Software Compensation in Particle Flow reconstruction

Huong Lan Tran

Linear Collider Forum - 22 November 2016 10th Workshop on Physics at the Terascale

Outlines

- Motivation for software compensation
- Particle flow reconstruction & Software compensation (SC)
- Implementation of SC into Particle flow reconstruction
- Application of SC for ILD detector performance study
 - AHCAL transverse granularity optimisation

• ILD calorimeters are *non-compensating*

Typical hadronic shower

H.L. Tran - LC Forum - Physics at the Terascale - 22 Nov. 2016

• ILD calorimeters are *non-compensating*

Typical hadronic shower

• ILD calorimeters are *non-compensating*

Detected via energy loss of electrons and photons in active medium

Hadronic components:

- Detectable ionisation processes of charged hadrons
- *Invisible energy*: nuclear binding energy or target recoil
- Smaller calorimeter response for this part

H.L. Tran - LC Forum - Physics at the Terascale - 22 Nov. 2016

• ILD calorimeters are *non-compensating*

Typical hadronic shower

Detected via energy loss of electrons and photons in active medium

≻ <u>Consequences:</u>

- Higher detector response for electromagnetic compared to hadronic showers $\frac{e}{h} > 1$
- Non-linearity for hadronic calorimeter response
- Degradation of energy resolution

- Detectable ionisation processes of charged hadrons
- *Invisible energy*: nuclear binding energy or target recoil
- Smaller calorimeter response for this part

Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response

Achievable with detector design

- "Offline" compensation: Software Compensation
 - Electromagnetic showers denser than hadronic showers >> energy of hits inside electromagnetic sub-showers are typically higher compared to hits inside hadronic sub-showers.
 - > Cut out high energy hits to reduce EM response *
 - > Applying different weights for hits of different energy densities

Particle Flow reconstruction & Software compensation

- Particle Flow reconstruction: trace individual particles
 - Need precise measurement of particle's energy with calorimeters
- ILD calorimeters are non-compensating: degrade energy resolution
 - Compensation with electromagnetic response truncation (cell energy truncation)
- But ILD calorimeters are highly granular:
 - Allow assessment at sub-shower level for electromagnetic and hadronic sub-shower distinction for software compensation

Particle Flow reconstruction & Software compensation

- Dependence of jet energy resolution on HCAL cell size apparently reduced compared to results from LoI (both study use PandoraPFA):
 - *HCAL cell energy truncation* degrades resolution at high energy for higher cell size
 - But: improve energy resolution at smaller cell sizes
- > Cell energy truncation mimics software compensation
- Software compensation can do better and must be applied properly in Particle Flow reconstruction
- Software compensation applied to test beam data from CALICE-AHCAL physics prototype:
 - Improvement of hadronic energy resolution by 20% for single hadrons from 10 to 80 GeV

H.L.Tran - LC Forum - Physics at the Terascale - 22 Nov. 2016

Software compensation idea

• Software compensation technique by CALICE: weighting hit energy according to its energy density

$$\omega(\rho) = p_1 . exp(p_2.\rho) + p_3$$

$$E_{SC} = \sum_{hits} E_{ECAL} + \sum_{bin} (E_{HCAL}^{bin} \times \omega_{bin}(\rho))$$
with $E_{HCAL}^{bin} = \sum_{hits \in bin} E_{hit}$

Example on software compensation's operation

Software compensation implementation

First set of clusters obtained

- Clusters without track: neutral particles, fragment,
- Clusters with associated track: cluster-track energy comparison. **Crucial** as it decides how good the energy reconstruction will be

Software compensation for all clusters

OR

Software compensation for neutral hadrons

Application of SC for ILD detector performance study

Software version and configuration

- **Detector model**: ILD_o1_v06
- **Reconstruction software**: ilcsoft_v01-17-07 combined with PandoraPFA version v02-09-00:
 - PandoraSDK v02-03-01
 - LCContent v02-04-00 including software compensation in LCPlugins and hits information registration for software compensation weight training in LCUtility
 - PandoraMonitoring v02-03-00
- Digitiser: ILDCaloDigi with realistic options for ECAL and HCAL
- Calibration constants optimised using PandoraAnalysis toolkit
- Timing cut: 100 ns

Energy resolution with software compensation

• Software compensation benefits in two-fold way:

- Improve energy reconstruction of neutral objects
- Improve cluster energy estimator for better trackcluster association ≻ confusion mitigation

Study with 60 layer HCAL and higher jet energies (relevant for CLIC studies)

Energy resolution with software compensation

- Software compensation benefits in two-fold way:
 - Improve energy reconstruction of neutral objects
 - Improve cluster energy estimator for better trackcluster association > confusion mitigation
- Significant improvement at both single particle and jet level
- Software compensation applied at re-clustering stage more beneficial for jet energy resolution

10

JER vs transverse granularity (cell size)

- Effectiveness of software compensation depends on granularity
 - Software compensation included in cell size optimisation
 - Weights optimised for each cell size

H.L.Tran - LC Forum - Physics at the Terascale - 22 Nov. 2016

JER vs number of cells

- Jet energy resolution plotted as a function of number of HCAL cells
 - Towards cost optimisation
 - $3 \times 3 \ cm^2$ cell size is still a very reasonable choice

Summary

- Jet energy resolution with software compensation in Pandora:
 - Significant gain in performance over a wide jet energy range, best performance achieved for ILD detector
 - Inclusion of SC does not significantly alter view on transverse granularity optimisation
- Software compensation code and utilities in latest version of PandoraPFA
- Installed in new ILCsoft v01-17-10
 - Being used as standard cluster energy correction, shows improvement everywhere (even with DD4hep, without re-optimisation of SC weight yet)
- Study summarised in a paper, soon to be on review

Back-up slides

Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response

ZEUS Uranium-Scintillator calorimeter

Achievable with detector design

- Increase nuclear fission with absorber material
 - Example: ZEUS detector using 238U
- Manipulating response to (slow) neutrons
- Sampling fractions

H.L.Tran - LC Forum - Physics at the Terascale - 22 Nov. 2016

Software Compensation

- *Idea*: Applying different weights for hits of different energy densities
- *Weight* defined as:

$$\omega(\rho) = p_1.exp(p_2.\rho) + p_3$$

where ρ is hit energy density, p_1, p_2, p_3 are beam energy dependent parameters

• Energy of cluster then computed in software compensation method as:

$$E_{SC} = \sum_{hits} E_{ECAL} + \sum_{hits} (E_{HCAL} \cdot \omega(\rho))$$

• Weights determined through minimising a χ^2 function:

$$\chi^2 = \sum_{events} (E_{SC} - E_{beam})^2$$

• In following slides: Results on standard ILD detector (with 3x3 cm2 AHCAL)

Semi-digital Reconstruction

- Semi-digital reconstruction:
 - Counting hits at 3 thresholds N1, N2, N3
 - Ntot = N1 + N2 + N3
 - EnergySD = alpha*N1 + beta*N2 + gamma*N3

where:

alpha	= alpha1	+	alpha2*N	+ alpha3*N*N
beta	= beta1	+	beta2*N	+ beta3*N*N
gamma = gamma1 + gamma2*N + gamma3*N*N				

Software compensation mimics Semi-Digital:

- Define bin
- Energy total = Sum_bin (weight_bin * SumEnergy_bin)
- weight_bin = a + b*E + c*E*E

