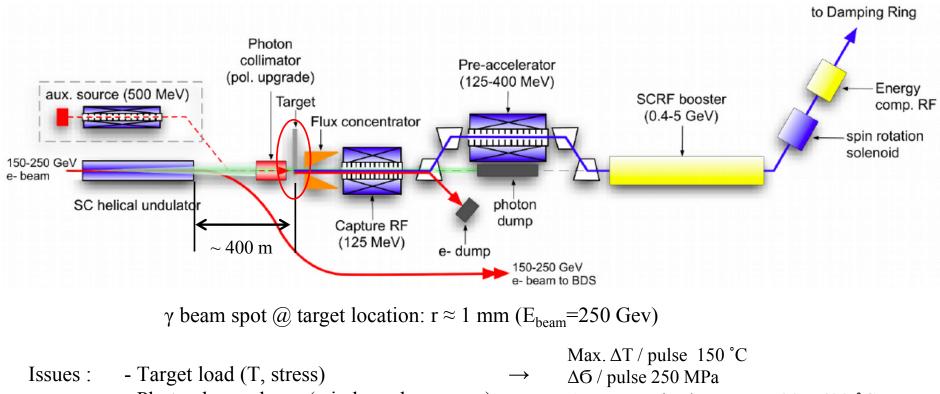
ILC Target Experiment at MAMI

Felix Dietrich, <u>Alexandr Ignatenko</u>, Gudrid Moortgat-Pick, Sabine Riemann, Andriy Ushakov

10th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" Hamburg, Germany, November 21–23, 2016


Overview

> Introduction

- > Conversion target for the ILC positron source
- > Target material tests
- Exit window to the photon dump
- > Summary

Layout of undulator-based positron source

- Photon beam dump (window, dump core)

Average T in the target 500 - 600 °C

Stationary target will melt after the 1st pulse even with 1312 bunches Target wheel of $\emptyset 1$ m is rotated in vacuum with 100 m/s, rotation distributes heat over an arc of 10 cm

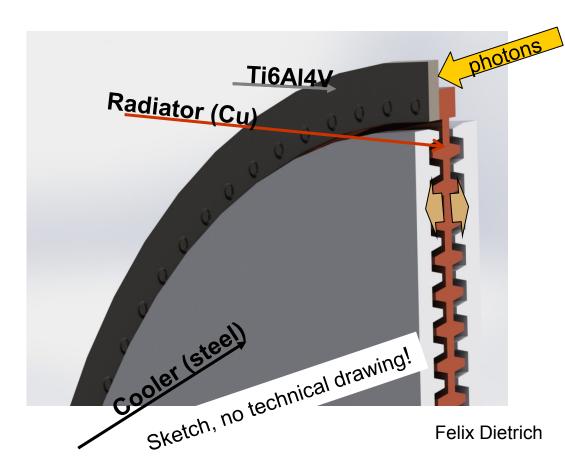
Introduction

- Idea to expose the material to high peak and cyclic load the as expected for the ILC components
- Tests using injector of MAMI
- Ti alloy for the positron conversion target

Conversion target

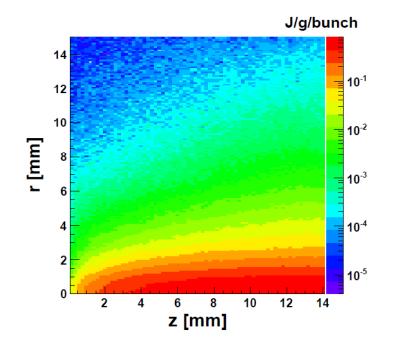
Positron production target

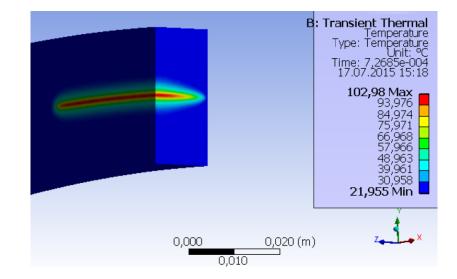
Average power in target \approx 4.6 kW (250 GeV e-, 2625 bunches/pulse)


Radiative cooling model so far:

- Rotating wheel consists of Ti rim (target) and Cu radiator
- Heat path:
 - thermal conduction $\mathrm{Ti} \rightarrow \mathrm{Cu}$
 - radiation Cu → steel, stationary water cooled coolers
- Target, radiator and cooler are in vacuum

Goal:


Keep the target temperature below the failure limit of Ti 6Al4V


load cycles / year (5000 h) at the same target position $\approx 3 \cdot 10^6$

Edep and T development in the target

Typical max. temperature rise – after the first pulse for the nominal case (250 GeV, 1312 bunches)

Simulated energy deposition in the target from the undulator photons created by 250 GeV e⁻

Max. ΔT / pulse 150 °C

 ΔG / pulse 250 MPa

Average T in the target 500 - 600 $^\circ\mathrm{C}$

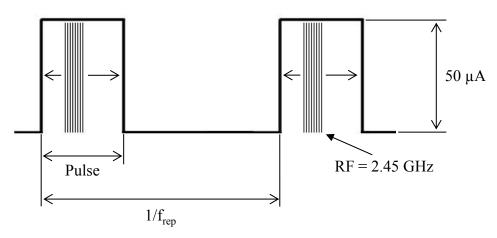
Andriy Ushakov

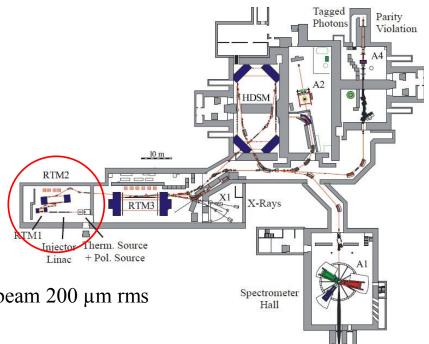
Material tests

Idea:

Simulate the load to the ILC target imposed by E_{dep} from γ using e⁻

At MAMI we need beam size below 200 micron rms, 2 ms long pulses with peak current of 50 μ A


Mainz Microtron


The Mainz Microtron (MAMI) is an accelerator for electron beams run by the Institute for Nuclear Physics of the University of Mainz used for hadron physics experiments

cw e⁻ beams > 20 μ A (polarized) or up to 100 μ A (unpolarized)

In our tests:

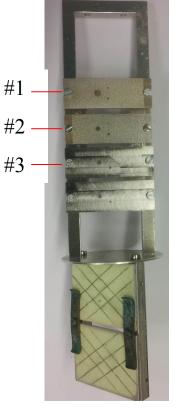
14 MeV e⁻, 10 μ A average beam current, Gaussian beam 200 μ m rms # e- /s (cw operation) ~O(10¹⁴)

Collaborators in Mainz

Kurt Aulenbacher

Philipp Heil

Valery Tioukine


+ Marco Dehn et al. (operators of MAMI)

Material for the tests

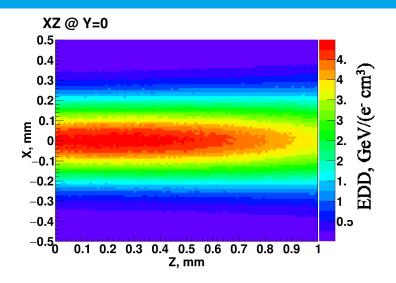
Material of targets: Grade 5 Ti – Ti6Al4V

Target	#1	#2	#3	
Thickness	1 mm	1 mm	2 mm	
Surface	Rough	Rough	Smooth	
Fixation	Not fixed	Fixed	Fixed	
Cooling	Radiation	Radiation + heat conduction to the holder	Radiation	
Regime	100 Hz, 2 ms, 10 μA average	67 Hz, 3 ms, 10 μA average	100 Hz, 2 ms, 10 μA average	

#1

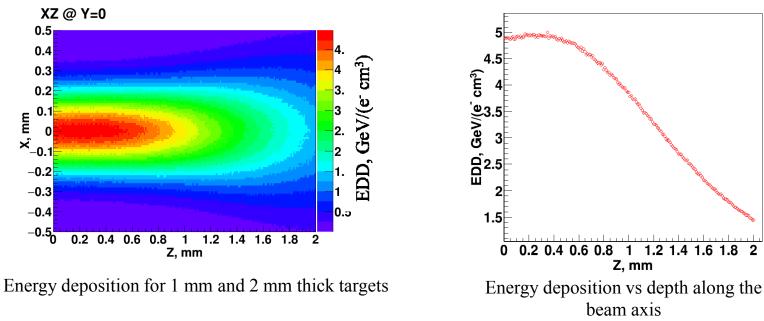
Front view to the target assembly

Side view to the target assembly


Diagnostics: temperature and current measurement for target #1

21

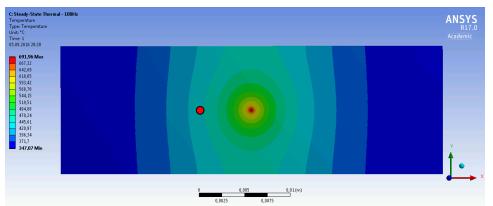
50


GEANT4 simulations

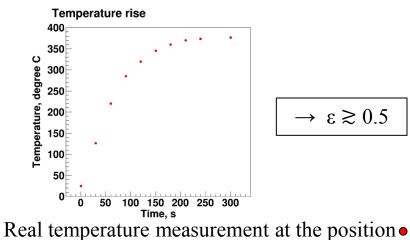
Peak energy deposition (PEDD): $PEDD = 4.87 \text{ GeV}/(e^{-} \text{ cm}^{3}) = 4.49 \cdot 10^{-5} \text{ J}/(g \cdot \text{bunch})$

Number e⁻ per bunch = $2.55 \cdot 10^5$

Number of bunches per pulse = $4.9 \cdot 10^6 (2 \text{ ms})$ or $7.35 \cdot 10^6 (3 \text{ ms})$


2

Alexandr Ignatenko | Physics at the Terascale 2016 | November 21 - 23, 2016 | Page 13


ANSYS simulation, target #1

Target	#1	
Thickness	1 mm	
Surface	Rough	

Neglect low thermal conductivity to the holder via ceramics etc Consider cooling by radiation from the surface only

Distribution of the average temperature ($\varepsilon=0.5$)*

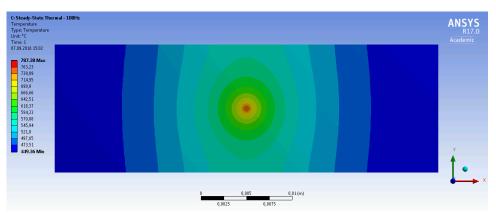
Max. average $T = 691 \text{ }^{\circ}\text{C}$

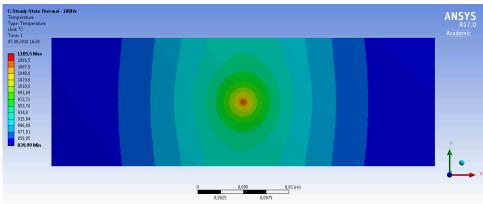
Max. T rise / pulse (@ 700 °C) = 82 °C

Max. T in target #1: 691 + 82 °C

- * Here and later:
- •Ambient T = 22 °C
- Ti6Al4V properties according to

K.C. Mills, 2002, Recommended Values of Thermophysical Properties For Selected Commercial Alloys, p. 217, as referenced by J. Yang




ANSYS simulation, target #3

Target	#3	
Thickness	2 mm	
Surface	Smooth	
Fixation	Fixed	
Cooling	Radiation	

Neglect thermal conductivity to the holder via ceramics and fixation screws

Consider cooling by radiation from the surface only

 $\varepsilon = 0.5$

Max. average T = 787 °C

Max. T rise / pulse (@ 760 °C) = 88 °C

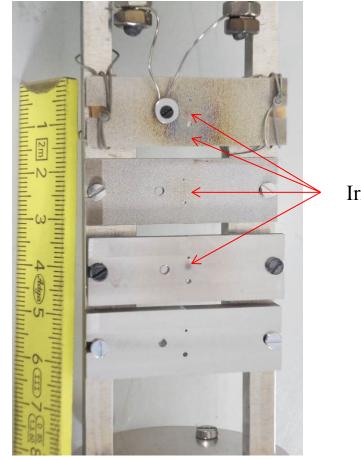
Max. T in target #3: 787 + 88 °C

Although, if $\varepsilon = 0.1$:

Max. average T = $1105 \circ C$

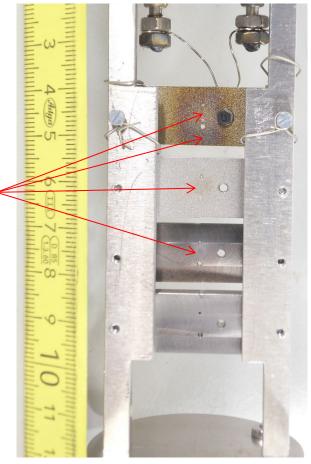
Results

Target	Thickness	Regime	ΔT @ 20 °C	Load cycles	Years of ILC operation*
#1	1 mm	100 Hz, 2 ms, 10 μA average	110 °C	6.82·10 ⁶	2.46
#2	1 mm	67 Hz, 3 ms, 10 μA average	-	1.24·10 ⁶	0.45
#3	2 mm	100 Hz, 2 ms, 10 μA average	145 °C	5.17·10 ⁶	1.87


All targets survived the irradiation – no cracks or holes

Plastic deformation for the target #3 (exposed to a higher temperature)

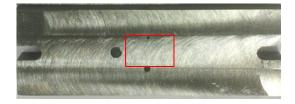
*1 year of ILC operation: 5000 h, 5 Hz, each point is irradiated every 6.5 s



Targets after testbeam

Holder with targets, entrance side

Irradiation spots

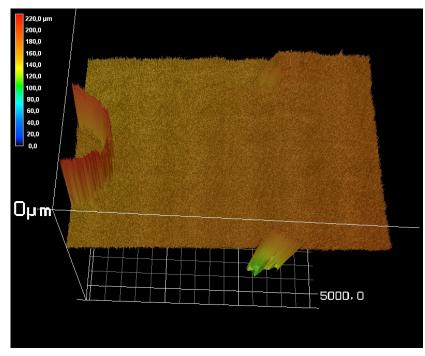


Holder with targets, exit side

Surface investigation

Surface investigation with 3D Laser Scanning Confocal Microscope

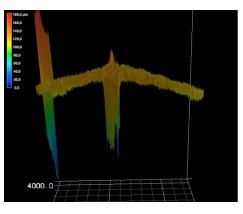
Target #3, 2 mm thick, entrance side

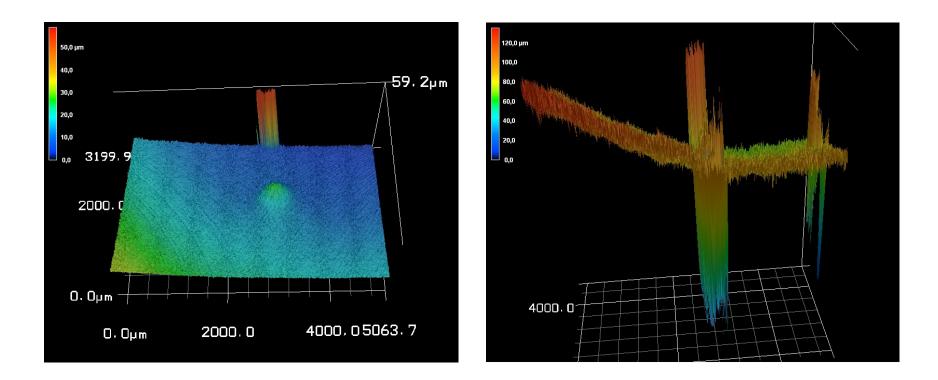


After

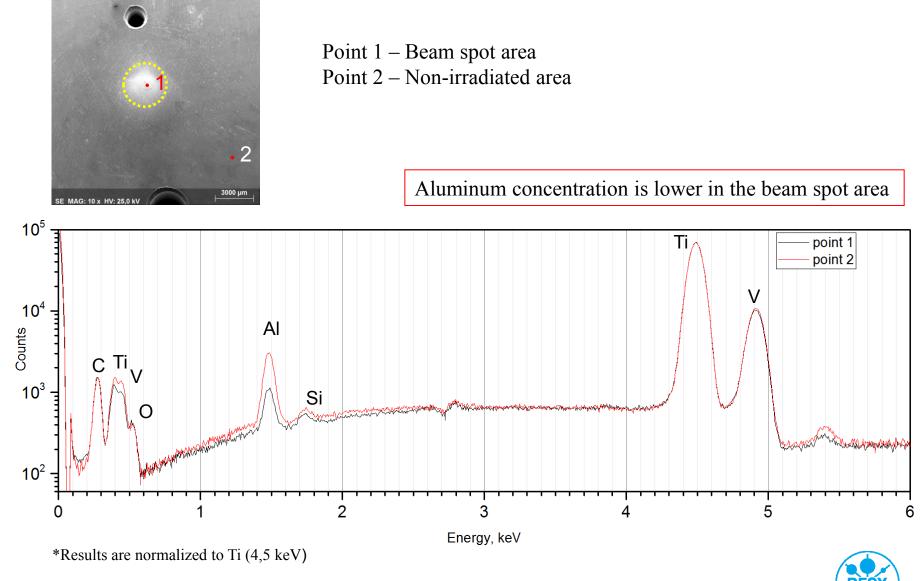
Beam spot clearly seen, major changes

Target #3, surface investigation, entrance side


Before


Flat surface observed before irradiation

Plastic deformation after irradiation, 1 peak and 2 deeps observed in the beam spot: $\sim 35 \ \mu m$ from the bottom of the deep to the top of the peak


Target #3, surface investigation, exit side

Plastic deformation after irradiation, 1 peak observed in the beam spot: $\sim 25~\mu m$ from the surrounding to the top of the peak

Target #3, SEM image (Yegor Tamashevich)

Photon dump

Vacuum window for the photon dump

The photon beam has to be dumped, design is still under discussion

- Photon beam power: up to 200 kW
- Photon beam size on exit window: r ~1 mm
- # of photons ~ 10^{16} per second, E ~ O(40 MeV)
- Window has to be thin enough to survive the high load and rather thick to hold the pressure

along Z (a pulse of 1312 bunches, 250 GeV e⁻) Deposited Energy vs Z 250 200 E [J/(g pulse)] 150 100 50 Andriy Ushakov 0 0.02 0.04 0.06 0.08 0.1 z [cm]

Energy deposited by undulator photons in Ti window

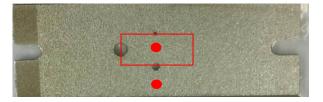
Goal: find the optimal window thickness

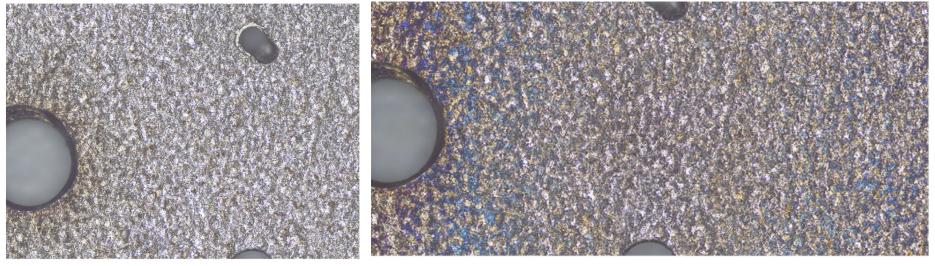
 \rightarrow Tests at MAMI with Ti foils (0.15 – 0.25 $\mu m)$ First tests started in Nov. 2016

Summary

- Ti6Al4V targets survived high cyclic load of up to $6.82 \cdot 10^6$ cycles heated to average temperature 690 °C
- No major damage to the material after the tests at the average temperature of $690 \,^{\circ}\text{C}$
- Noticeable changes only for the material (plastic deformation, surface change) exposed to the temperatures >780 °C
- Next steps:
 - evaluate the data for the irradiated samples (target & window)
 - analysis of the changes in the material bulk, hardness measurements
 - thermal stress calculations for irradiated targets
 - simulation of plastic deformation

Thank you for your attention!




Backup slides

Target #1, entrance side, surface investigation

Surface investigation with 3D laser scan microscope VK-X100/X200 series

Before

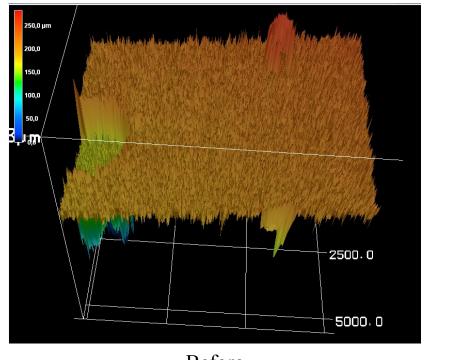
After

Color change observed, no major changes to the surface

Target #1, entrance side, surface investigation

300,0 µm

250,0


200,0

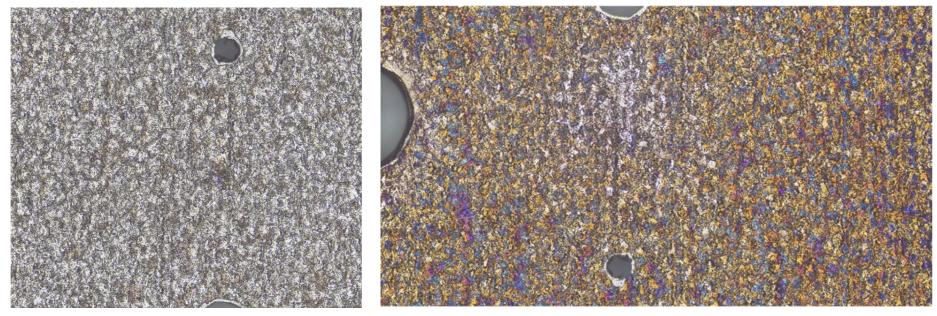
150,0

100,0

50,0

³μm

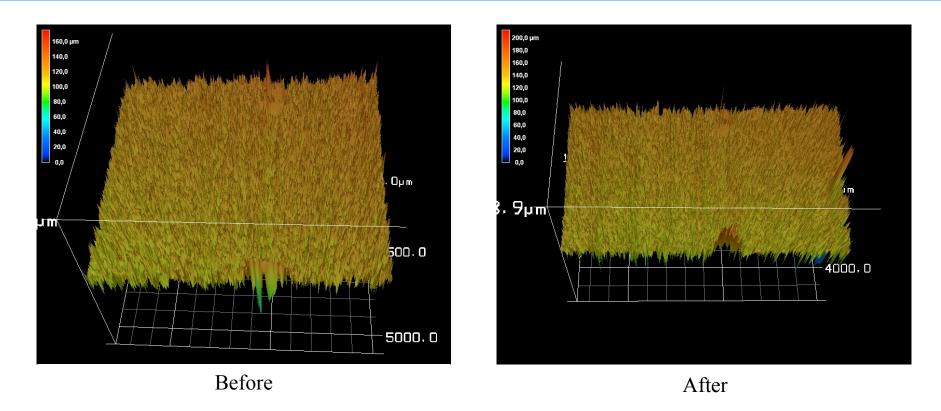
Before



Flat surface observed before and after irradiation, no major changes

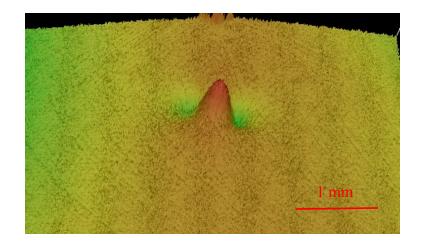
4000,0

Target #1, exit side, surface investigation


Before

After

Color change observed, no major changes to the surface


Target #1, exit side, surface investigation

Flat surface observed before and after irradiation, no major changes

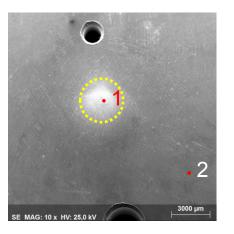
Target #3, entrance side

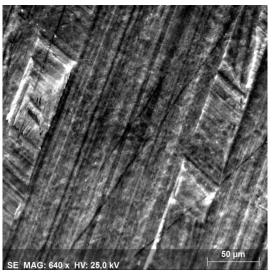
Surface of target #3

Surface of a Ti6Al4V plate heated by laser beam *

C

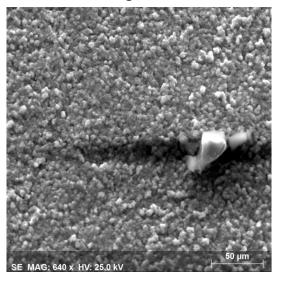
Heated up to 1660 °C?


* J. Yang et al., Journal of Materials Processing Technology 210 (2010) 2215-2222


Alexandr Ignatenko | Physics at the Terascale 2016 | November 21 - 23, 2016 | Page 31

1660°C

Target #3, SEM image (Yegor Tamashevich)



Surface outside beam spot

Point 1 – Beam spot area Point 2 – Un-irradiated area

Beam spot area

Ablation and condensation process ?

