దీ СнескМАТЕ for the LC, an idea? దీ

Daniel Dercks, né Schmeier University of Hamburg Linear Collider Forum, November 21, 2016

Contents

- 1 What is CheckMATE?
- 2 How can it be used for testing against current LHC results?
- **3** How can it be used for testing against future LHC results?
- 4 How could it be used for testing against future ILC results?

The Idea

"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model is excluded by the LHC or not."

"Sounds great! Let's do it!"

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,

[Parameters] SLHAFile: /scratch/benchmark1.slha

[squ_asq]
Pythia8Process: p p > sq sq~
MaxEvents: 1000

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,
- Step 2: Run ./CheckMATE param.dat

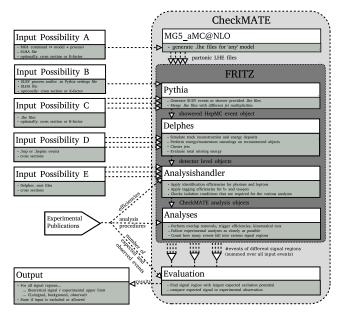
[Parameters] SLHAFile: /scratch/benchmark1.slha
[squ_asq] Pythia8Process: p p > sq sq~ MaxEvents: 1000

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,
- Step 2: Run ./CheckMATE param.dat
- Wait.

[Parameter	rs]
SLHAFile:	/scratch/benchmark1.slha
[squ_asq] Pythia8Pro	ocess: p p > sq sq~

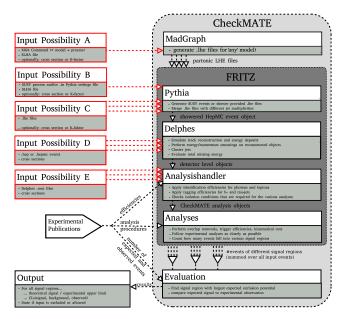
MaxEvents: 1000

- Step 1: Decide on a SUSY parameter point benchmark1.slha
- Step 1: Write a very small parameter file param.dat,
- Step 2: Run ./CheckMATE param.dat


[Parameters]
SLHAFile: /scratch/benchmark1.slha
[squ_asq]
Pythia8Process: p p > sq sq~
MaxEvents: 1000

Wait.

Result: Allowed		Result: Excluded
Result for r: r_max = 0.74	or	Result for r: r_max = 1.33
SR: atlas_conf_2013_047 - ET		SR: atlas_conf_2013_047 - A


You quickly know if your model has been excluded by current LHC results without knowing anything about collider phenomenology!

Overview: Data Flow

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

Input

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

Differnt Input Methods

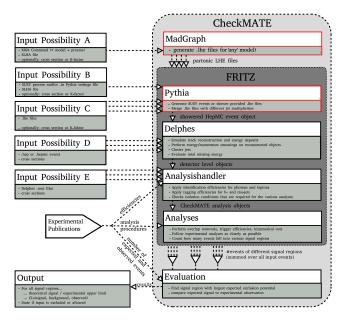
checkmate_input_parameter.dat

```
[Parameters]
SLHAFile: /scratch/point.slha
[squ_asq]
Pythia8Process: p p > sq sq~
[squ_squ]
MGCommand: import model mssm
    define sq = ~ul ~ur ~dl ~dr ~sl ~
    generate p p > sq sq
[glu_glu]
Events: /scratch/glu_glu.lhe
[glu_sq]
Events: /scratch/glu_squ_1.hepmc,
        /scratch/glu_squ_2.hepmc
XSect: 0.75 fb
```

Possibilities

Differnt Input Methods

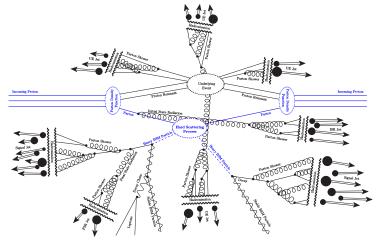
checkmate_input_parameter.dat


```
[Parameters]
SLHAFile: /scratch/point.slha
[squ_asq]
Pythia8Process: p p > sq sq~
[squ_squ]
MGCommand: import model mssm
    define sq = ~ul ~ur ~dl ~dr ~sl ~
    generate p p > sq sq
```

```
[glu_glu]
Events: /scratch/glu_glu.lhe
```

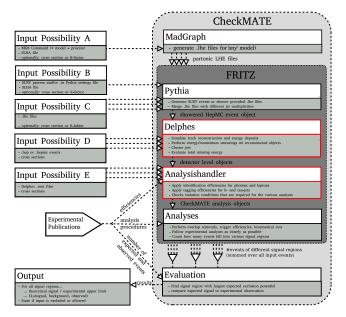
Possibilities

- Internal Pythia8 for parton event generation and parton showering (Limited to certain BSM models)
- Internal MG5_aMC@NLO for parton event generation, Pythia8 for parton showering (Works for 'any' BSM model)
- External parton event generation, internal Pythia8 for parton showering
- 4 External parton showered events


Input

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

Pythia 8 Event Generation


 Simulates the result of a proton-proton collision, assuming a certain particle physics model

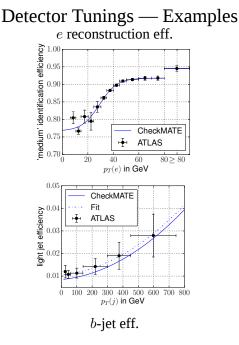
■ Can use parton events from other programs and do the rest

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

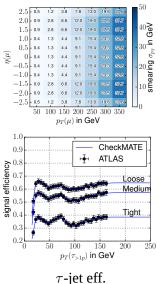
Step 1: Delphes

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

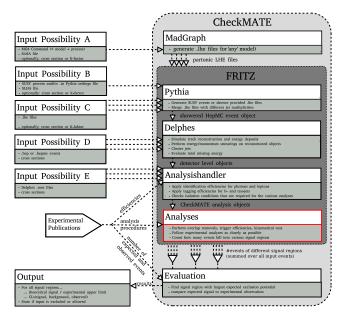
Detector Simulation


Delphes 3.0.10 Standard

- A Simulates tracking and energy deposition
- Applies efficiencies for photons and leptons
- ి Clusters jets
- Performs energy/momentum smearings of all reconstructed objects
- A Evaluates total missing energy
- د Checks isolation conditions for photons and leptons گ
- යි Applies b-/ tau-tag on jets


CheckMATE improvements

- Added identification and isolation flags
- A Tuned to better represent ATLAS detector



 μ momentum smearing

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

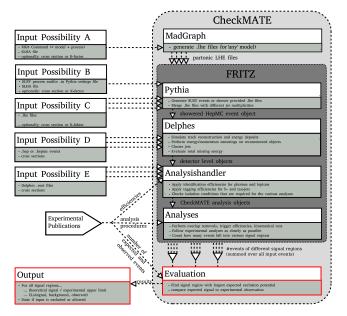
Step 2: Analyses

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

Analyses

A CheckMATE analysis does the following

- A Choose the objects of interest (leptons, jets,...)
- A Filter objects (efficiency and isolation flags, kinematical cuts, overlap removals, ...)
- A Check event vetoes (Too many/few objects, trigger efficiencies, ...)
- A Count number of input events that fall into each signal region


Example Output

ATLAS-CONF-2013-047
0 leptons, 2-6 jets, etmiss
sqrt(s) = 8 TeV
int(L) = 20.3 fb⁻¹

XSec Eri	ror:		4.35 fb 1.22086	ults/cMSSM/delphes/000_delphes.root fb
	vents:		5000	
Sur	nOfWeig	hts:	5000	
Sur	nOfWeig	hts2:	5000	
Noi	rmEvent	s:	87.9518	
SR	Sum_W	Sum_W2	Acc	N_Norm
AL	1315	1315	0.263	23.1313
AM	71	71	0.0142	1.24892
BM	98	98	0.0196	1.72385
BT	2	2	0.0004	0.0351807
CM	505	505	0.101	8.88313
CT	9	9	0.0018	0.158313
D	184	184	0.0368	3.23663
EL	613	613	0.1226	10.7829
EM	398	398	0.0796	7.00096
ΕT	149	149	0.0298	2.62096

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

Step 3: Evaluation

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

Evaluation

Input and Setup

- ${}^{ riangle}$ We have number of expected signal $S\pm\Delta S$ in each signal region
- A CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S_{max}^{95}

Evaluation

Input and Setup

- ${}^{ riangle}$ We have number of expected signal $S\pm\Delta S$ in each signal region
- A CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S_{max}^{95}

User can choose

- riangle Directly compare S to S_{\max}^{95}
- Å If $r^{c} = \frac{S 2\Delta S}{S_{max}^{95}} > 1$: Excluded!
- A Quick and easy for limit setting

- \triangle Evaluate $\operatorname{CL}_s(O, B, \Delta B, S, \Delta S)$
- \triangle If $CL_s < 0.05$: Excluded!
- A Slower, but limits can be set to different confidence levels

Example

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S ⁹⁵ S ⁹⁵	1341.2	51.3	14.9	6.7
S_{exp}^{95}	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
$ \begin{array}{c} S_{obs}^{95} \\ S_{exp}^{95} \end{array} $	$1341.2 \\ 1135.0^{+332.7}_{-291.5}$	51.3 42.7 ^{+15.5} -11.4	$14.9 \\ 17.0^{+6.6}_{-4.6}$	6.7 $5.8^{+2.9}_{-1.8}$

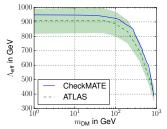
atlas_conf_2013_047_r_limits

SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ΕT	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

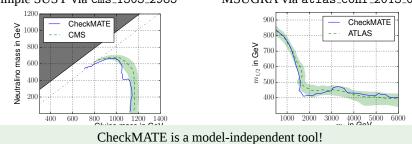
ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S ⁹⁵ _{obs}	1341.2	51.3	14.9	6.7
S_{obs}^{obs} S_{exp}^{95}	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$

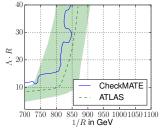
Result


Result: Allowed Result for r: r_max = 0.74 SR: atlas_conf_2013_047 - ET

atlas_conf_2013_047_r_limits


SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
ΒT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ΕT	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

Performance Test via Models


Effective DM via atlas_1502_01518

Simple SUSY via cms_1303_2985

UED via atlas_conf_2013_089

MSUGRA via atlas_conf_2013_047

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

α / Fully Validated Analyses

Name	Search designed for	\sqrt{s}	L	$N_{\rm SR}$
atlas_1308_1841	new phenomena in final states with large jet multiplicities and $ ot\!$	8	20.3	19
atlas_1308_2631	third-generation squark pair production with E_T and two b-jets	8	20.1	6
atlas_1402_7029	charginos and neutralinos in events with 3 leptons and E_T	8	20.3	24
atlas_1403_4853	top-squark pair production in final states with two leptons	8	20.3	12
atlas_1404_2500	SUSY with jets and two same-sign leptons or three leptons	8	20.3	5
atlas_1403_5222	top squark pair production in events with a Z boson, b-jets and E_T	8	20.3	5
atlas_1405_7875	squarks and gluinos in final states with jets and E_T	8	20.3	15
atlas_1407_0583	stop pair production in final states with one isolated lepton, jets, and E_T	8	20.3	27
atlas_1407_0608	pair-produced third-generation squarks decaying via charm quarks or in com- pressed supersymmetric scenarios	8	20.3	3
atlas_1502_01518	new phenomena in final states with an energetic jet and large E_T	8	20.3	9
atlas_1503_03290	Supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large E_T	8	20.3	1
atlas_1506_08616	pair production of third-generation squarks	8	20.3	11
atlas_conf_2012_104	Supersymmetry in final states with jets, E_T and one isolated lepton	8	5.8	2
atlas_conf_2012_147	new phenomena in monojet plus E_T final states	8	10	4
atlas_conf_2013_024	production of the top squark in the all-hadronic $t\bar{t}$ and E_T final state	8	20.5	3
atlas_conf_2013_049	direct-slepton and direct-chargino production in final states with two opposite- sign leptons, E_T and no jets	8	20.3	9
atlas_conf_2013_061	strong production of supersymmetric particles in final states with $\not \!$ and at least three b -jets	8	20.1	9
atlas_conf_2013_089	strongly produced supersymmetric particles in decays with two leptons	8	20.3	12
atlas_conf_2015_004	invisibly decaying Higgs boson produced via vector boson fusion	8	20.3	1
cms_1303_2985	supersymmetry in hadronic final states with missing transverse energy using the variables α_T and b-quark multiplicity	8	11.7	59
cms_1408_3583	dark matter, extra dimensions, and unparticles in monojet events	8	19.7	7
cms_1502_06031	BSM physics in events with two Leptons, jets, and E_T	8	19.4	6
cms_1504_03198	production of dark matter in association with top-quark pairs in the single-lepton final state	8	19.7	1
cms_sus_13_016	new physics in events with same-sign dileptons and jets	8	19.5	1

β / Partially Validated Analyses

Name	Search designed for	\sqrt{s}	L	$N_{\rm SR}$
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and E_T	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with E_T and at least 3 b-jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and E_T	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and E_T	8	20.1	19
atlas_conf_2014_014	$\tilde{t}\tilde{t}^*$ decaying to a b, a τ and weakly interacting particles	8	20.3	1
atlas_conf_2014_033	WW production	8	20.3	3
atlas_conf_2014_056	spin correlation in top–antitop $t\bar{t}$ events and search for $\tilde{t}\tilde{t}^*$	8	20.3	1
cms_1301_4698_WW	WW production	8	3.5	1
cms_1306_1126_WW	WW production	7	4.92	1
cms_1405_7570	$\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$, $\tilde{\ell}$ to leptons and ℓ , W, Z, and Higgs bosons	8	19.5	57
cms_smp_12_006	WZ production into 3ℓ	8	19.6	4
cms_sus_12_019	New physics with two OSSF ℓ , jets, and E_T	8	19.4	4
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4
atlas_1604_07773	New physics with monojets	13	3.2	13
atlas_1604_01306	New physics with monophotonrs	13	3.2	1
atlas_1605_03814	squarks and gluinos in final states with jets and E_T	13	3.2	7
atlas_1605_04285	gluinos in events with an isolated lepton, jets and E_T	13	3.3	7
atlas_1605_09318	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and E_T	13	3.3	8
atlas_1606_03903	stops in events with an isolated lepton, jets and E_T	13	3.2	3
atlas_conf_2015_082	leptonic Z + jets + E_T	13	3.2	1
atlas_conf_2016_013	vector like quarks	13	3.2	10
atlas_conf_2016_050	stops in events with an isolated lepton, jets and E_T	13	13.3	5
atlas_conf_2016_076	SUSY with 2 leptons + jets + E_T	13	13.3	6
cms_pas_sus_15_011	SUSY with 2 leptons + jets + E_T	13	2.2	47
	some 14 TeV Highlumi analyses	14	300/3000	

The Idea

"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model is excluded by the LHC or not."

"Sounds great! Let's do it!"

Another Idea

"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model can be excluded by the (current or future) LHC or not."

"Sounds great! And guess what? You can already do that!"

Testing existing vs testing future results

Implementing an analysis

- CheckMATE has an interactive AnalysisManager executable which greatly aids adding a new analysis to the existing structure.
- It asks whether you implement an **existing** analysis or a 'new' analysis

Testing existing vs testing future results

Implementing an analysis

- CheckMATE has an interactive AnalysisManager executable which greatly aids adding a new analysis to the existing structure.
- It asks whether you implement an **existing** analysis or a '**new**' analysis
- If the analysis exists, one knows observation 0 and background B and therefore one has to provide these numbers for all signal regions

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S ⁹⁵ S ⁹⁵ S ⁹⁵ _{exp}	1341.2 1135.0 ^{+332.7} 291.5	51.3 42.7 ^{+15.5} -11.4	14.9 17.0 ^{+6.6} -4.6	6.7 5.8 ^{+2.9}

 The user has to implement the event selection analysis code and that's it.

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

Testing existing vs testing future results

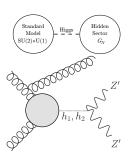
Implementing an analysis

- CheckMATE has an interactive AnalysisManager executable which greatly aids adding a new analysis to the existing structure.
- It asks whether you implement an **existing** analysis or a '**new**' analysis
- If the analysis exists, one knows observation 0 and background B and therefore one has to provide these numbers for all signal regions

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S 25	1341.2	51.3	14.9	6.7
S_{obs}^{95} S_{exp}^{95}	1135.0+332.7	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	5.8+2.9

 The user has to implement the event selection analysis code and that's it.

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

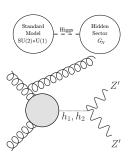

- If the analysis is **new**, CheckMATE skips this stage and adds a preliminary analysis which can not be used for testing
- The user then has to
 - implement the event selection analysis code (as usual),
 - 2 run Standard Model background samples through CheckMATE to determine B
 - **3** use the AnalysisManager to add this number to the analysis, thereby removing the preliminary status.

A quickly outlined application: Monojets@14 TeV

The Higgs Portal @ 14 TeV

- Explain Dark Matter through a stable gauge boson of a new "dark" gauge group
- Assume scalar singlet X which couples to dark gauge bosons Z' via \tilde{g}
- X mixes with the Higgs H of the Standard Model \rightarrow mixing angle sin α

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F_{\mu\nu}' F^{\prime,\mu\nu} + (D_{\mu}X)^{\dagger} D^{\mu}X - \lambda_{hx} H^{\dagger} H X^{\dagger}X - \mu_{x}X^{\dagger}X - \frac{\lambda_{x}}{4} (X^{\dagger}X)^{2}$

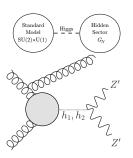


- LHC8 monojet limits are not sensitive to the Higgs portal due to too small cross sections
- To test LHC14 sensitivity, we

The Higgs Portal @ 14 TeV

- Explain Dark Matter through a stable gauge boson of a new "dark" gauge group
- Assume scalar singlet X which couples to dark gauge bosons Z' via \tilde{g}
- *X* mixes with the Higgs *H* of the Standard Model \rightarrow mixing angle sin α

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F_{\mu\nu}' F^{\prime,\mu\nu} + (D_{\mu}X)^{\dagger} D^{\mu}X - \lambda_{hx} H^{\dagger}HX^{\dagger}X - \mu_{x}X^{\dagger}X - \frac{\lambda_{x}}{4} (X^{\dagger}X)^{2}$

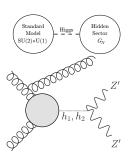


- LHC8 monojet limits are not sensitive to the Higgs portal due to too small cross sections
- To test LHC14 sensitivity, we
 - used the 8 TeV monojet analysis within CheckMATE as a template,

The Higgs Portal @ 14 TeV

- Explain Dark Matter through a stable gauge boson of a new "dark" gauge group
- Assume scalar singlet X which couples to dark gauge bosons Z' via \tilde{g}
- *X* mixes with the Higgs *H* of the Standard Model \rightarrow mixing angle sin α

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F_{\mu\nu}' F^{\prime,\mu\nu} + (D_{\mu}X)^{\dagger} D^{\mu}X - \lambda_{hx} H^{\dagger}HX^{\dagger}X - \mu_{x}X^{\dagger}X - \frac{\lambda_{x}}{4} (X^{\dagger}X)^{2}$

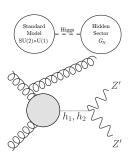


- LHC8 monojet limits are not sensitive to the Higgs portal due to too small cross sections
- To test LHC14 sensitivity, we
 - used the 8 TeV monojet analysis within CheckMATE as a template,
 - added more signal regions with higher pt cuts

The Higgs Portal @ 14 TeV

- Explain Dark Matter through a stable gauge boson of a new "dark" gauge group
- Assume scalar singlet X which couples to dark gauge bosons Z' via \tilde{g}
- X mixes with the Higgs H of the Standard Model \rightarrow mixing angle sin α

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F_{\mu\nu}' F^{\prime,\mu\nu} + (D_{\mu}X)^{\dagger} D^{\mu}X - \lambda_{hx} H^{\dagger} H X^{\dagger}X - \mu_{x}X^{\dagger}X - \frac{\lambda_{x}}{4} (X^{\dagger}X)^{2}$



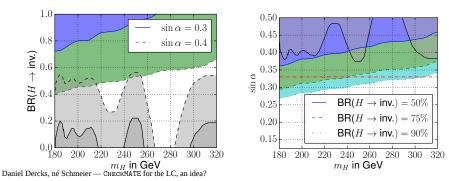
- LHC8 monojet limits are not sensitive to the Higgs portal due to too small cross sections
- To test LHC14 sensitivity, we
 - used the 8 TeV monojet analysis within CheckMATE as a template,
 - added more signal regions with higher pt cuts
 - ! tested background samples $(Z + jets, W + jets, t\bar{t})$ to estimate the SM background numbers for 600 fb⁻¹.

The Higgs Portal @ 14 TeV

- Explain Dark Matter through a stable gauge boson of a new "dark" gauge group
- Assume scalar singlet X which couples to dark gauge bosons Z' via \tilde{g}
- X mixes with the Higgs H of the Standard Model \rightarrow mixing angle sin α

 $\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F_{\mu\nu}' F^{\prime,\mu\nu} + (D_{\mu}X)^{\dagger} D^{\mu}X - \lambda_{hx} H^{\dagger} H X^{\dagger}X - \mu_{x}X^{\dagger}X - \frac{\lambda_{x}}{4} (X^{\dagger}X)^{2}$

- LHC8 monojet limits are not sensitive to the Higgs portal due to too small cross sections
- To test LHC14 sensitivity, we
 - used the 8 TeV monojet analysis within CheckMATE as a template,
 - added more signal regions with higher pt cuts
 - ! tested background samples $(Z + jets, W + jets, t\bar{t})$ to estimate the SM background numbers for 600 fb⁻¹.
- Afterwards we ran on signal samples as usual, to determine limits on masses and branching ratios.


Results

Background Number Estimates

SR	Zj	Wj	$t\bar{t}$	total	example signal	S/\sqrt{B}
M1	2,378,934	2,024,466	67,821	4,471,221	5597	2.6
M2	742,710	442,296	13,327	1,198,333	2065	1.9
M3	207,804	102,852	2,656	313,312	638	1.1
M4	80,730	30,036	1,118	111,884	398	1.2
M5	33,252	11,610	625	45,487	251	1.2
	(0) 1	000 0 V				0

(Signal: $m_H = 200 \text{ GeV}$, $\sin \alpha = 0.3$ and $BR(H \rightarrow \text{invisible}) = 0.75$)

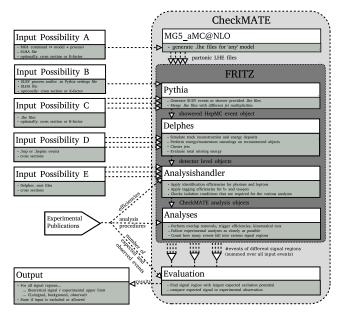
more on the physics can be found in arXiv:1507.08673

Another Idea

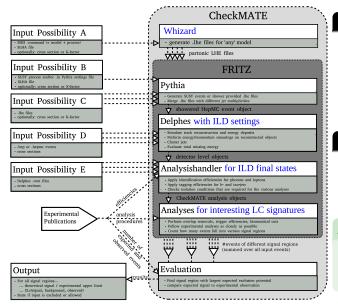
"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model can be excluded by the (current or future) LHC or not."

"Sounds great! And guess what? You can already do that!"

Yet another Idea


"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model can be excluded by a Linear Collideror not."

"Sounds great! Shouldn't be too difficult to do within the existing framework"



Overview: Data Flow

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

What needs to be done

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

Event Generation

 Use Whizard for a more realistic description of e⁺e⁻ collisions, including polarisation effects

Detector Simulation

Use existing
 Delphes ILD card,
 maybe refine

Analyses

 Implement interesting BSM searches

Analyses and Applications

What could this be used for and which searches should be implemented

- For now, CheckMATE can only do cut-and-count based searches, so these would be the easiest
 - Monophoton searches (always interesting for general Dark Matter studies)
 - Electroweakino searches (can often be used for general BSM models with particles which decay into SM-bosons
 - ... (<- ideas are very much appreciated!)
 - Using results and experience from existing ILC-studies (e.g. background studies, cut optimisations) can be very helpful

Analyses and Applications

What could this be used for and which searches should be implemented

- For now, CheckMATE can only do cut-and-count based searches, so these would be the easiest
 - Monophoton searches (always interesting for general Dark Matter studies)
 - Electroweakino searches (can often be used for general BSM models with particles which decay into SM-bosons
 - ... (<- ideas are very much appreciated!)
 - Using results and experience from existing ILC-studies (e.g. background studies, cut optimisations) can be very helpful
- With more effort, shape based searches might be implemented too (mostly a matter of adding the statistical tools)
 - ... (<- ideas are very much appreciated which distributions might be interesting for general BSM studies!)
- In all cases, combining the expected results for ILC-subruns with different e^+e^- -polarisations can be implemented easily

Analyses and Applications

What could this be used for and which searches should be implemented

- For now, CheckMATE can only do cut-and-count based searches, so these would be the easiest
 - Monophoton searches (always interesting for general Dark Matter studies)
 - Electroweakino searches (can often be used for general BSM models with particles which decay into SM-bosons
 - ... (<- ideas are very much appreciated!)
 - Using results and experience from existing ILC-studies (e.g. background studies, cut optimisations) can be very helpful
- With more effort, shape based searches might be implemented too (mostly a matter of adding the statistical tools)
 - ... (<- ideas are very much appreciated which distributions might be interesting for general BSM studies!)
- In all cases, combining the expected results for ILC-subruns with different e^+e^- -polarisations can be implemented easily

Every project which uses such a tool could provide an additional motivation for a linear collider!

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

Conclusions

- CheckMATE is a very simple to use LHC phenomenology tool
- It can be used to check against existing results **or** to do prospective studies
- Performing prospective studies at the linear collider might also be interesting
- What would need to be implemented:
 - Whizard event generator for simulation of e^+e^- collisions of 'any' model
 - ILD detector card in Delphes
 - Some interesting cut-and-count searches
 - Some interesting shape-based searches plus the respective statistical tools
- This project is at a very early stage, so ideas or comments are appreciated!

http://checkmate.hepforge.org/

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

Conclusions

http://checkmate.hepforge.org/ And talk to me if you have questions or ideas!

Running the Analysis Manager

🖄 Run make AnalysisManager; /bin/AnalysisManager

What do you want?
 -(1)ist all analyses,
 -(a)dd a new analysis to CheckMATE,
 -(r)emove an analysis from CheckMATE]

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?

Adding an analysis

```
This will collect all necessary information to create a full analysis and
Takes care for the creation and implementation of the source files into the code.
Please answer the following questions.
Attention: Your input is NOT saved before you finish this questionnaire.
1. General Information to build analysis
Analysis Name:
       ATLAS 1234 5678
Description (short, one line):
       ATLAS: many leptons, few jets
Description (long, multiple lines, finish with ';;' on a new line):
       ATLAS
       many leptons, few jets
       sart(s) = 9 TeV
       int(L) = 42 \text{ fb}^{-1}
Luminosity (in fb^-1):
Do you plan to implement control regions to that analysis? [(y)es, (n)o)
```

Daniel Dercks, né Schmeier - CHECKMATE for the LC, an idea?

Adding an analysis

```
2. Information on Signal Regions
List all signal regions (one per line, finish with ';;' on a new line):
11
21
[...]
Is the SM expectation B known? [(y)es, (n)o]?
```

You now have to add the numbers for each of the given signal regions. 11 obs: bkg: 90 bkg_err: 15 21 obs: bkg: 180 bkg_err: 30 [...]

n

Signal regions are registered but without any numbers associated to them. IMPORTANT: The analysis will be created and can then be used like any other analysis. CheckMATE will skip the model exclusion tests as long as the expectation is not known. You can e.g. use CheckMATE on background samples to estimate B and dB. As soon as you know these numbers, run the AnalysisManager again and use the (e)dit feature to add them.

Adding an analysis

Ä

```
2. Information on Signal Regions
       List all signal regions (one per line, finish with ';;' on a new line):
       ſ...1
       Is the SM expectation B known? [(y)es, (n)o]?
          You now have to add the
                                                  Signal regions are registered but without any
          numbers for each of the
                                                  numbers associated to them.
                                                  IMPORTANT: The analysis will be created and can
          given signal regions.
                                                  then be used like any other analysis.
          11
                                                  CheckMATE will skip the model exclusion
          obs:
                                                  tests as long as the expectation is not
                                        Add a new analysis
Add a published analysis
                                          A run on SM backgrounds first
  A Provide results straight
                                              add these results to CM
      away
                                          А.
     Typical mode for 8 and 13
                                          A Typical mode to project to 13 and 14 TeV
      TeV
                                              and to invent new cutflows
          [...]
```

Adding an analysis

```
3. Settings for Detector Simulation
3.1: Miscellaneous
To which experiment does the analysis correspond? (A)TLAS, (C)MS
Δ
3.2: Electron Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
Isolation 1:
Which objects should be considered for isolation? [(t)racks, (c)alo objects?
 t
What is the minimum pt of a surrounding object to be used for isolation? [in GeV]
What is the dR used for isolation?
0.4
Is there an absolute or a relative upper limit for the surrounding pt? [(a)bsolute. (r)elative]
What is the maximum surrounding pt used for isolation [in GeV]?
Do you need more isolation criteria? [(v)es, (n)o]
n
3.3: Muon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
n
3.4: Photon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
 n
```

Adding an analysis

```
3.5 Jets
Which dR cone radius do you want to use for the FastJet algorithm?
0.4
What is the minimum pt of a jet? [in GeV]
Do you need a separate, extra type of jet? [(y)es, (n)o]
n
Do you want to use b-tagging? [(y)es, (n)o]
V
b-Tagging 1:
What is the signal efficiency to tag a b-jet? [in %]
70
Do you need more b tags? [(y)es, (n)o]
у
b-Tagging 2:
What is the signal efficiency to tag a b-jet? [in %]
40
Do you need more b tags? [(y)es, (n)o]
n
Do you want to use tau-tagging? [(y)es, (n)o]
n
```

Adding an analysis

- Variable values saved in /hdd/sandbox/managertest/data/atlas_conf_2013_047X_var.j
- Created source file /hdd/sandbox/managertest/tools/analysis/src/atlas_conf_2013_047X.cc
- Created header file /hdd/sandbox/managertest/tools/analysis/include/atlas_conf_2013_047X.h
- Updated Makefile
- Updated main source main.cc
- Reference file created
- List of analyses updated

Analysis atlas_conf_2013_047X has been added successfully!

Run 'make' from the main CheckMATE folder to compile it!

Some example lines

```
void Atlas conf 2013 047::analyze() {
  missingET->addMuons(muonsCombined);
  electronsLoose = filterPhaseSpace(electronsLoose, 10., -2.47, 2.47)
  muonsCombined = filterPhaseSpace(muonsCombined, 10., -2.4, 2.4);
  jets = filterPhaseSpace(jets, 20., -2.8, 2.8);
  [...]
  jets = overlapRemoval(jets, electronsLoose, 0.2);
  electronsLoose = overlapRemoval(electronsLoose, jets, 0.4);
  if (!electronsLoose.empty())
  return;
  [...]
  double HT = 0.;
  for (int j = 0; j < jets . size(); j++)
 HT \neq jets[j] \rightarrow PT;
  double mEffInc = missingET - P4().Et() + HT;
  [...]
 mEffA = missingET \rightarrow P4().Et() + jets[0] \rightarrow PT + jets[1] \rightarrow PT;
  if (\text{missingET} \rightarrow P4().Et()/mEffA > 0.2) {
    countCutflowEvent("AL1");
    if (mEffInc > 1000.)
    countSignalEvent("AL");
  ·
[...]
```

Daniel Dercks, né Schmeier — CHECKMATE for the LC, an idea?