RG analysis at higher orders in perturbativ QFTs in CMP

Nikolai Zerf

Institut für Theoretische Physik University of Heidelberg

RADCOR, St.Gilgen 2017

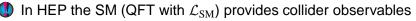
[arXiv:1605.09423] & [arXiv:1703.08801] & [arXiv:1709.05057]

化口下 化固下 化压下水压

Overview

Motivation

Obtain reliable & precise predictions



New physics includes realization of SUSY? (MSSM, nMSSM, ...)

\bigcirc Origin of \mathcal{L}_{SM} ?

Origin of QFTs?

How to proceed?

- Build and run LHC to find new physics
- Calculate observables at higher order in PT
 - Investigate on various QFTs (may not have HEP relevancy)

Work in collaboration with... (from west to east)

Simon Fraser University (Burnaby)
 Igor Herbut

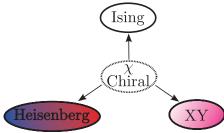
 University of Alberta (Edmonton) Joseph Maciejko Chien-Hung Lin

➡ University of Heidelberg Michael Scherer (→ Köln) Luminita Mihaila Bernhard Ihrig (→ Köln)

DESY Zeuthen Peter Marquard

Content

- Perturbativ RGE analysis at 4-loops around $D = 4 \epsilon$
- Gross-Neveu-Yukawa Models



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Models

- Emerge as LEET in condensed matter physics
- Strongly coupled systems in D = 2 + 1
 - Dirac systems with $N \psi$'s coupled to a bosonic order parameter ϕ
 - Lorenzian Symmetry
 - Fermion Kinetic Term in \mathcal{L} (no gap)

$$\mathcal{L}_{\psi} = \overline{\psi}(x) \partial \!\!\!/ \psi(x) \, .$$

$$\begin{split} & \not = \gamma^{\mu} \cdot \partial_{\mu}. \\ & + \text{Clifford algebra: } \{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}. \\ & (\text{Ex.Rep.: } \gamma^0 = \sigma_3, \gamma^1 = \sigma_1, \gamma^2 = \sigma_2) \end{split}$$

• Global Symmetry/ $DoF[\phi] \rightarrow {Ising, Heisenberg, XY}$

Models

• $\phi \in \mathbb{R}$ (1 DoF) & 'Global Z_2 ' (no cubics in pot.) $\rightarrow \chi$ -Ising

$$\mathcal{L}_{\chi I} = \mathcal{L}_{\psi} + g\phi\bar{\psi}\psi + \frac{1}{2}\phi(m^2 - \partial_{\mu}^2)\phi + \lambda\phi^4.$$

• $\phi \in \mathbb{C}$ (2 DoF) & Global $U_1 \to \chi$ -XY

$$\mathcal{L}_{\chi \mathbf{X} \mathbf{Y}} = \mathcal{L}_{\psi} + g\phi \bar{\psi} P_{+}\psi + g\phi^{*} \bar{\psi} P_{-}\psi + |\partial_{\mu}\phi|^{2} + m^{2}|\phi|^{2} + \lambda |\phi|^{4}$$

• $\vec{\phi} \in \mathbb{R}^3$ (3 DoF) & Global $SU_2 \rightarrow \chi$ -Heisenberg

$$\mathcal{L}_{\chi H} = \mathcal{L}_{\psi} + g \, \bar{\psi}(\vec{\phi} \cdot \vec{\sigma})\psi + \frac{1}{2} \vec{\phi} \cdot \left(m^2 - \partial_{\mu}^2\right) \vec{\phi} + \lambda \left(\vec{\phi} \cdot \vec{\phi}\right)^2.$$

 \bigotimes Renormalizability around D = 4

化口下 化固下 化压下水压

-

Renormalization

All UV divergences absorbable via MS field and coupling redefinitions

$$\begin{split} \phi &\to \phi^0 = \sqrt{Z_{\phi}}\phi \,, \qquad \qquad \psi \to \psi^0 = \sqrt{Z_{\psi}}\psi \,, \\ \lambda &\to \lambda^0 = \mu^{\epsilon} Z_{\lambda}\lambda \,, \qquad \qquad g \to g^0 = \mu^{\epsilon/2} Z_g g \,. \end{split}$$

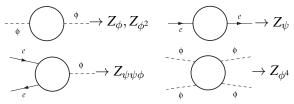
$$Z_{\phi^4} = Z_\lambda Z_\phi^2 \,, \qquad Z_{\psi\psi\phi} = Z_g \sqrt{Z_\phi} Z_\psi \,, \qquad Z_{\phi^2} = Z_\phi Z_{m^2} \,,$$

renormalized Lagrangians read

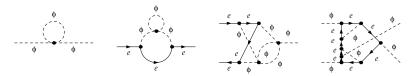
$$\begin{split} \mathcal{L}_{\chi I} = & Z_{\psi} \mathcal{L}_{\psi} + Z_{\psi\psi\phi} g \phi \bar{\psi} \psi + \frac{1}{2} \phi (Z_{\phi^2} m^2 - Z_{\phi} \partial_{\mu}^2) \phi + Z_{\phi^4} \lambda \phi^4 \,. \\ \mathcal{L}_{\chi XY} = & Z_{\psi} \mathcal{L}_{\psi} + Z_{\psi\psi\phi} g (\phi \bar{\psi} P_+ \psi + \phi^* \bar{\psi} P_- \psi) \\ &+ Z_{\phi} |\partial_{\mu} \phi|^2 + Z_{\phi^2} m^2 |\phi|^2 + Z_{\phi^4} \lambda |\phi|^4 \,. \\ \mathcal{L}_{\chi H} = & \mathcal{L}_{\psi} + Z_{\psi\psi\phi} g \, \bar{\psi}(\vec{\phi} \cdot \vec{\sigma}) \psi \\ &+ \frac{1}{2} \vec{\phi} \cdot \left(Z_{\phi^2} m^2 - Z_{\phi} \partial_{\mu}^2 \right) \vec{\phi} + Z_{\phi^4} \lambda \left(\vec{\phi} \cdot \vec{\phi} \right)^2 \,. \end{split}$$

Nikolai Zerf (ITP UHD)

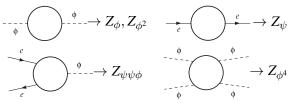
Using DREG get poles in small $\epsilon = 4 - d$ of 1-PI *n*-point functions at L = 1, 2, 3, 4 loops for "any" kinematics



Example Diagrams (Ising)



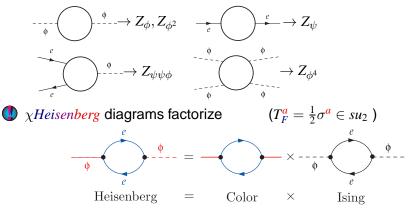
Using DREG get poles in small $\epsilon = 4 - d$ of 1-Pl *n*-point functions at L = 1, 2, 3, 4 loops for "any" kinematics



Number of Diagrams

	χ Ising & χ Heisenberg				χXY			
Loops	1	2	3	4	1	2	3	4
Z_{ψ}	1	4	31	323	2	14	200	4014
Z_{ϕ}, Z_{ϕ^2}	2	6	36	358	2	9	112	2198
$Z_{\psi\psi\phi}$	1	11	145	2199	2	41	1002	28701
Z_{ϕ^4}	9	93	1476	26976	9	173	5029	147023

Using DREG get poles in small $\epsilon = 4 - d$ of 1-PI *n*-point functions at L = 1, 2, 3, 4 loops for "any" kinematics



- Chosing "massiv tadpole kinematics"
 - ▶ Use single IR regulator mass *M* in every denominator
 - Expand in small external momenta $|p_i|/M \ll 1$
 - All integrals are 1-scale tadpole integrals
 - Use infrared rearrangement [Chetyrkin,Misiak,Munz] to consistently subtract artificial terms ~ M²
 - Fully massiv 4-loop MI [Czakon'04]

4 **A** N A **B** N A **B**

- Chosing "massiv tadpole kinematics"
 - ▶ Use single IR regulator mass *M* in every denominator
 - Expand in small external momenta $|p_i|/M \ll 1$
 - All integrals are 1-scale tadpole integrals
 - Use infrared rearrangement [Chetyrkin,Misiak,Munz] to consistently subtract artificial terms ~ M²
 - Fully massiv 4-loop MI [Czakon'04]
- Fully automatized setup
 - QGRAF [Nogueira]
 - q2e [Seidensticker]
 - exp [Seidensticker]
 - FORM [Vermaseren & Co]
 - MATAD [Steinhauser] OR CRUSHER [Marquard, Seidel]
 - COLOR [Ritbergen,Schellekens,Vermaseren'98]
 - modified majoranas.pl [Harlander]
 - RecalcPrefac [NZ]

β - & γ - Functions

•
$$\beta_y = \frac{dy}{d\ln\mu}$$
 $\beta_\lambda = \frac{d\lambda}{d\ln\mu}$ $\left(\frac{g^2}{8\pi} \to y, \frac{\lambda}{8\pi} \to \lambda\right)$
 $\beta_y = -\epsilon y + \beta_y^{(1L)} + \beta_y^{(2L)} + \beta_y^{(3L)} + \beta_y^{(4L)},$
 $\beta_\lambda = -\epsilon\lambda + \beta_\lambda^{(1L)} + \beta_\lambda^{(2L)} + \beta_\lambda^{(3L)} + \beta_\lambda^{(4L)},$

• $\gamma_x = d \ln Z_x / d \ln \mu$ $\forall x \in \{\psi, \phi, \phi^2\}$

$$\gamma_{\psi} = \gamma_{\psi}^{(1L)} + \gamma_{\psi}^{(2L)} + \gamma_{\psi}^{(3L)} + \gamma_{\psi}^{(4L)},$$

$$\gamma_{\phi} = \gamma_{\phi}^{(1L)} + \gamma_{\phi}^{(2L)} + \gamma_{\phi}^{(3L)} + \gamma_{\phi}^{(4L)},$$

$$\gamma_{\phi^{2}} = \gamma_{\phi^{2}}^{(1L)} + \gamma_{\phi^{2}}^{(2L)} + \gamma_{\phi^{2}}^{(3L)} + \gamma_{\phi^{2}}^{(4L)}.$$

Nikolai Zerf (ITP UHD)

RADCOR 2017 10 / 24

2

イロン イ理 とく ヨン 一

β - & γ - Functions for χ *Ising*

Example Results @ 1 & 2 Loops:

$$\begin{split} \beta_{y,\chi l}^{(1L)} &= (3+2N)y^2 , \qquad \beta_{\lambda,\chi l}^{(1L)} &= 36\lambda^2 + 4Ny\lambda - Ny^2 , \\ \beta_{y,\chi l}^{(2L)} &= 24y\lambda(\lambda-y) - \left(\frac{9}{8} + 6N\right)y^3 , \\ \beta_{\lambda,\chi l}^{(2L)} &= 4Ny^3 + 7Ny^2\lambda - 72Ny\lambda^2 - 816\lambda^3 , \end{split}$$

$$\begin{split} \gamma_{\psi,\chi l}^{(1\mathsf{L})} &= \frac{y}{2} \,, \qquad \gamma_{\phi,\chi l}^{(1\mathsf{L})} = 2Ny \,, \qquad \gamma_{\phi^2,\chi l}^{(1\mathsf{L})} = -12\lambda \,, \\ \gamma_{\psi,\chi l}^{(2\mathsf{L})} &= -\frac{y^2}{16} (12N+1) \,, \, \gamma_{\phi,\chi l}^{(2\mathsf{L})} = 24\lambda^2 - \frac{5Ny^2}{2} \,, \, \gamma_{\phi^2,\chi l}^{(2\mathsf{L})} = 144\lambda^2 - 2Ny(y-12\lambda) \,. \end{split}$$

2-loop results [Rosenstein,Kovner,Yu'93]

12 N A 12

β - & γ - Functions for χ *Ising*

Example Result @ 4 Loops:

$$\begin{split} \beta_{\lambda,\chi^{1}}^{(4L)} = & 41472 \left(-39\zeta_{3} - 60\zeta_{5} + \frac{\pi^{4}}{10} - \frac{3499}{96} \right) \lambda^{5} + \frac{1}{240} \lambda Ny^{4} \left(-60\zeta_{3} \left(912N^{2} - 4156N - 4677 \right) \right. \\ & \left. + 1200\zeta_{5} (157 - 168N) - 4\pi^{4} (450N + 41) + 25(4N(337N + 3461) + 5847) \right) \right. \\ & \left. + \frac{Ny^{5} \left(480\zeta_{3} (12N(14N - 15) + 277) + 2400\zeta_{5} (128N + 65) + 8\pi^{4} (64N - 77) + 160N(1289 - 386N) - 67095 \right) \right. \\ & \left. + \frac{1}{80} \lambda^{2} Ny^{3} \left(835200\zeta_{5} + 1920\zeta_{3} (3N(4N - 61) + 19) + 72\pi^{4} (24N + 31) - 40N(288N + 15649) + 1057825 \right) \right. \\ & \left. + \frac{4}{5} \lambda^{3} Ny^{2} \left(-86400\zeta_{5} + 540\zeta_{3} (4N - 69) + 7890N - 288\pi^{4} - 72605 \right) + \frac{36}{5} \left(-17280\zeta_{3} + 96\pi^{4} - 6775 \right) \lambda^{4} Ny \right] \right] \end{split}$$

exponents[Derkachov,Gracey,Kivel,Stepanenko,Vasiliev][Gracey'17]

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

 β - & γ- Functions for χXY $N = 1/2, y \rightarrow 2h^2, \lambda \rightarrow \lambda^2/4$ [S.Thomas'05@KITP]

when $\overline{\lambda} = \overline{h}$: $\overline{h}^2 = h^2/(4\pi)^2$

$$\begin{split} \beta_{h^2} &= -\epsilon \overline{h}^2 + 12 \overline{h}^4 - 48 \overline{h}^6 + 48 \overline{h}^8 (5 + 12\zeta_3) + \dots, \\ \beta_{\lambda^2} &= -\epsilon \overline{h}^2 + 12 \overline{h}^4 - 48 \overline{h}^6 + 48 \overline{h}^8 (5 + 12\zeta_3) + \dots, \\ \gamma_{\phi} &= 4 \overline{h}^2 - 16 \overline{h}^4 + 16 \overline{h}^6 (5 + 12\zeta_3) + \dots, \\ \gamma_{\psi} &= 4 \overline{h}^2 - 16 \overline{h}^4 + 16 \overline{h}^6 (5 + 12\zeta_3) + \dots. \end{split}$$

э

(a)

 β - & γ - Functions for χXY $N = 1/2, y \rightarrow 2h^2, \lambda \rightarrow \lambda^2/4$ [S.Thomas'05@KITP]

$$\begin{split} \text{when } \overline{\lambda} &= \overline{h}: & \overline{h}^2 &= h^2 / (4\pi)^2 \\ \beta_{h^2} &= -\epsilon \overline{h}^2 + 12 \overline{h}^4 - 48 \overline{h}^6 + 48 \overline{h}^8 (5 + 12 \zeta_3) \\ &- 192 \overline{h}^{10} (9 + 60 \zeta_3 - 18 \zeta_4 + 80 \zeta_5) \,, \\ \gamma_{\phi} &= 4 \overline{h}^2 - 16 \overline{h}^4 + 16 \overline{h}^6 (5 + 12 \zeta_3) \\ &- 64 \overline{h}^8 (9 + 60 \zeta_3 - 18 \zeta_4 + 80 \zeta_5) \,, \\ \Rightarrow \beta_{h^2} &\stackrel{?}{=} (-\epsilon + 3 \gamma_{\phi}) \overline{h}^2 \,. \end{split}$$

3

 β - & γ - Functions for χXY $N = 1/2, y \rightarrow 2h^2, \lambda \rightarrow \lambda^2/4$ [S.Thomas'05@KITP]

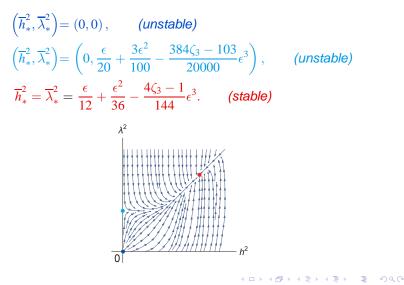
when
$$\overline{\lambda} = \overline{h}$$
: $\overline{h}^2 = h^2/(4\pi)^2$

$$\begin{split} \beta_{h^2} &= -\epsilon \overline{h}^2 + 12 \overline{h}^4 - 48 \overline{h}^6 + 48 \overline{h}^8 (5 + 12 \zeta_3) \\ &- 192 \overline{h}^{10} (9 + 60 \zeta_3 - 18 \zeta_4 + 80 \zeta_5) \,, \\ \gamma_{\phi} &= 4 \overline{h}^2 - 16 \overline{h}^4 + 16 \overline{h}^6 (5 + 12 \zeta_3) \\ &- 64 \overline{h}^8 (9 + 60 \zeta_3 - 18 \zeta_4 + 80 \zeta_5) \,, \\ \Rightarrow \beta_{h^2} &\stackrel{?}{=} (-\epsilon + 3 \gamma_{\phi}) \overline{h}^2 \,. \end{split}$$

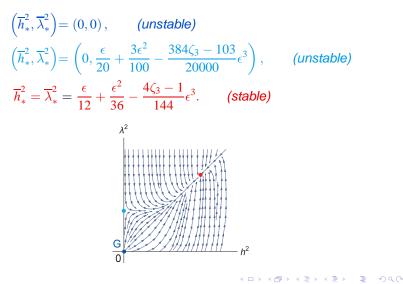
 $\bigotimes h^2 = \lambda^2$ limit reproduces Wess-Zumino model [Avdeev,Goroshni'82]

3 + 4 = +

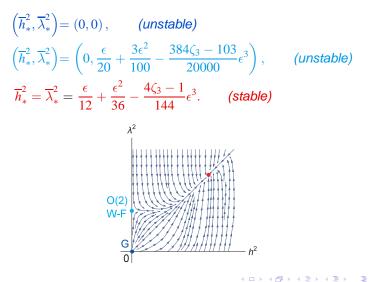
Searching for IR fixed points ($\mu \rightarrow 0$) at d = 3:



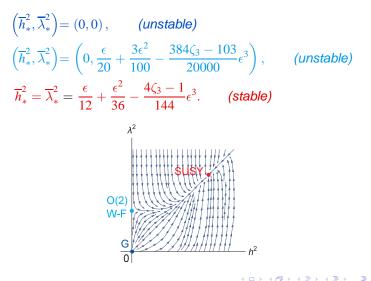
Searching for IR fixed points ($\mu \rightarrow 0$) at d = 3:



Searching for IR fixed points ($\mu \rightarrow 0$) at d = 3:



Searching for IR fixed points ($\mu \rightarrow 0$) at d = 3:



Nikolai Zerf (ITP UHD)

PT 3-loop RG analysis around $d = 4 - \epsilon$ supports dynamically emergent SUSY conjecture at d = 3

3

(日)

PT 3-loop RG analysis around $d = 4 - \epsilon$ supports dynamically emergent SUSY conjecture at d = 3

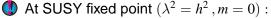
() At SUSY fixed point $(\lambda^2 = h^2, m = 0)$:

$$\begin{split} \mathcal{L} &= \int d^2 \theta d^2 \bar{\theta} \, \Phi^{\dagger} \Phi + \left(\int d^2 \theta \frac{h}{3} \Phi^3 + \text{h.c.} \right) \,, \\ \Phi(y) &= \phi(y) + \sqrt{2} \theta \psi(y) + \theta^2 F(y) \,, \\ y^{\mu} &= x^{\mu} - i \theta \gamma^{\mu} \bar{\theta} \,. \end{split}$$

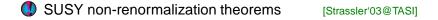
3

E > 4 E >

PT 3-loop RG analysis around $d = 4 - \epsilon$ supports dynamically emergent SUSY conjecture at d = 3



$$\begin{split} \mathcal{L} &= \int d^2 \theta d^2 \bar{\theta} \, \Phi^{\dagger} \Phi + \left(\int d^2 \theta \frac{h}{3} \Phi^3 + \text{h.c.} \right) \,, \\ \Phi(y) &= \phi(y) + \sqrt{2} \theta \psi(y) + \theta^2 F(y) \,, \\ y^{\mu} &= x^{\mu} - i \theta \gamma^{\mu} \bar{\theta} \,. \end{split}$$



E N 4 E N

PT 3-loop RG analysis around $d = 4 - \epsilon$ supports dynamically emergent SUSY conjecture at d = 3

() At SUSY fixed point $(\lambda^2 = h^2, m = 0)$:

$$\begin{split} \mathcal{L} &= \int d^2 \theta d^2 \bar{\theta} \, \Phi^{\dagger} \Phi + \left(\int d^2 \theta \frac{h}{3} \Phi^3 + \text{h.c.} \right) \,, \\ \Phi(y) &= \phi(y) + \sqrt{2} \theta \psi(y) + \theta^2 F(y) \,, \\ y^{\mu} &= x^{\mu} - i \theta \gamma^{\mu} \bar{\theta} \,. \end{split}$$

SUSY non-renormalization theorems [Strassler'03@TASI]
 At the SUSY fixed point we check:

$$\gamma_{\phi}^* = \gamma_{\psi}^* = \frac{\epsilon}{3} + \mathcal{O}(\epsilon^5).$$

ヨトィヨト

Determination of Critical Exponents

Phenomenology of Quantum Phasetransitions

 $x = (X - X_c)/X_c$

$$\xi \sim |x|^{-\nu}(1+C|x|^{\omega}+\ldots)$$

- correlation length around Quantum Critical Point (QCP)
- correlation length exponent v
- subleading/stability exponent ω

(日)

Determination of Critical Exponents

Phenomenology of Quantum Phasetransitions

 $x = (X - X_c)/X_c$

$$\xi \sim |x|^{-\nu} (1 + C|x|^{\omega} + ...)$$

- correlation length around Quantum Critical Point (QCP) ξ
- correlation length exponent v
- subleading/stability exponent ω
- Which phase transition?

$$\mathcal{L}_{\chi\chi\Upsilon} = \bar{\psi}\partial\!\!\!/\psi + |\partial_{\mu}\phi|^2 + m^2 |\phi|^2 + \lambda^2 |\phi|^4 + h(\phi^*\psi^T i\sigma_2\psi + h.c.) \,.$$

Semimetal phase Global U(1) symmetry for $m^2 > 0$

$$\psi \rightarrow e^{i\theta} \psi$$
, $\phi \rightarrow e^{2i\theta} \phi$, $\langle 0|\phi|0 \rangle = \phi_0 = 0$.

- Phasetransition at QCP for $m^2 = 0$
- ➤ Superconducting phase Spontaneously broken global U(1) symmetry for m² < 0</p>

$$\langle 0 | \phi | 0 \rangle = \phi_0 \neq 0 \text{ for a product of } \text{ for a product of } \phi_0 \neq 0 \text{ for a product of } \text{ for a product of } \phi_0 \neq 0 \text{ for a product of } \phi_0$$

Nikolai Zerf (ITP UHD)

ヨト イヨト ニヨ

() Stability exponent ($\omega \ge 0$ IR stable/unstable *)

$$\omega = \frac{\mathrm{d}\beta_{h^2}(\lambda^2 = h^2)}{\mathrm{d}h^2}\Big|_{h=h_*} = \epsilon - \frac{1}{3}\epsilon^2 + \left(\frac{1}{18} + \frac{2}{3}\zeta_3\right)\epsilon^3 + a\epsilon^4 + \mathcal{O}(\epsilon^5).$$

Nikolai Zerf (ITP UHD)

3 1 4 3

() Stability exponent ($\omega \ge 0$ IR stable/unstable *)

$$\omega = \frac{\mathrm{d}\beta_{h^2}(\lambda^2 = h^2)}{\mathrm{d}h^2}\Big|_{h=h_*} = \epsilon - \frac{1}{3}\epsilon^2 + \left(\frac{1}{18} + \frac{2}{3}\zeta_3\right)\epsilon^3 + a\epsilon^4 + \mathcal{O}(\epsilon^5)\,.$$

Correlation length exponent

$$\nu^{-1} = 2 + \gamma_{m^2}^*, \qquad \gamma_{m^2} = \frac{\mathrm{d}\ln Z_{m^2}}{\mathrm{d}\ln\mu}, \qquad Z_{m^2}m^2 = m_0^2,$$

$$\nu^{-1} = 2 - \epsilon + \frac{\epsilon^2}{3} - \left(\frac{2\zeta_3}{3} + \frac{1}{18}\right)\epsilon^3 - a\epsilon^4 + \mathcal{O}(\epsilon^5),$$

$$a = \frac{1}{540} \left(420\zeta_3 + 1200\zeta_5 - 3\pi^4 + 35\right).$$

∃ ► 4 Ξ

Image: A matrix and a matrix

(1) Stability exponent ($\omega \ge 0$ IR stable/unstable *)

$$\omega = \frac{\mathrm{d}\beta_{h^2}(\lambda^2 = h^2)}{\mathrm{d}h^2}\Big|_{h=h_*} = \epsilon - \frac{1}{3}\epsilon^2 + \left(\frac{1}{18} + \frac{2}{3}\zeta_3\right)\epsilon^3 + a\epsilon^4 + \mathcal{O}(\epsilon^5)\,.$$

Correlation length exponent

$$\nu^{-1} = 2 + \gamma_{m^2}^*, \qquad \gamma_{m^2} = \frac{\mathrm{d}\ln Z_{m^2}}{\mathrm{d}\ln\mu}, \qquad Z_{m^2}m^2 = m_0^2,$$

$$\nu^{-1} = 2 - \epsilon + \frac{\epsilon^2}{3} - \left(\frac{2\zeta_3}{3} + \frac{1}{18}\right)\epsilon^3 - a\epsilon^4 + \mathcal{O}(\epsilon^5),$$

$$a = \frac{1}{540} \left(420\zeta_3 + 1200\zeta_5 - 3\pi^4 + 35\right).$$

 \emptyset OR: Using "Grassmannian continuation" of the SUSY Lagrangian

$$\gamma_{m^2}^* = - \left. \frac{\mathrm{d}\beta_{h^2}(\lambda^2 = h^2)}{\mathrm{d}h^2} \right|_{h = h_*}$$

Nikolai Zerf (ITP UHD)

➡ Naive extrapolation to d = 2 + 1 ($\epsilon = 1$):

$$\nu \stackrel{1-\text{loop}}{=} 0.75$$
, $\nu \stackrel{2-\text{loop}}{\approx} 0.792$, $\nu \stackrel{3-\text{loop}}{\approx} 0.985$.

2

(a)

▶ Naive extrapolation to d = 2 + 1 ($\epsilon = 1$):

$$\nu \stackrel{1-\text{loop}}{=} 0.75$$
, $\nu \stackrel{2-\text{loop}}{\approx} 0.792$, $\nu \stackrel{3-\text{loop}}{\approx} 0.985$.

U Bootstrap result [Bobev,EI-Showk,Mazac,Paulos'15]:

 $\nu\approx 0.917$.

E N 4 E N

Image: A matrix and a matrix

▶ Naive extrapolation to d = 2 + 1 ($\epsilon = 1$):

$$\nu \stackrel{1-\text{loop}}{=} 0.75$$
, $\nu \stackrel{2-\text{loop}}{\approx} 0.792$, $\nu \stackrel{3-\text{loop}}{\approx} 0.985$.

U Bootstrap result [Bobev,El-Showk,Mazac,Paulos'15]:

 $\nu \approx 0.917$.

4-loop: naive $\epsilon = 1$ leads $\omega < 0!$

 $\nu = 0.5 + 0.25\epsilon + 0.042\epsilon^2 + 0.193\epsilon^3 - 0.494\epsilon^4.$

Nikolai Zerf (ITP UHD)

Critical Exponents χXY

▶ Naive extrapolation to d = 2 + 1 ($\epsilon = 1$):

$$\nu \stackrel{1-\text{loop}}{=} 0.75$$
, $\nu \stackrel{2-\text{loop}}{\approx} 0.792$, $\nu \stackrel{3-\text{loop}}{\approx} 0.985$.

U Bootstrap result [Bobev,El-Showk,Mazac,Paulos'15]:

 $\nu \approx 0.917$.

4-loop: naive
$$\epsilon = 1$$
 leads $\omega < 0!$
 $\nu = 0.5 \pm 0.25\epsilon \pm 0.042\epsilon^2 \pm 0.193\epsilon^3 = 0.494\epsilon^4$

Asymptotic Series!?

E N 4 E N

Critical Exponents χXY

▶ Naive extrapolation to d = 2 + 1 ($\epsilon = 1$):

$$\nu \stackrel{1-\text{loop}}{=} 0.75, \qquad \nu \stackrel{2-\text{loop}}{\approx} 0.792, \qquad \nu \stackrel{3-\text{loop}}{\approx} 0.985.$$

Bootstrap result [Bobev,EI-Showk,Mazac,Paulos'15]:

 $\nu \approx 0.917$.

4-loop: naive
$$\epsilon = 1$$
 leads $\omega < 0!$
 $\nu = 0.5 + 0.25\epsilon + 0.042\epsilon^2 + 0.193\epsilon^3 - 0.494\epsilon^4$.

Asymptotic Series!?

More sophisticated extrapolations to d = 3 required

ㅋㅋ ㅋㅋㅋ

Critical Exponents χXY

▶ Naive extrapolation to d = 2 + 1 ($\epsilon = 1$):

$$\nu \stackrel{1-\text{loop}}{=} 0.75$$
, $\nu \stackrel{2-\text{loop}}{\approx} 0.792$, $\nu \stackrel{3-\text{loop}}{\approx} 0.985$.

Bootstrap result [Bobev,El-Showk,Mazac,Paulos'15]:

 $\nu \approx 0.917$.

4-loop: naive
$$\epsilon = 1$$
 leads $\omega < 0!$

 $\nu = 0.5 + 0.25\epsilon + 0.042\epsilon^2 + 0.193\epsilon^3 - 0.494\epsilon^4.$

Asymptotic Series!?

Try Padé approximations

Nikolai Zerf (ITP UHD)

A D b 4 B b 4

() For N = 1/4: 1 Majorana \leftrightarrow 1 real Scalar SUSY in D = 3

・ロト・雪・・雪・・雪・ シック

For N = 1/4: 1 Majorana \leftrightarrow 1 real Scalar SUSY in D = 3SUSY relations hold for Loops ≤ 3 within DREG

$$\gamma^* = \gamma^*_{\phi} = \gamma^*_{\psi} ,$$

$$\nu^{-1} = \frac{D - \gamma^*}{2} .$$

3

(日)

For N = 1/4: 1 Majorana \leftrightarrow 1 real Scalar SUSY in D = 3SUSY relations hold for Loops ≤ 3 within DREG

$$\gamma^* = \gamma^*_{\phi} = \gamma^*_{\psi} ,$$

$$\nu^{-1} = \frac{D - \gamma^*}{2} .$$

▲ DREG breaks SUSY @ 4 Loops!

$$\begin{split} \gamma^* = &\gamma_{\phi}^* = \gamma_{\psi}^* \,, \qquad \checkmark \\ \beta_y^{(4L)*} \neq &\beta_{\lambda}^{(4L)*} \to \lambda^* \neq y^* \,. \end{split}$$

B N A **B** N

For N = 1/4: 1 Majorana \leftrightarrow 1 real Scalar SUSY in D = 3SUSY relations hold for Loops ≤ 3 within DREG

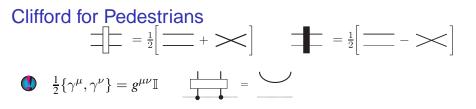
$$\gamma^* = \gamma^*_{\phi} = \gamma^*_{\psi} ,$$

$$\nu^{-1} = \frac{D - \gamma^*}{2} .$$

$$\begin{split} \gamma^* =& \gamma_\phi^* = \gamma_\psi^* \,, \qquad \checkmark \ \beta_y^{(4L)*}
eq \beta_\lambda^{(4L)*} o \lambda^*
eq y^* \,. \end{split}$$

D = 3 (using Pauli-matrices)

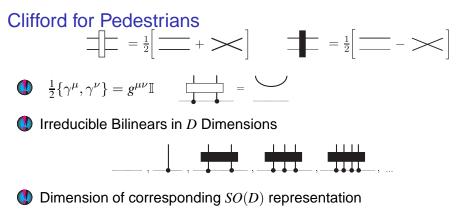
$$\operatorname{tr}\{\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\}\sim\varepsilon^{\mu\nu\rho}$$



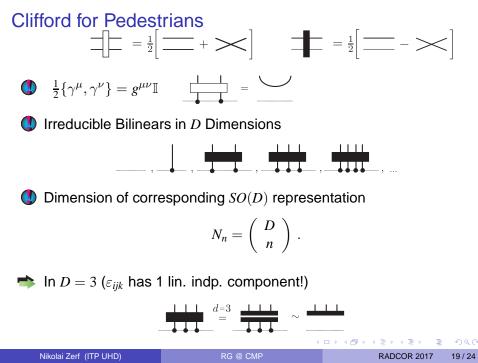
Nikolai Zerf (ITP UHD)

Clifford for Pedestrians $= \frac{1}{2} \left[= \frac{1}{2} \left[= \frac{1}{2} \right] = \frac{1}{2} \left[= \frac{1}{2} \left[= \frac{1}{2} \right] \right]$ $\frac{1}{2} \left\{ \gamma^{\mu}, \gamma^{\nu} \right\} = g^{\mu\nu} \mathbb{I} \qquad = \underbrace{\qquad }$

Irreducible Bilinears in D Dimensions



$$N_n = \left(\begin{array}{c} D \\ n \end{array} \right) \,.$$



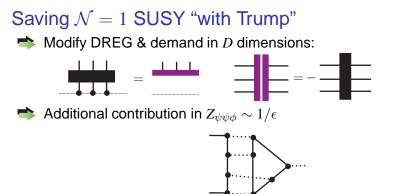
Saving $\mathcal{N} = 1$ SUSY "with Trump"

Modify DREG & demand in *D* dimensions:

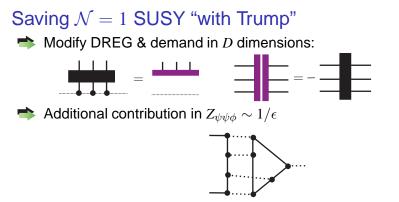
Nikolai Zerf (ITP UHD)

3

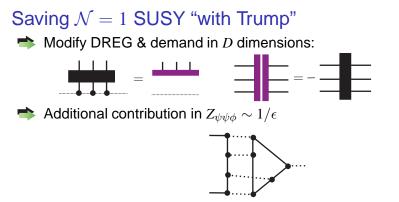
3 + 4 = +



-



 \bigcirc Contribution can be obtained via a majorana fermion calculation using an explicit spin SU(2) algebra



 Contribution can be obtained via a majorana fermion calculation using an explicit spin SU(2) algebra
 SU(2) relations restared

Ø SUSY relations restored

$$\begin{split} \beta_{y}^{(4L)*} = & \beta_{\lambda}^{(4L)*} \to \lambda^{*} = y^{*} ,\\ \nu^{-1} = & \frac{D - \gamma^{*}}{2} . \end{split}$$

Comparing Results χXY

N = 1/2	1/ u	γ_ϕ^*	γ^*_ψ	ω
this work, $P_{[2/2]}$	1.128	1/3	1/3	0.872
this work, $P_{[3/1]}$	1.130	1/3	1/3	0.870
conf. bootstrap ¹	1.090	1/3	1/3	0.910
N = 2	1/ u	γ^*_ϕ	γ_ψ^*	ω
this work, $P_{[2/2]}$	0.840	0.810	0.117	0.796
this work, $P_{[3/1]}$	0.841	0.788	0.108	0.780
functional RG ²	0.862	0.88	0.062	0.878
Monte Carlo ³	1.06(5)	0.71(3)		

¹ [Bobev,El-Showk,Mazac,Pa ² [Classen, Herbut, Scherer ³ ³ [Li,Jiang,Jian,Yao,'17]	-	•	□→∢@→	< 문 > < 문 >	the second se	୬୯୯
Nikolai Zerf (ITP UHD)	RG @ CMP			RADCOR 20	17	21/24

Comparing Results χ *Ising*

N = 1/4	$1/\nu$	γ_{ϕ}^{*}	γ^*_ψ	ω
this work, $P_{[2/2]}$	1.415	0.171	0.171	0.843
this work, $P_{[3/1]}$	1.415	0.170	0.170	0.838
FRG ⁴ (Regulator 1)	1.385	0.174	0.174	0.765
FRG ⁴ (Regulator 2)	1.395	0.167	0.167	0.782
conf. bootstrap ⁵		0.164	0.164	

 ⁴[Gies,Hellwig,Wipf,Zanusso'17]

 ⁵[Iliesiu,Kos,Poland,Pufu,Simmons-Duffin,Yacoby'16]

 Nikolai Zerf (ITP UHD)

 RG @ CMP

 RADCOR 2017
 22 / 24

Comparing Results χ *Ising*

N=2	$1/\nu$	γ_{ϕ}^{*}	γ^*_ψ	ω
this work, $P_{[2/2]}$	0.931	0.7079	0.0539	0.794
this work, $P_{[3/1]}$	0.945	0.6906	0.0506	0.777
$(2+\epsilon)$, (ϵ^4 , Padé) ⁶	0.931	0.745	0.082	
FRG ⁷	0.994(2)	0.7765	0.0276	
conformal bootstrap ⁸	0.88	0.742	0.044	
Monte Carlo ⁹	1.20(1)	0.62(1)	0.38(1)	

```
<sup>9</sup>[Chandrasekharan,Li'13]
```

Nikolai Zerf (ITP UHD)

⁶[Gracey,Luthe,Schroder'16]

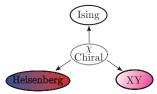
⁷[Knorr'16]

⁸[Iliesiu,Kos,Poland,Pufu,Simmons-Duffin'17]

Summary & Outlook

Summary

 \mathbf{i} 4-Loop β s & γ s for Gross-Neveu-Yukawa Models



- Kinematics ↔ Symmetry
- SUSY may hide in condensed matter systems "on a desk"

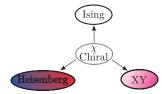
12 N A 12

Image: A matrix and a matrix

Summary & Outlook

Summary

🤹 4-Loop βs & γs for Gross-Neveu-Yukawa Models



 $\mathbf{\mathbf{g}}$ Kinematics \leftrightarrow Symmetry

SUSY may hide in condensed matter systems "on a desk"

Outlook

More sophisticated/beyond Padé analysis (large order behavior?)

To backup slides \rightarrow

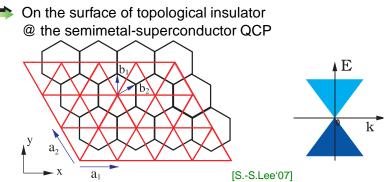
Nikolai Zerf (ITP UHD)

▶ ব ≣ ১ ৭ ৫ RADCOR 2017 25

Where to find SUSY?

Nikolai Zerf (ITP UHD)

Where to find SUSY?

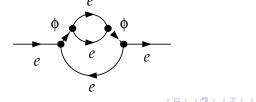


χXY in smart

$$\begin{split} \mathcal{L}_{\chi\chi\gamma} = & \bar{\psi}\partial\!\!\!/\psi + |\partial_{\mu}\phi|^2 + m^2 |\phi|^2 + \lambda^2 |\phi|^4 + h(\phi^*\psi^T i\sigma_2\psi + h.c.) \,. \\ & \mathsf{VS}. \end{split}$$

 $\mathcal{L}_{\chi XY} = \bar{\psi} \partial \!\!\!/ \psi + |\partial_{\mu} \phi|^2 + m^2 |\phi|^2 + \lambda^2 |\phi|^4 + g \phi \bar{\psi} P_+ \psi + g \phi^* \bar{\psi} P_- \psi \,.$

	<i>χ<u>X</u>Y</i> ν1			<i>χ<mark>XY</mark></i> ν2				
Loops	1	2	3	4	1	2	3	4
Z_{ψ}	1	3	16	116	2	14	200	4014
Z_{ϕ}, Z_{ϕ^2}	2	4	22	148	2	9	112	2198
$Z_{\psi\psi\phi}$	0	2	25	296	2	41	1002	28701
Z_{ϕ^4}	4	35	369	4388	9	173	5029	147023



ъ

Renormalizability

Is the QFT with

$$\mathcal{L} = ar{\psi}_{lpha} (\partial \!\!\!/ + g[T^a_R]^{lpha}_{eta} \phi_a) \psi^{eta} - rac{1}{2} \phi_a \partial^2_{\mu} \phi_a + \lambda (\phi_a \phi_a)^2 \,,$$

a renormalizeable theory in d = 4 when we assume that T_R obey a finite dimensional simple Lie algebra?

Renormalizability

Is the QFT with

$$\mathcal{L} = ar{\psi}_{lpha} (\partial \!\!\!/ + g[T^a_R]^{lpha}_{eta} \phi_a) \psi^{eta} - rac{1}{2} \phi_a \partial^2_{\mu} \phi_a + \lambda (\phi_a \phi_a)^2 \,,$$

a renormalizeable theory in d = 4 when we assume that T_R obey a finite dimensional simple Lie algebra?

Lie algebra	Betti numbers
$A_r \sim SU(r+1)$	$2, 3, \ldots, r+1$
$B_r \sim SO(2r+1)$	$2, 4, 6, \ldots, 2r$
$C_r \sim Sp(2r)$	$2, 4, 6, \ldots, 2r$
$D_r \sim SO(2r)$	$2,4,6,\ldots,2r-2,r$
G_2	2,6
F_4	2, 6, 8, 12
E_6	2, 5, 6, 8, 9, 12
E_7	2, 6, 8, 10, 12, 14, 18
E_8	2, 8, 12, 14, 18, 20, 24, 30

Nikolai Zerf (ITP UHD)

Superspace

$$\begin{split} d^{2}\theta &\equiv -\frac{1}{4}d\theta^{\alpha}d\theta^{\beta}\varepsilon_{\alpha\beta}, \\ d^{2}\bar{\theta} &\equiv -\frac{1}{4}d\bar{\theta}^{\alpha}d\bar{\theta}^{\beta}\varepsilon_{\alpha\beta}, \\ \theta^{2} &\equiv \theta^{\alpha}\theta_{\alpha} = \theta^{\alpha}\varepsilon_{\alpha\beta}\theta^{\beta}, \\ \int d^{2}\theta d^{2}\bar{\theta} \,\Phi^{\dagger}\Phi &= i\bar{\psi}\partial\!\!\!/\psi + |\partial_{\mu}\phi|^{2} + |F|^{2}. \quad \text{kinetic terms} \\ \int d^{2}\theta \,\frac{h}{3}\Phi^{3} &= h\phi^{2}F + h\phi\psi^{T}i\sigma_{2}\psi. \quad \text{super potential terms} \end{split}$$

Auxiliary fields are eliminated using EQM: $F = -h\phi^{*2}$, $F^* = -h\phi^2$.

(a)