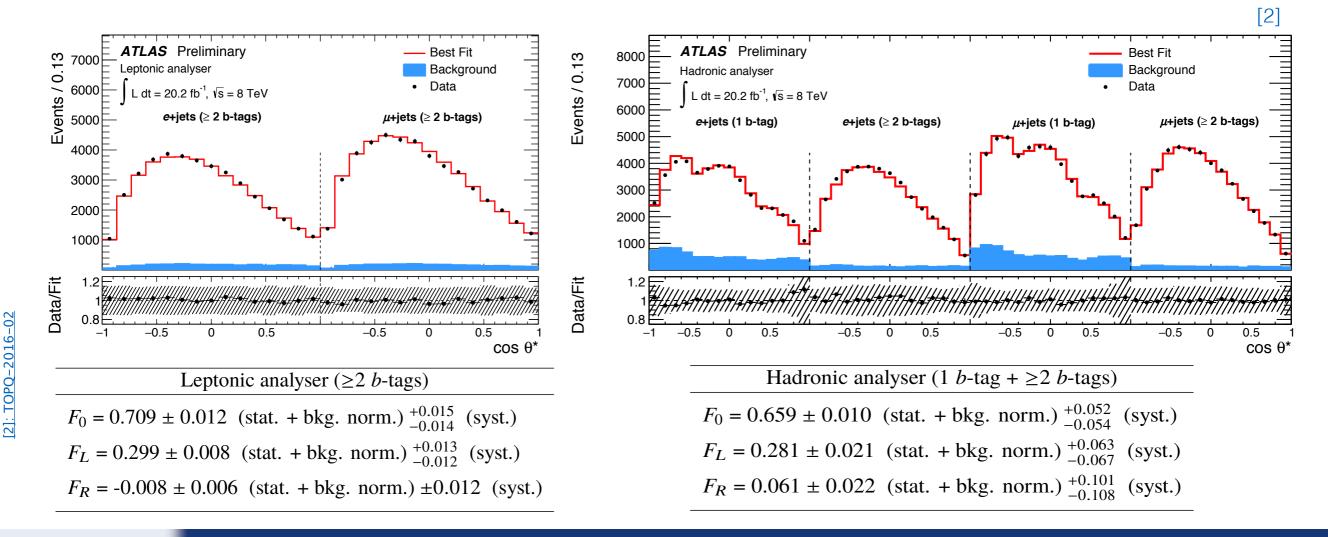
$$F_{i} = \frac{N_{i}}{N_{0} + N_{L} + N_{R}}, \quad n_{i} = \epsilon_{i}^{\text{sel}} N_{i} \quad \text{for } i = 0, \text{ L}, \text{ R}.$$

 $\cos \theta^*$

22 Nov. 2016

[2]: TOPQ-2016-02

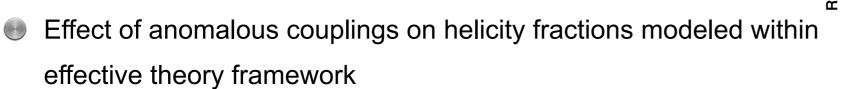
Systematics Uncertainties


Dominant Uncertainties

Systematic Uncertainty	Lepontic ≥ 2 b-tags			Hadronic 1 + ≥ 2 b- tags			
	Fo	FL	F _R	Fo	FL	F _R	
Reconstructed Objects							
Jet Energy Scale		+0.003 -0.002				+0.014 -0.005	
Jet Energy Resolution		+0.005 -0.002				+0.057 -0.071	
<i>b</i> tagging		+0.001 -0.001				+0.034 -0.035	
Signal Modelling							
Showering & Hadronisation	±0.002	±0.002	±0.004	±0.015	±0.001	±0.014	
ME Generator	±0.003	±0.003	±0.006	±0.016	±0.024	±0.040	
ISR/FSR	±0.003	±0.006	±0.003	±0.018	±0.039	±0.057	

- Systematic uncertainties evaluated via ensemble tests
 - Generate 5000 sets of pseudo-data for each systematic variation
- Perform likelihood fit using nominal templates and systematically varied pseudodata
- Background normalisation directly evaluated in the fit

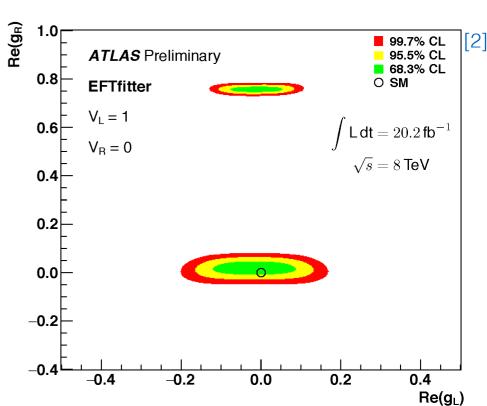
- Channels combined via performing a simultaneous fit on the extended templates (histograms)
- Possible combinations are studied (8 orthogonal channels)
- Best results obtained for each analysers:
 - Leptonic analyser: in ≥2 b-tags (most sensitive / best result)
 - Hadronic analyser: in 1 b-tag + ≥2 b-tags
- Most accurate measured W boson polarisation to date
- In good agreement with the Standard Model prediction

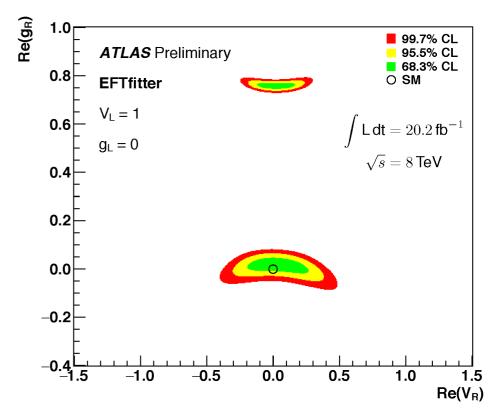


Mohammad J. Kareem

Results

EFT Limits




- All anomalous couplings assumed to be real
- Limits on couplings set using the EFTfitter framework [3]
- One-dimensional limits extracted while fixing others to zero (set to the SM expectation)

Coupling	95% CL limit
V _R	[-0.24, 0.31]
g∟	[-0.24, 0.31] [-0.14, 0.11]
g r	[-0.02, 0.06],[0.74, 0.78]

Two-dimensional limits for $Re(g_L)/Re(g_R)$ and $Re(V_R)/Re(g_R)$ set

The Top Quark

- Has very special properties
- Top quark properties precision measurements:
 - Can open a window to BSM physics
 - Good probe for the Standard Model

W Boson Polarisation Measurement in top quark decay

- ATLAS has measured the W boson polarisation produced in $t\bar{t}$ lepton+jet decays at 8 TeV
- First direct measurement using hadronic analysers
- Most accurate measured *W* boson polarisation to date
- Limits placed on anomalous *Wtb* couplings
- Result is in good agreement with the Standard Model prediction
- To be submitted to EPJ C.

Summary

Backup

	7 TeV	8 TeV
CMS	$5 \text{ fb}^{-1} [JHEP 1310 (2013) 167]$ F ₀ = 0.682 ± 0.030 (stat.) ± 0.06 (syst.) F _L = 0.310 ± 0.022 (stat.) ± 0.03 (syst.) F _R = 0.008 ± 0.012 (stat.) ± 0.04 (syst.)	19.6 fb ⁻¹ [CMS-TOP-13-008, sub. to PLB] $F_0 = 0.681 \pm 0.012 \text{ (stat.)} \pm 0.023 \text{ (syst.)}$ $F_L = 0.323 \pm 0.008 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$ $F_R = -0.004 \pm 0.005 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$
ATLAS	1.4 fb⁻¹ [JHEP 1206 (2012) 088] $F_0 = 0.67 \pm 0.03 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$ $F_L = 0.32 \pm 0.02 \text{ (stat.)} \pm 0.03 \text{ (syst.)}$ $F_R = 0.01 \pm 0.01 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$	This Analysis $F_0 = 0.709 \pm 0.012 \text{ (stat.*)} \pm 0.015 \text{ (syst.)}$ $F_L = 0.299 \pm 0.008 \text{ (stat.*)} \pm 0.013 \text{ (syst.)}$ $F_R = -0.008 \pm 0.006 \text{ (stat.*)} \pm 0.012 \text{ (syst.)}$

* Including uncertainty from background normalisation

Background normalisation uncertainties used in Gaussian priors of the fit:

Background	Prior Width
W + light jets	5 %
W + c	25 %
W + cc/bb	7 %
Lepton fakes	30 %
Remaining background (Single top, Z+jets, WW/ZZ/WZ)	16 % / 17 % (≥ 2 b-tags, ≥1 b-tag)