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What We’re Doing

Our goal is to compute γ∗ → qq̄ and h→ gg at four loops in QCD.
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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a

renormalization group equation which was understood long ago
L. Magnea and G. Sterman, Phys. Rev. D42 (1990) 4222
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At L loops, ΓL characterizes the leading IR divergences which cannot
be understood as exponentiated lower-loop contributions.

=⇒ Γ4 is the last unknown ingredient needed for N3LL resummation!
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A Dipole Formula For Gauge Theory IR Divergences?

S. Catani, Phys. Lett. B427 (1998) 161; S. Mert Aybat et. al., Phys. Rev. D74 (2006) 074004

T. Becher and M. Neubert, JHEP 0906 (2009) 081; E. Gardi and L. Magnea, JHEP 0903 (2009) 079

The IR divergences of the simplest non-Abelian gauge theory, planar
SU(Nc) N = 4 super Yang-Mills, are believed to be of the form:
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At four points, this structure has been realized explicitly at strong
coupling (L. F. Alday and J. Maldacena, JHEP 0706 (2007) 064). In principle, the
above structure could hold for more general gauge theories like QCD.
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by
Dixon (Phys. Rev. D79 (2009) 091501) for the nf terms,

it is now clear that the dipole conjecture fails in general.
S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., Phys. Rev. Lett. 117 (2016) no.17, 172002;

J. M. Henn and B. Mistlberger, Phys. Rev. Lett. 117 (2016) no.17, 171601

The Casimir scaling part of the conjecture

ΓgL
?
= CA/CFΓqL

has received a lot of attention in the last few years.

R. Boels et. al., JHEP 1302 (2013) 063; Nucl. Phys. B902 (2016) 387; arXiv:1705.03444

A. Grozin et. al., JHEP 1601 (2016) 140

J. M. Henn et. al., JHEP 1605 (2016) 066; R. N. Lee et. al., Phys. Rev. D96 (2017) no.1, 014008

J. Davies et. al., Nucl. Phys. B915 (2017) 335; S. Moch et. al., arXiv:1707.08315
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra.
(∼ 50,000 diagrams with QGraf + FORM/Mathematica)
P. Nogueira, J. Comput. Phys. 105 (1993) 279

J. Kuipers et. al., Comput. Phys. Commun. 184 (2013) 1453

Find integral reductions for up to twelve-line integrals
with as many as six inverse propagators (with Finred).
S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087

A. von Manteuffel and RMS, Phys. Lett. B744 (2015) 101;

Phys. Rev. D95 (2017) no.3, 034030

Construct an alternative basis of finite integrals and rewrite
everything in terms of it using a set of auxiliary reductions.
A. von Manteuffel et. al., JHEP 1502 (2015) 120; Phys. Rev. D93 (2016) no.12, 125014

Evaluate all finite master integrals analytically using HyperInt.
F. C. S. Brown, Commun. Math. Phys. 287 (2009) 925; arXiv:0910.0114

E. Panzer, arXiv:1506.07243; Comput. Phys. Commun. 188 (2015) 148
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From Conventional To Finite Integral Bases

For each irreducible topology, test progressively more
complicated integrals for convergence.
S. Weinberg, Phys. Rev. 118 (1960) 838; E. Panzer, JHEP 1403 (2014) 071

For x = ∆d/2 (the dimension shift divided by two), y = ν −N
(the number of “extra” powers of the propagators or “dots”), and
all fixed non-negative integers n = x+ y, this test is carried out
in practice by considering the integrals which correspond to all
possible non-negative integer solutions {x, y}, beginning with the
n = 0 case corresponding to the basic scalar integral in d = 4− 2ε.

Rotate from the old basis to the new basis using auxiliary IBPs.

The computationally expensive part at this stage is to perform a
Tarasov shift (Phys. Rev. D54 (1996) 6479) on the old basis and then
IBP reduce the resulting linear combination of integrals in d+ 2
with a number of additional dots equal to the loop order. This
connects the “conventional” integral bases in d and d+ 2; it can
be used iteratively if multiple dimension shifts are required.
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From Conventional To Finite Integral Bases

For each irreducible topology, test progressively more
complicated integrals for convergence.
S. Weinberg, Phys. Rev. 118 (1960) 838; E. Panzer, JHEP 1403 (2014) 071

For x = ∆d/2 (the dimension shift divided by two), y = ν −N
(the number of “extra” powers of the propagators or “dots”), and
all fixed non-negative integers n = x+ y, this test is carried out
in practice by considering the integrals which correspond to all
possible non-negative integer solutions {x, y}, beginning with the
n = 0 case corresponding to the basic scalar integral in d = 4− 2ε.

Rotate from the old basis to the new basis using auxiliary IBPs.

The computationally expensive part at this stage is to perform a
Tarasov shift (Phys. Rev. D54 (1996) 6479) on the old basis and then
IBP reduce the resulting linear combination of integrals in d+ 2
with a number of additional dots equal to the loop order. This
connects the “conventional” integral bases in d and d+ 2; it can
be used iteratively if multiple dimension shifts are required.
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What About The Auxiliary Reductions
Needed For The Basis Rotation?

Consider the three-loop gluon form factor, where smax = 5:

(10−2ε)
(8−2ε)

(10−2ε) (8−2ε)

=⇒ Auxiliary reductions are a subleading problem!
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An Illustrative Comparison

J. M. Henn et. al., JHEP 1605 (2016) 066
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The Correlation Of The Maximal Weight At Leading
Order With The Number Of Edges Of The Graph

R. N. Lee and V. A. Smirnov, JHEP 1004 (2010) 020; T. Gehrmann et. al., JHEP 1006 (2010) 094

Data for the 22 three-loop form factor master sectors:

# Edges # Wt. 0 # Wt. 2 # Wt. 3 # Wt. 4 # Wt. 5
4 1 0 0 0 0
5 4 0 0 0 0
6 3 1 2 0 0
7 0 0 3 0 2
8 0 0 1 1 1
9 0 0 0 0 3
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The Correlation Of The Maximal Weight At Leading
Order With The Number Of Edges Of The Graph

P. A. Baikov and K. G. Chetyrkin, Nucl. Phys. B837 (2010) 186;

R. N. Lee et. al., Nucl. Phys. B856 (2012) 95

Data for the 197 genuine four-loop form factor master sectors:

# Edges # Wt. 2 # Wt. 3 # Wt. 4 # Wt. 5 # Wt. 6 # Wt. 7 # Wt. 8
7 6 4 0 0 0 0 0
8 2 17 2 19 0 0 0
9 0 2 5 18 8 7 2
10 0 0 1 23 6 19 10
11 0 0 0 0 4 14 8
12 0 0 0 0 0 11 + (0-5) 4 + (0-5)

Based on our experience, we expect that just 117 of the above are
relevant to the calculation of the cusp anomalous dimensions!
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The Compatibility Graph Algorithm

F. C. S. Brown, arXiv:0910.0114; E. Panzer, arXiv:1506.07243

For each integration order, the algorithm associates a cascade of
polynomials and their compatibilities to the integral topology under
consideration, starting with the “compatibility graph”

(U) (F)

The algorithm assumes that, at each step, all factors are linear with
respect to at least one of the remaining Feynman parameters:

fj (xk1
, . . . , xkm) = q

(i)
j

(
xk1

, . . . , xki−1
, xki+1

, . . . , xkm
)
xi

+ r
(i)
j

(
xk1

, . . . , xki−1
, xki+1

, . . . , xkm
)

One obtains a tight upper bound on the factors which are relevant to
the integration! Non-trivial mathematics, but the intuition is clear.
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The Compatibility Graph Algorithm

All q
(i)
j and r

(i)
j may appear as letters after xi is integrated out, but

that is not the end of the story. We have compatibility resultants

{f`, fn}xi = det

(
q
(i)
` r

(i)
`

q
(i)
n r

(i)
n

)
{fj , f∞}xi = q

(i)
j {fj , f0}xi = r

(i)
j

Any set of compatibility resultants with indices in common, including
0 and ∞, generate polynomial factors which are then considered to be
compatible at the next iteration of the algorithm.

1

fν1
1 · · · fνNN

=

N∑
k=1

νk∑
j=1

(−1)νk−j({fk,∞}xi)νk̄
(νk − j)!f jk

∑
N∑

s=1
s6=k

`s = νk − j

(
νk − j

`1 · · · `k−1`k+1 · · · `N

) N∏
r=1
r 6=k

(
νr + `r − 1

`r

)
({fr,∞}xi)`r

({fk, fr}xi)νr+`r
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“Universality Classes” Of Variable Changes

Remarkably, making certain simple variable changes in U and F can
dramatically improve the linear reducibility of most tough sectors:

xi = x′ixjxk =⇒

xi = x′ixj xk = x′kx
′
i =⇒ xi = x′ixj =⇒

Only two top-level sectors left which we cannot access analytically!
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Selected Results
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Our to-do list looks as follows:

Buy new computers to more effectively run Laporta’s algorithm.

Keep thinking about algorithmic improvements.

Obtain analytical results for the cusp anomalous dimensions.

Obtain analytical results for the finite parts of the form factors.
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