Electroweak corrections to Higgs production through gluon fusion in the 2HDM

Christian Sturm

Universität Würzburg Institut für Theoretische Physik und Astrophysik Theoretische Physik II (TP2) Emil-Hilb-Weg 22 97074 Würzburg

- I. Generalities & Context
- II. Computation
- III. Results
- IV. Summary & Conclusion

based on JHEP 1609 (2016) 115 in collaboration with: A. Denner, L. Jenniches & J. Lang + work in preparation in collaboration with: L. Jenniches & S. Uccirati

0 C. Sturm, Radcor, St. Gilgen, 27.09.2017

EW corr. to H production through g fusion in the 2HDM

- Higgs boson (*H*) discovered at the LHC experiments → Determine properties of Higgs boson (theory+experiment)
- Higgs boson could be part of extended, more general Higgs sector
 - → Contribute to solve open problems of particle phys., e.g. question of origin of matter–anti-matter asymmetry question of nature of dark matter, ...
- Extension of H sector: Two-Higgs-Doublet Model (2HDM)
- LHC studies processes for such BSMs CMS: 1603.02991, CMS: 1511.03610, ATLAS: 1509.00672, CMS: 1410.2751, ATLAS: 1310.0515, ATLAS-CONF-2013-027,...
 - \hookrightarrow precise theory predictions necessary
- Important Higgs boson production: gluon fusion

$$\hookrightarrow$$
 $gg \rightarrow H$ $H = H_l, H_h$

■ Study effect of extension on Higgs production → EW corrections

Introduction

Context, Motivation & Model

EW corrections to SM Higgs production $gg \rightarrow H \checkmark$ ↔ 5.1% S. Actis, G. Passarino, C.S., S. Uccirati; G. Degrassi, F. Maltoni; U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini; A. Diouadi, P. Gambino, B. Kniehl ■ EW corrections in SM extensions → can be large! \hookrightarrow example: Higgs production in 4th generation model \checkmark (excluded) G. Passarino, C.S., S. Uccirati; A. Djouadi, P. Gambino, B. Kniehl The 2HDM potential: $\Phi_{i} = \begin{pmatrix} \Phi^{+} \\ \frac{1}{\sqrt{2}} (v_{i} + \rho_{i} + i\eta_{i}) \end{pmatrix}, i = 1, 2 \text{ Higgs doublets}, \quad v_{i} : vevs$ $V(\Phi_1, \Phi_2) = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right)$ $+ \quad \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right)$ $+ \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right]$

Introduction

■ Diagonalize scalar sector → mass eigenstates, physical basis

$$\begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = R(\alpha) \begin{pmatrix} H_h \\ H_l \end{pmatrix}, \quad \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}, \quad \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = R(\beta) \begin{pmatrix} G_0 \\ H_a \end{pmatrix}$$

$$R(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$$

$$Mass eigenstates,$$

$$new particle spectrum:$$

$$H_l, H_h, H_a, H^{\pm}$$

- α : diagonalizes neutral Higgs mass matrix
- β : diagonalizes other scalar mass matrices, $t_{\beta} = \tan \beta = v_2/v_1$
- Physical parameters:

Introduction Model, Experiment

Higgs basis

$$\begin{aligned} \Phi_{a} &= \phi_{1} \cos \beta + \phi_{2} \sin \beta \\ \Phi_{b} &= -\phi_{1} \sin \beta + \phi_{2} \cos \beta \\ \Phi_{a} &= \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v - H_{I} \mathbf{s}_{\alpha\beta} + H_{h} \mathbf{c}_{\alpha\beta} + i\mathbf{G}_{0}) \end{pmatrix} \quad \Phi_{b} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (H_{I} \mathbf{c}_{\alpha\beta} + H_{h} \mathbf{s}_{\alpha\beta} + i\mathbf{H}_{a}) \end{pmatrix} \\ v &= \sqrt{v_{1}^{2} + v_{2}^{2}} \end{aligned}$$

- Alignment limit: $c_{\alpha\beta} = \cos(\alpha - \beta) \rightarrow 0,$ $s_{\alpha\beta} = \sin(\alpha - \beta) \rightarrow -1$
- *H_I* has SM-like couplings to fermions and gauge bosons
- Constraints on parameters → LHC experiments
- Decoupling limit: Alignment limit
 + new mass scales heavy

4 C. Sturm, Radcor, St. Gilgen, 27.09.2017

Process

• The process $gg \rightarrow H_l, H_h$ at LO

2HDM: multiplicative factor compared to SM

 Compared to QCD computation of EW corrections in 2HDM more involved

 $\hookrightarrow \text{new diagrams}$

L. Jenniches, C.S., S. Uccirati \rightarrow in preparation

First results: in context of renormalization

A. Denner, L. Jenniches, J. Lang, C.S. \leftrightarrow (gg \rightarrow H_I + alignment limit only!)

Computation

Setup

2HDM Feynman rules generated with FeynRules

LA. Alloul, N. Christensen, C. Degrande, C. Duhr, B. Fuks

Diagram generation with QGRAF P. Nogueira

Build amplitude with in-house code QGS

QGS: extension of GraphShot (GS) S. Actis, A. Ferroglia, L. Jenniches, G. Passarino, M. Passera, C. S., S. Uccirati performs algebraic manipulations, FORM based

J. Kuipers, T. Ueda, J. Vermaseren, J. Vollinga

- perform traces, remove reducible scalar products, symmetrize integrals, reduction, counter terms, extracts pole-part of loop diagrams, renormalization[↑],...
- UV-finite amplitude integrals classified into different topologies: subdivided in scalar, vector and tensor type integrals

└→ mapped on Form factors

→ Form factors are evaluated numerically in Feynman parametric space (Fortran)

Computation

Collinear singularities

- No real corrections to $gg \rightarrow H$ (considering EW corrections)
 - \Rightarrow collinear singularities cancel in pure virtual amplitude
 - \Rightarrow Check of calculation
- Collinear singularities are regularized by small fermion mass m; singularities become manifest as log¹(m),log²(m)

■ Collinear logarithms of: $1^{st}+2^{nd}$ generation: \log^2 , $\log^1 \rightarrow$ analytically \checkmark 3^d generation: $\log^2 \rightarrow$ analytically \checkmark 3^d generation: \log^1 coeff. \rightarrow numerically \checkmark $(gg \rightarrow H_l$, alignment limit: completely analytically) \checkmark

Computation

2HDM renormalization

Higgs masses: on-shell

Mixing angles: $\alpha, \beta \rightarrow$ different schemes:

■ MS A. Denner, L. Jenniches, J. Lang, C.S.

- ct's
$$\delta \alpha$$
, $\delta \beta$ fixed: $H_l \to \tau^+ \tau^-$, $H_a \to \tau^+ \tau^-$ UV finite
 $\delta \bar{\alpha} = \frac{\delta \overline{Z}_{H_h H_l} - \delta \overline{Z}_{H_l H_h}}{4} = \frac{\Sigma_{H_h H_l}^{pp}(M_{H_h}^2) + \Sigma_{H_h H_l}^{pp}(M_{H_l}^2) + 2t_{H_l H_h}}{2(M_{H_h}^2 - M_{H_l}^2)}$, $\delta \bar{\beta} = \frac{\delta \overline{Z}_{G_0 H_a} - \delta \overline{Z}_{H_a G_0}}{4}$

- Proper treatment of Higgs tadpoles: FJ tadpole scheme gauge independent physical ct's J. Fleischer, F. Jegerlehner Higgs tadpole ct's are shift vev's: $v_i \rightarrow v_i + \Delta v_i$
- $\bar{\alpha}, \bar{\beta}$ scale dependent
- May lead to large corrections

Scale independent schemes

J. Espinosa, I. Navarro, Y. Yamada, 2HDM: Kanemura, Kikuchi, Yagyu; M. Krause, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche (pt); A. Denner, J. Lang, S. Uccirati (BFM)

- pinch technique (pt) (BFM talk: J. Lang \uparrow) $\delta \alpha^{\mathsf{pt}} = \frac{\Sigma_{H_h H_l}(M_{H_h}^2) + \Sigma_{H_h H_l}(M_{H_l}^2) + \Sigma_{H_h H_l}(M_{H_h}^2) + \Sigma_{H_h H_l}(M_{H_l}^2) + 2(\mu_{H_h H_l})}{2(\mu_{H_l}^2 - M_{H_l}^2)}, \quad \delta \beta^{\mathsf{pt}} = \dots \text{ analog }$
- p* scheme:

 $\delta \alpha^* = \frac{\Sigma_{H_h H_l} (p^{*2}) + t_{H_l H_h}}{M_{*}^2 - M_{*}^2}, \quad \delta \beta^{\text{pt}} = \dots \text{ analog } \quad \text{with } p^{*2} = (M_{H_h}^2 + M_{H_l}^2)/2$

B

Mixing angles: α , $\beta \rightarrow \underline{\text{different}}$ schemes:

process dependent (proc)

$$\begin{split} & \Gamma_{\text{weak}}^{\text{NLO}}(H_h \to \tau^+ \tau^-) = \Gamma^{\text{LO}}(H_h \to \tau^+ \tau^-), \ \Gamma_{\text{weak}}^{\text{NLO}}(H_a \to \tau^+ \tau^-) = \Gamma^{\text{LO}}(H_a \to \tau^+ \tau^-) \\ & \text{2HDM: M. Krause, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche} \end{split}$$

- Unnatural large corrections to some other processes/config.
- Processes phenomenologically accessible

Results

Alignment Limit: $c_{\alpha\beta} = 0$

• EW % corr. for $gg \rightarrow H_l$ and $gg \rightarrow H_h$ as fct. of M_{H_h} , $M^* = 700 \text{ GeV} \text{ (example)}$

Results Non-alignmemt Limit: $c_{\alpha\beta} = 0.03 \neq 0$

• EW % corr. for $gg \rightarrow H_l$ and $gg \rightarrow H_h$ as fct. of M_{H_h} , $M^* = 700 \text{ GeV} \text{ (example)}$

Any other scenario can be computed too!

EW corr. to H production through g fusion in the 2HDM

R

Results

 $gg \rightarrow H_l$ decoupling limit: $M^* \rightarrow \infty$

 $f \rightarrow 0$ (alignment limit) and $M^* \rightarrow \infty$ (decoupling limit)

12 C. Sturm, Radcor, St. Gilgen, 27.09.2017

EW corr. to H production through g fusion in the 2HDM

Benchmark points (BPs)

BPs collected by LHCHXSWG 1610.07922 BPs fulfill conditions:

perturbativity, vacuum stability, exp. constraints

Alignment limit, $c_{\alpha\beta} = 0$:

BP	M _{H_h}	M _{Ha}	$M_{H^{\pm}}$	M _{sb}	tβ	$\frac{\lambda_i^{\text{max}}}{4\pi}$	$c_{H_l}^2$	$c_{H_h}^2$
BP2 _{1A}	200 GeV	500 GeV	200 GeV	198.7 GeV	1.5	0.28 (i=5)	1	0.4
BP2 _{1B}	200 GeV	500 GeV	500 GeV	198.7 GeV	1.5	0.57 (i=3)	1	0.4
BP2 _{1C}	400 GeV	225 GeV	225 GeV	0 GeV	1.5	0.49 (i=1)	1	0.4
BP2 _{1D}	400 GeV	100 GeV	400 GeV	0 GeV	1.5	0.49 (i=1)	1	0.4
BP3 _{A1}	180 GeV	420 GeV	420 GeV	129.1 GeV	3	0.42 (i=3)	1	0.1

General case, $c_{\alpha\beta} \neq 0$:

BP	M _{Hh}	M _{Ha}	M _{H±}	M _{sb}	tβ	$C_{\alpha\beta}$	$\frac{\lambda_i^{\text{max}}}{4\pi}$	$c_{H_l}^2$	$c_{H_h}^2$
BP2 _{2A}	500 GeV	500 GeV	500 GeV	500 GeV	7	0.28	0.64 (i=3)	1.0	0.02
BP3 _{B1}	200 GeV	420 GeV	420 GeV	142.0 GeV	3	0.3	0.44 (i=3)	1.1	0.0003
BP3 _{B2}	200 GeV	420 GeV	420 GeV	142.0 GeV	3	0.5	0.46 (i=3)	1.1	0.04
BP4 ₃	263.7 GeV	6.3 GeV	308.3 GeV	81.5 GeV	1.9	0.14107	0.35 (i=1)	1.1	0.1
BP4 ₄	227.1 GeV	24.7 GeV	226.8 GeV	89.6 GeV	1.8	0.14107	0.23 (i=1)	1.1	0.2
BP45	210.2 GeV	63.06 GeV	333.5 GeV	116.2 GeV	2.4	0.71414	0.31 (i=3)	1.0	0.2
<i>a</i> -1	700 GeV	700 GeV	670 GeV	624.5 GeV	1.5	-0.0910	0.16 (i=2)	0.9	0.6
<i>b</i> -1	200 GeV	383 GeV	383 GeV	204.2 GeV	2.52	-0.0346	0.30 (i=3)	1.0	0.2

a-1, b-1: 1403.1264

• Higgs self-coupling in the SM: $\frac{\lambda}{4\pi} \rightarrow \mathcal{O}(10^{-2})$

BPs, correction to $gg \rightarrow H_l$

- Corrections:
 order several percent
- Corrections mainly of comparable size with SM correction (~ 5.1%)
- Corrections sensitive to BPs
- Similar corrections in different schemes with some exceptions, except MS for some BPs, scale choice

$c_{\alpha\beta} = 0$:

BP %	$\delta_{\rm EW}^{\rm pt}$	$\delta^{p^*}_{\rm EW}$	$\delta_{\scriptscriptstyle\mathrm{EW}}^{\scriptscriptstyle\mathrm{proc}}$	$\delta_{\scriptscriptstyle\mathrm{EW}}^{\scriptscriptstyle\overline{\scriptscriptstyle\mathrm{MS}}}$
$BP2_{1A}$	5.3	6.3	10.1	-0.6 ± 9.8
$BP2_{1B}$	3.8	4.8	4.5	-7.0 ± 10.0
$BP2_{1C}$	4.3	4.4	9.9	12.7 ∓ 0.6
$BP2_{1D}$	2.9	3.5	4.1	14.5 ∓ 0.6
$BP3_{A1}$	4.1	4.0	4.5	11.8 ∓ 8.1

$c_{\alpha\beta} \neq 0$:

BP %	$\delta_{\rm \scriptscriptstyle EW}^{\rm \scriptscriptstyle pt}$	$\delta^{p^*}_{\scriptscriptstyle\rm EW}$	$\delta_{\scriptscriptstyle\mathrm{EW}}^{\scriptscriptstyle\mathrm{proc}}$	$\delta_{\scriptscriptstyle\mathrm{EW}}^{\scriptscriptstyle\overline{\scriptscriptstyle\mathrm{MS}}}$
$BP2_{2A}$	1.7	1.8	1.5	0.57 ± 0.01
$BP3_{B1}$	3.9	3.8	3.9	7.2 ∓ 4.0
$BP3_{B2}$	3.7	3.7	3.5	-8.3 ± 0.4
$BP4_3$	4.3	4.3	3.8	12.6 ∓ 2.1
$BP4_4$	4.4	4.4	3.8	10.3 ± 0.45
$BP4_5$	3.6	3.6	2.6	4.5 ± 10.0
a-1	4.4	4.7	4.8	-3.8 ∓ 25.4
b-1	4.8	4.5	5.4	-0.5 ∓ 6.2

BPs, corrections to $gg \rightarrow H_h$

- Large corrections, very sensitive to BPs
- Perturbative behaviour sometimes poor or lost (BP2_{1A}, BP3_{A1}, BP2_{1B}, BP2_{2A})
- **BP3** $_{B1}$ has tiny c_{H_h}
- MS strong scale dependence

$c_{\alpha\beta} = 0$:

BP %	$\delta_{\rm EW}^{\rm pt}$	$\delta^{p^*}_{\rm \scriptscriptstyle EW}$	$\delta_{\scriptscriptstyle\mathrm{EW}}^{\scriptscriptstyle\mathrm{proc}}$	$\delta_{\rm EW}^{\overline{\rm MS}}$
$BP2_{1A}$	-65	-63	-72	-41 ∓ 30
$BP2_{1B}$	-177	-176	-183	-139 ∓ 30
$BP2_{1C}$	-6	-7	-22	-21 ± 17
$BP2_{1D}$	-16	-17	-22	-34 ± 22
$BP3_{A1}$	-70	-70	-79	-115 ± 120

$c_{\alpha\beta} \neq 0$:

BP %	$\delta_{\rm \scriptscriptstyle EW}^{\rm \scriptscriptstyle pt}$	$\delta^{p^*}_{\rm EW}$	$\delta_{\rm EW}^{\rm proc}$	$\delta_{\rm EW}^{\overline{\rm MS}}$
$BP2_{2A}$	179	177	181	-128 ∓ 786
$BP3_{B1}$	-328	-382	-	-
$BP3_{B2}$	-6	-5	-17	344 ∓ 209
$BP4_3$	-11	-23	-18	-55 ± 49
$BP4_4$	-2	-3	0.6	-26 ± 28
$BP4_5$	-21	-21	-16	9 ∓ 46
a-1	3	5	1	27 ± 78
<i>b</i> -1	-43	-44	-50	-10 ± 39

Summary & Conclusion

Discussed production of light/heavy, scalar, neutral Higgs $g \, g \to H_l \qquad g \, g \to H_h$ within 2HDM

- Extended QGS for computation of 2-loop EW corrections in 2HDM in several schemes
- Can determine EW percentage corrections for essentially any scenario (masses, angles)
- Percentage corrections for BPs of LHCHXWG presented

Corrections sensitive to BPs

For light Higgs corrections mostly comparable with SM
 For heavy Higgs corrections can be very large

 \rightsquigarrow as important as QCD corrections

Results applicable to decay widths

$$H_l
ightarrow g g$$

same $\delta_{\scriptscriptstyle \sf FW}!$

 $H_h
ightarrow g \, g$

Results

Scale dependence: $gg \rightarrow H_l$

■ Logarithmic scale dependence in MS scheme:

-
$$c_{\alpha\beta} = 0$$
:

$$\delta_{\mathsf{EW}}^{\mathsf{NLO},\mu-\mathsf{dep.}} = \frac{G_f \sqrt{2}}{8\pi^2 t_\beta^2 M_{H_h}^2 (M_{H_h}^2 - M_{H_l}^2)} \ln \frac{\mu^2}{M_{H_l}^2} \\ \times \left[(1 - t_\beta^2) (M_{H_h}^2 - M_{sb}^2) \left[3M_{H_h}^2 M_{H_l}^2 + M_{sb}^2 (M_{H_a}^2 + 2M_{H^\pm}^2 - 3M_{H_h}^2) \right] \\ + 6m_t^2 (M_{H_h}^2 M_{H_l}^2 - 4M_{sb}^2 m_t^2) \right]$$

- ightarrow Coefficient depends on the "choice" of the Higgs masses, *t*_β e.g. *M*_{*H*_{*h*} = 2*M*_{*sb*}*m*_{*t*}/*M*_{*H*_{*l*}}, *t*_β = 1 → small ⇔ enhance... ightarrow scale dependence can be quite different for different scenarios but same process}
- $c_{\alpha\beta} \neq 0$: lengthy ...

