ABMP16 Parton Distribution Functions

Sergey Alekhin, Sven Moch, Johannes Blümlein (DESY) and Ringailė Plačakytė

University of Hamburg

Parton Distribution Functions

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

- → PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass, etc.)
- → **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

Higgs cross section is strongly gluon and

 α_{c} dependent

Production of SUSY particles are sensitive to gluon at high x=2m_x/ $\!\!\!\sqrt{s}$ ~ 0.2 -0.7

 \rightarrow agreement with Standard Model depends on how well we know PDFs and α_{c}

R. Plačakytė

Parton Distribution Functions

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

→ PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass, etc.)

→ **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

Experimental Data

HERA data is basis for PDFs, other experimental data can improve PDFs further

R. Plačakytė

Experimental Data

Deep Inelastic Scattering:

ep data: quarks and gluon at small x (F_1), flavour separation (CC) jets \rightarrow gluons (moderate x) and α_{e} heavy quarks \rightarrow gluons, tests of heavy quark schemes, mass determination fixed target data: higher x neutrino DIS: flavour decomposition, x > 0.01

Drell-Yan (DY) production:

different PDF combinations (low/mid/high x), deuterium $V_{Z/Y} \stackrel{e^+}{\checkmark} target - \overline{u}/\overline{d}$ asymmetry W/Z ratio, asymmetries \rightarrow quark flavour separation

V+ heavy flavour \rightarrow sensitivity to s quark

Photon, inclusive jets, dijets, trijets and ratios:

high x gluon, α_s Isolated photon \rightarrow gluon at medium and high x

ttbar, single top:

gluon at high x, u and d quarks, α_{s}

PDF Groups

ABM, CT/CTEQ, JR, NNPDFs, MMHT/MSTW, HERAPDFs

'global' PDFs (all but HERA) use data from different experiments

 \rightarrow some data may not be fully consistent (may result in enhanced tolerance criteria in the fit)

(qd)

 \rightarrow fixed target data need nuclear corrections

Differences between PDFs

- inclusion of different data
- methods of determining 'best fit'
- uncertainty treatment/sources
- assumptions in procedure (parametrisation)
- heavy flavour treatment
- ... causes differences in the predicted cross sections

 \rightarrow it is essential to have consistent treatment of experimental data and theory in PDF fits and understand the differences between PDFs

R. Plačakytė

ABMP16 PDFs

ABMP16 PDFs is an update of **ABM12** with intermediate studies on:

- s-quark suppression
- iso-spin asymmetry
- inclusion of top quark data
- and corresponding updates in theory predictions for heavy quarks

Summary of what's new:

→ Data:

HERA I+II inclusive data: $\alpha_{s}(M_{z})$, m_{c} , and m_{b}

charm di-muon data (NOMAD, CHORUS): s-quark sea

LHC W,Z: iso-spin asymmetry and d/u at large x (including Tevatron data)

arXiv:1508.07923

arXiv:1608.05212

t-quark: m_{t} and gluon \rightarrow see S. Alekhin's talk

→ Theory:

heavy quarks in DIS single-top (HATHOR, CPC 182, 1034 (2011), CPC 191, 74 (2015))

PRD 91, no 9 (2015) 094002, arXiv:1404.6469

arXiv:1609.03327

ABMP16 PDFs: Main Fit Ingredients

DATA:

DIS NC/CC inclusive (HERA I+II added, no deuteron data included) DIS NC charm production (HERA) DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR) fixed-target DY LHC DY distributions (ATLAS, CMS, LHCb) t-quark data from the LHC and Tevatron

QCD:

NNLO evolution NNLO massless DIS and DY coefficient functions NLO+ massive DIS coefficient functions (**FFN scheme**) - NLO + NNLO threshold corrections for NC - NNLO CC at Q >> m - running mass definition NNLO exclusive DY (FEWZ 3.1) via fast grid technique NNLO inclusive ttbar production

Power corrections in DIS: target mass effects

dynamical twist-4 terms

PARAMETRISATION:

follows earlier prescription but with relaxed form of (dbar-ubar) at small x

Inclusive HERA I+II data

- \rightarrow increased data accuracy, especially in high Q² region
- \rightarrow similar dependence on Q²_{min} observed:

Q²(HERA)	χ²/NDP(HERA)
>2.5 GeV ²	1509/1168=1.29
>5 GeV ²	1354/1092=1.24
>10 GeV ²	1228/1007=1.22

Meeting of the Helmholtz Alliance "Physics at the Terascale", 21-23 Nov 2016

EPJC 73, no 12 (2015) 580

HERA Combined Charm Data

EPJC 73, 2311 (2013)

• **ABMP16** includes approximate NNLO massive Wilson coefficients (combination of the threshold corrections, high-energy limit and the NNLO massive OMEs)

Kawamura, Lo Presti, Moch, Vogt NPB 864, 399 (2012)

Update with the pure singlet massive OMEs

Ablinger et al. NPB 890. 48 (2014)

 \rightarrow improved theoretical uncertainties

Running-mass definition of m_c $\chi^2/NDP=66/52$ m_c(m_c)=1.252±0.018(exp.)±0.012(th.) GeV ABMP16 m_c(m_c)=1.24±0.03(exp.) GeV ABM12

PDG: m (m)=1.275±0.025 GeV

R. Plačakytė

HERA Beauty Data

Similarly to charm, the running-mass definition of m used:

H1 EPJC 65, 89 (2010) $\chi^2/NDP=5/12$ ZEUS JHEP 09, 127 (2014) $\chi^2/NDP=16/17$

 $m_{h}(m_{h})=3.83\pm0.12(exp.)\pm0.12(th.) GeV$

R. Plačakytė

Charm Di-muon Production: NOMAD

In addition to NuTeV and CCFR, a new NOMAD (NPB 876, 339 (2013)) data added

- → $\mathcal{R}_{\mu\mu} \equiv \sigma_{\mu\mu} / \sigma_{\rm CC}$ measurement (cancellation of systematics, nuclear corrections)
- \rightarrow extended phase in E_v = 6 GeV, better sensitivity to charm mass
- \rightarrow dependence on the semi-leptonic branching ratio B_{v} :

 $B_{\mu}(E_{\nu}) = \sum_{h} r^{h}(E_{\nu})B_{\mu}^{h} = a/(1+b/E_{\nu})$

- \rightarrow prefers smaller s quark at x>0.1, sizable uncertainty reduction
- → $m_c(m_c)=1.23\pm0.03(exp.)$ GeV is comparable to the previous determination in ABM12

R. Plačakytė

Charm Di-muon Production: CHORUS

Recent **CHORUS** (NJP 13, 093002 (2011)) measurement of $\mathcal{R}_{\mu\mu} \equiv \sigma_{\mu\mu} / \sigma_{CC}$

- \rightarrow uses nuclear emulsion targets: independence on B_v
- \rightarrow lower energy resolution, less statistics

- → in contrast to NOMAD, CHORUS prefers enhanced s quark (both measurements are consistent within uncertainties)
- \rightarrow statistical significance of the effect is small

R. Plačakytė

W+charm Data from LHC

W+charm production at LHC \rightarrow direct sensitivity to strange quark

 \rightarrow corresponding measurements at 7 TeV published by ATLAS and CMS collaborations

→ enhances strange sea from ATLAS determination: correlated with d-quark sea suppression → CMS data in good agreement with CHORUS data, overall little impact on strange sea → due to little impact, both measurements are **not** included in ABMP16 fit

Strange Sea in ABMP16

Strange quark is the least known from the light quarks

Update of **ABMP** PDFs with latest fixed target data (NOMAD+CHORUS) with smaller uncertainties on s-quark PDF

R. Plačakytė

Drell-Yan (DY) Production in Hadron Colliders

Z and W production at LHC and Tevatron

- → probe different flavour combinations
- \rightarrow potential to improve quark PDFs
- \rightarrow forward W,Z production probes small/large x
 - → complementary to the DIS, constraint on the quark iso-spin asymmetry

R. Plačakytė

Drell-Yan (DY) Production in Hadron Colliders

Latest Z and W production data from LHC and Tevatron used in the **ABMP16** fit

E	Experiment ATLAS		CMS		DØ		LHCb			
	\sqrt{s} (TeV)	7	13	7	8	1.96		7	8	
Final states		$W^+ \to l^+ \nu$	$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ v$	$W^+ \rightarrow \mu^+ \nu$	$Z \rightarrow e^+ e^-$	$W^+ \rightarrow \mu^+ \nu$
		$W^- \rightarrow l^- \nu$	$W^- \rightarrow l^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow e^- \nu$	$W^- \rightarrow \mu^- \nu$		$W^- \rightarrow \mu^- \nu$
		$Z \rightarrow l^+ l^-$	$Z \rightarrow l^+ l^-$	(asym)		(asym)	(asym)	$Z \rightarrow \mu^+ \mu^-$		$Z \rightarrow \mu^+ \mu^-$
Cut on the lepton P_T		$P_T^l > 20 \; {\rm GeV}$	$P_T^e>25~{\rm GeV}$	$P_T^{\mu}>25~{\rm GeV}$	$P_T^{\mu}>25~{\rm GeV}$	$P_T^{\mu}>25~{\rm GeV}$	$P_T^e>25~{\rm GeV}$	$P_T^{\mu}>20~{\rm GeV}$	$P_T^e>20~{\rm GeV}$	$P_T^{\mu} > 20 \; { m GeV}$
Luminosity (1/fb)		0.035	81	4.7	18.8	7.3	9.7	1	2	2.9
Reference		[63]	[21]	[17]	[18]	[16]	[15]	[19]	[20]	[14]
NDP		30	6	11	22	10	13	31	17	34
x ²	present analysis a	31.0	9.2	22.4	16.5	17.6	19.0	45.1	21.7	40.0
	CJ15 [6]	-	_	_	_	20	29	-	-	_
	CT14 [7]	42	—	- ^b	—	—	34.7	-	-	—
	JR14 [8]	_	—	-	_	-	—	-	-	—
	HERAFitter [66]	_	_	_	_	13	19	_	_	_
	MMHT14 [9]	39	17	_	_	21	_	_	_	_
	NNPDF3.0 [10]	35.4	7.3 ^c	18.9	_	_	_	_	_	_

 \rightarrow good description of all DY data (details in following slides)

CMS W⁺, W⁻ Production Data

R. Plačakytė

CMS measurement of the differential W cross section and charge asymmetry at 8 TeV \rightarrow very good description of data, $\chi^2 = 16.5/22$ NDP arXiv:1603.01803

Earlier study and description of CMS W asymmetry data at 7 TeV available in arXiv:1508.07923

ATLAS DY Production Data at 13 TeV

 \rightarrow ATLAS W,Z inclusive data well accommodated into the fit, $\chi^2 = 9.2/6$ NDP

R. Plačakytė

LHCb W⁺, W⁻ and Asymmetry Data

LHCb W-boson production and asymmetry data: constraints of PDFs in the low-x region

Some fluctuations observed in the data:

- \rightarrow LHCb W asymmetry data at 7 TeV: $\eta_{_{\rm u}}$ = 3.275 bin excluded from the fit
- \rightarrow for W production data in muon channel point at small $\eta_{_{\rm H}}$ (8 TeV) excluded
- → LHCb Z electron data at 7 TeV show different trend as compared to the muon ones
 → excluded from the fit until these issues are resolved
- \rightarrow 13 TeV data are also not yet included (currently larger uncertainties than in earlier sets)

R. Plačakytė

DY Data and Theory Predictions

DY data compared with theory predictions calculated with FEWZ (PRD 094034 (2012), CPC 184, 208 (2013))

 \rightarrow using interpolation of accurate NNLO grids (similar to FastNLO and Applgrid)

→ other PDF groups often use NLO+NNLO k-factor technique, may cause additional differences

```
Full study available in arXiv:1508.07923
```

Impact of the Forward DY Data

Precise forward DY data allow to relax parametrisation of the sea iso-spin asymmetry at small x

- → Regge-like behaviour is recovered only at $x \sim 10^{-6}$, at large x it is still defined by the phase-space constraint
- \rightarrow constraint on the d/u ratio without deuteron data
 - → independent extraction of the deuteron corrections (PRD 93, 114017 (2016) and arXiv:1609.08463)
- \rightarrow large spread between different PDF sets (large x)

Comparison with other PDFs

Overall good agreement, smaller uncertainties due to latest data added in ABMP16 fit → smaller gluon at low x (compared to other global PDFs)

R. Plačakytė

Comparison with other PDFs

Overall good agreement, smaller uncertainties due to latest data added in ABMP16 fit \rightarrow different d_v quark shape compared to HERAPDF2.0

R. Plačakytė

Summary

New **ABMP16** Parton Distribution Functions:

- deuteron data are replaced by the LHC and Tevatron Drell-Yan data \rightarrow reduced theoretical uncertainties in PDFs, in particular in d/u at large x
- the small-x iso-spin sea asymmetry is relaxed and turns negative at x~10⁻³; an onset of the Regge asymptotics still may occur at x<10⁻⁵
- improved strange sea determination, particularly at large x
- impact of the ttbar data and $\alpha_{s}(M_{r})$ extraction \rightarrow see S. Alekhin's talk
- final HERA inclusive I+II data and t-quark data from LHC and Tevatron included

 \rightarrow improved determination of heavy quark masses:

 $m_{c}(m_{c}) = 1.252 \pm 0.018 \text{ GeV}$ $m_{b}(m_{b}) = 3.83 \pm 0.12 \text{ GeV}$ $m_{t}(m_{t}) = 160.9 \pm 1.1 \text{ GeV}$

 New ABMP16 grids (in LHAPDFv6 format) available upon request (soon in LHAPDF hepforge page)
 ABMP16_3_NNLO ABMP16_4_NNLO ABMP16_5_NNLO

Back-up Slides

ABMP16 PDFs: Parametrisation

FIT PARAMETRISATION:

$$xq_{v}(x, Q_{0}^{2}) = \frac{2\delta_{qu} + \delta_{qd}}{N_{q}^{v}} x^{a_{q}} (1-x)^{b_{q}} x^{P_{qv}(x)}$$

$$P_{qv}(x) = \gamma_{1,q} x + \gamma_{2,q} x^{2} + \gamma_{3,q} x^{3}$$

$$xg(x, Q_0^2) = A_g x^{a_g} (1-x)^{b_g} x^{a_g P_g(x)}$$

 $P_g(x) = \gamma_{1,g} x$

$$\begin{aligned} xq_s(x,\mu_0^2) &= \bar{q}_s(x,\mu_0^2) = A_{qs}(1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)} \\ q &= u,d,s, \end{aligned} \qquad P_{qs}(x) = (1+\gamma_{-1,qs}\ln x)(1+\gamma_{1,qs}x) \end{aligned}$$

allows non-zero values of the sea isospin asymmetry: $I(x) = x[\bar{d}(x) - \bar{u}(x)]$

Computation Accuracy

• Accuracy of O(1 ppm) is required to meet uncertainties in the experimental data \rightarrow O(10⁴ h) of running FEWZ 3.1 in NNLO

An interpolation grid a la FASTNLO is used
 R. Plačakytė Meeting of the Helmholtz Alliance "Physics at the Terascale", 21-23 Nov 2016

NNLO DY Corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming \rightarrow fast tools are employed (FASTNLO, Applgrid,.....)

- the corrections for certain basis of PDFs are stored in the grid
- the fitted PDFs are expanded over the basis
- the NNLO c.s. in the PDF fit is calculated as a combination of expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations \rightarrow use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

- $\mathbf{P}_{0} \pm \Delta \mathbf{P}_{0}$ vector of PDF parameters with errors obtained in the earlier fit
- **E** error matrix
- ${\bf P}$ current value of the PDF parameters in the fit
- store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of E
- the variation of the fitted PDF parameters $(\mathbf{P} \mathbf{P}_0)$ is transformed into this eigenvector basis
- the NNLO c.s. in the PDF fit is calculated as a combination of transformed ($\mathbf{P} \mathbf{P}_0$) with the stored eigenvector values

LHCb W⁺, W⁻ Production Data

LHCb Z-boson production data: constraints of PDFs in the low-x region

→ LHCb Z electron data at 7 TeV show different trend as compared to the muon ones
→ excluded from the fit until these issues are resolved

 \rightarrow 13 TeV data are also not yet included (currently larger uncertainties than in earlier sets)

Sea Iso-Spin asymmetry

sa, Blümlein, Moch PRD 89, 054028 (2014)

 At x~0.1 the sea quark iso-spin asymmetry is controlled by the fixed-target DY data (E-866), weak constraint from the DIS (NMC)

• At x<0.01 Regge-like constraint like $x^{(a-1)}$, with a close to the meson trajectory intercept; the "unbiased" NNPDF fit follows the same trend

Onset of the Regge asymptotics is out of control

Comparison with other PDFs: d-u

R. Plačakytė