Top quark mass effects in Higgs physics
 - Towards HJ production at NLO -

Matthias Kerner
Radcor 2017
St. Gilgen - 28 September 2017

In collaboration with
Stephen Jones, Gionata Luisoni

HEFT vs. full theory

Many calculations in Higgs physics done in the $m_{t} \rightarrow \infty$ limit (Higgs EFT)

HEFT valid if m_{t} is large compared to all other scales
$\mathrm{H}+\mathrm{X}$ production: large phase space region with $\sqrt{s}>2 m_{t}$
e.g. Higgs Pair production

top mass effects at NLO [Borowka, Geiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke 16]

compared to NLO HEFT:

- total cross section reduced by 14%
- large corrections at high m_{hh}
\rightarrow talk by Stephen Jones

HJ@NLO - Motivation

HJ production at large p_{T}

- top mass effects expected to be large for high pt LO: -40% for рт $>250 \mathrm{GeV}$
- high pt resolves particle in loop
\rightarrow sensitivity to BSM effects

This talk: toward HJ production at NLO with full m_{t} dependence
only subset of 2-loop integrals known analytically
\rightarrow use numerical methods for evaluation of virtual amplitude

HJ Production - known results

1) LO (full m_{t} dependence)
[Ellis, Hinchliffe, Soldate, van der Bij 87]
[Baur, Glover 89]

2) NLO

$$
K \approx 1.6
$$

- HEFT
[de Florian, Grazzini, Kunszt 99; Glosser, Schmidt 02;
Ravindran, Smith, van Neerven 02]
- approximated m_{t} dependence
[Harlander, Neumann, Ozeren, Wiesemann 12]
[Neumann, Wiesemann 14] [Frederix, Frixione,

Vryonidou, Wiesemann 16] [Neumann, Williams 16]
[Caola, Forte, Marzani, Muselliand, Vita 16]
[Braaten, Zhang, Zhang 17]

- top-bottom interference \rightarrow talk by Chris Wever
[(Lindert,) Melnikov, Tancredi, Wever 16, 17]

3) NNLO (HEFT)
$K \approx 1.2$
[Boughezal, Caola, Melnikov, Petriello, Schulze 13, 14]
[Chen, (Martinez,) Gehrmann, Glover, Jaquier 14, 16]

[Boughezal, Focke, Giele, Liu, Petriello 15]

Partonic Channels

	$\mathrm{p}_{\text {T }}>30 \mathrm{GeV}$	$\mathrm{p}_{\mathrm{T}}>300 \mathrm{GeV}$	$\begin{aligned} & \sqrt{s}=13 \mathrm{TeV} \\ & m_{H}=125 \mathrm{GeV} \\ & m_{t}=173.05 \mathrm{GeV} \\ & \text { PDF4LHC15 } \\ & \mu_{R}=\mu_{F}=m_{H} \end{aligned}$
$\mathrm{gg} \rightarrow \mathrm{Hg}$	5836 fb (73\%)	53.1 fb (62.5\%)	
$\mathrm{qg} \rightarrow \mathrm{Hq}, \overline{\mathbf{q}} \mathrm{g} \rightarrow \mathrm{H} \overline{\mathrm{q}}$	$2096 \mathrm{fb}(26 \%)$	31.0 fb (36.5\%)	
$q \bar{q} \rightarrow \mathrm{Hg}$	38 fb (0.5\%)	0.8 fb (1\%)	

Approximated results

[Neumann, Williams 16]

Approximated results

[Neumann, Williams 16]

Virtual Amplitude - Feynman Diagrams

gluon channels:

quark channels:

Analytic results for planar integrals

[Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov 16]
most planar integrals can be expressed in terms of

- \log , Li_{2} up to weight 2
- 1-fold integrals at weights 3,4
- alphabet with 3 variables, 49 letters, many square roots

2 sectors contain elliptic functions can be expressed as 2- and 3-fold iterated integrals with elliptic kernel

\rightarrow results not available in closed form no results for non-planar integrals

We calculate all integrals full numerically using SecDec

Virtual Amplitude - Form Factors

gluon channel: $\quad \mathcal{M}=\epsilon_{\mu}\left(p_{1}\right) \epsilon_{\nu}\left(p_{2}\right) \epsilon_{\tau}\left(p_{3}\right) \mathcal{M}^{\mu \nu \tau}$

$$
\begin{aligned}
\mathcal{M}^{\mu \nu \tau}(s, t, u)= & F_{212}\left(s g^{\mu \nu}-2 p_{2}^{\mu} p_{1}^{\nu}\right)\left(u p_{1}^{\tau}-t p_{2}^{\tau}\right) /(2 t) \\
& +F_{332}\left(u g^{\nu \tau}-2 p_{3}^{\nu} p_{2}^{\tau}\right)\left(t p_{2}^{\mu}-s p_{3}^{\mu}\right) /(2 s) \\
& +F_{311}\left(t g^{\tau \mu}-2 p_{1}^{\tau} p_{3}^{\mu}\right)\left(s p_{3}^{\nu}-u p_{1}^{\nu}\right) /(2 u) \\
& +F_{312}\left(g^{\mu \nu}\left(u p_{1}^{\tau}-t p_{2}^{\tau}\right)+g^{\nu \tau}\left(t p_{2}^{\mu}-s p_{3}^{\mu}\right)+g^{\tau \mu}\left(s p_{3}^{\nu}-u p_{1}^{\nu}\right)\right. \\
& \left.+2 p_{3}^{\mu} p_{1}^{\nu} p_{2}^{\tau}-2 p_{2}^{\mu} p_{3}^{\nu} p_{1}^{\tau}\right) / 2 \quad \text { Thanks: Glover, Frellesvig }
\end{aligned}
$$

Form factors are gauge invariant and cyclic:

$$
\begin{aligned}
& F_{311}(u, s, t)=F_{332}(t, u, s)=F_{212}(s, t, u) \\
& F_{312}(u, s, t)=F_{312}(t, u, s)=F_{312}(s, t, u)
\end{aligned}
$$

quark channels:

$$
\begin{array}{rlr}
\mathcal{M} & =F_{q}\left(\bar{u}\left(q_{\bar{q}}\right) \not p_{g} v\left(p_{q}\right) p_{q} \cdot \varepsilon-\bar{u}\left(q_{\bar{q}}\right) \notin v\left(p_{q}\right) p_{q} \cdot p_{g}\right) & \\
& +F_{\bar{q}}\left(\bar{u}\left(q_{\bar{q}}\right) \not p_{g} v\left(p_{q}\right) p_{\bar{q}} \cdot \varepsilon-\bar{u}\left(q_{\bar{q}}\right) \notin v\left(p_{q}\right) p_{\bar{q}} \cdot p_{g}\right) \quad \text { Gehrmann, Glover, } \quad \text { Jaquier, Koukoutsakis }
\end{array}
$$

Integral Reduction

Full Integration-by-Parts reduction [Chetyrkin, Tkachov 81; Laporta 01] achieved using Reduze [von Manteuffel, Studerus 12] with modifications to

- change order of solving the system of equations, sorting the equations by number of unreduced integrals
- specify list of required integrals
\rightarrow consider only equations containing these integrals
unreduced amplitude: 3767 integrals
up to 3 inverse propagators for 7 -propagator integrals
up to 4 inverse propagators for factorizing 6 -propagator integrals
reduced amplitude: 458 integrals
up to 6 master integrals per sector
choose quasi-finite basis of master integrals [von Manteuffel, Panzer, Schabinger 14]
\rightarrow requires integrals in shifted dimension [Tarasov 96; Lee 10]
\rightarrow requires reduction of integrals with 2 inverse propagators and 2 dots

Integral Reduction

Reduction done using two different setups:

$$
\begin{aligned}
& \text { 1) fix mass ratio } \\
& \frac{m_{h}^{2}}{m_{t}^{2}}=\frac{12}{23} \rightarrow \begin{array}{l}
m_{h}=125 \mathrm{GeV} \\
m_{t}=173.055 \mathrm{GeV}
\end{array}
\end{aligned}
$$

Total size of Reduze reduction directory:

Size of reduced amplitude:
symbolic d-dependent coefficients
after simplifications with
Fermat and Mathematica
Size of c++ code:
for coefficients
after expansion in ε
including m_{b}, Γ_{t} possible:

Loop Integrals - Sector Decomposition

Numerical evaluation of loop integrals with SecDec [Borowka, Heinrich, Jahn, Jones, MK, Schlenk, Zirke]

- Sector decomposition [Binoth, Heinrich `00] factorizes overlapping singularities \square

- Subtraction of poles \& expansion in $\boldsymbol{\varepsilon}$
- Contour deformation [Soper 00; Binoth et al. 05, Nagy, Soper 06, Borowka et al. 12] analytic continuation from Euclidean to physical region
\rightarrow finite integrals at each order in ε
\rightarrow numerical integration possible
SecDec 3 used for amplitude evaluation interface to amplitude based on calculation of HH production [Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke]

New version of SecDec: pySecDec \rightarrow talk by Stephan Jahn

- implementation in python and Form
- modular structure
- generates libraries that can be directly linked to amplitude code

Loop Integrals - Amplitude Structure

rewrite loop integrals with r propagators and s inverse propagators as

$$
I_{r, s}\left(s, t, m_{h}^{2}, m_{t}^{2}\right)=\left(M^{2}\right)^{-L \epsilon}\left(M^{2}\right)^{2 L-r+s} I_{r, s}\left(\frac{s}{M^{2}}, \frac{t}{M^{2}}, \frac{m_{h}^{2}}{M^{2}}, \frac{m_{t}^{2}}{M^{2}}\right)
$$

and write renormalized form factors as

$$
\begin{array}{rll}
F^{\mathrm{virt}} & =a^{3 / 2}\left(F^{(1)}+a\left(\frac{n_{g}}{2} \delta Z_{A}+\frac{3}{2} \delta Z_{a}\right) F^{(1)}+a \delta m_{t}^{2} \mathcal{F}^{c t,(1)}+a F^{(2)}+\mathcal{O}\left(a^{2}\right)\right) \\
F^{(1)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\varepsilon}\left[b_{0}^{(1)}+b_{1}^{(1)} \varepsilon+b_{2}^{(1)} \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right)\right], & \text { (1-loop) } \\
F^{c t,(1)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\varepsilon}\left[c_{0}^{(1)}+c_{1}^{(1)} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right], & \text { (mass counter-term) } \\
F^{(2)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{2 \varepsilon}\left[\frac{b_{-2}^{(2)}}{\varepsilon^{2}}+\frac{b_{-1}^{(2)}}{\varepsilon}+b_{0}^{(2)}+\mathcal{O}(\varepsilon)\right], & \text { (2-loop) }
\end{array}
$$

\rightarrow scale variations do not require re-computation of $b_{i}^{(n)}, c_{i}^{(n)}$

Loop Integrals - Numerical Integration

after sector decomposition and expansion in ε : amplitude written in terms of 22675 finite integrals

- all integrals evaluated using

Quasi-Monte-Carlo integration

- generating vector
- constructed component-by-component [Nuyens 07]
- minimizing worst-case error
- for fixed lattice sizes
- $\mathcal{O}\left(n^{-1}\right)$ scaling of integration error
- dynamically set n for each integral, minimizing

$$
T=\sum_{\text {integral } i} t_{i}+\lambda\left(\sigma^{2}-\sum_{i} \sigma_{i}^{2}\right) \quad \sigma_{i}=c_{i} \cdot t_{i}^{-e}
$$

$$
\sigma_{i}=\text { error estimate (including coefficients in amplitude) }
$$

$$
\lambda=\text { Lagrange multiplier } \quad \sigma=\text { precision goal }
$$

QMC rank-1 lattice rule $I=\int \mathrm{d} \vec{x} f(\vec{x}) \approx I_{k}=\frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}_{i, k}\right)$ $\vec{x}_{i, k}=\left\{\frac{i \cdot \vec{g}}{n}+\vec{\Delta}_{k}\right\}$
$\{\ldots\}=$ fractional part
$\vec{g}=$ generating vector
$\vec{\Delta}_{k}=$ randomized shift
m different estimates $I_{1} \ldots I_{m}$
\rightarrow error estimate
Review: Dick, Kuo, Sloan

- parallelization on gpu
- avoid reevaluation of integrals for different orders in ε and form factors

$$
F^{a}=\sum_{i}\left[\left(\sum_{j} C_{i, j}^{a} \varepsilon^{j}\right) \cdot\left(\sum_{k} I_{i, k} \varepsilon^{k}\right)\right]=\frac{C_{1,-2}^{a} I_{1,0}+C_{1,-1}^{a} I_{1,-1}+\ldots}{\varepsilon^{2}}+\frac{C_{1,-1}^{a} I_{1,0}+\ldots}{\varepsilon^{1}}+\ldots
$$

Phase-Space integration \& Real Radiation

Phase-space integration of virtual corrections:

- generate unweighted events based on differential LO cross section
\rightarrow nearly perfect importance sampling for evaluating total cross section
- include additional рт-dependent reweighing factor enhances number of events in tail of distribution, reducing their weight

Real radiation matrix elements generated with GoSam [Cullen et. al.]
Implemented in Powheg-Box framework [Alioli, Hamilton, Nason, Oleari, Re, Zanderighi] allows to calculate the cross section

- at fixed order
- including a parton shower

Current Status

Real radiation

- fully implemented
- checked
- results available, but more statistics required

Virtual corrections

- full code generated \& compiled
pole cancellation (at low $\mathrm{m}_{\mathrm{hj}}, \mathrm{p}_{\mathrm{T}}$)
- pole cancellation checked
- verified permutation symmetry of form factors
- ToDo:
- compare to HEFT result
- test convergence of finite part

	gluon channels	quark channels
$\boldsymbol{\varepsilon}^{-2}$	$5-8$ digits	8 digits
$\boldsymbol{\varepsilon}^{-1}$	$3-5$ digits	7 digits

- evaluate cross section

Comparison of HJ and HH

	HJ production	HH production
\#Form factors	4+2	2
Full reduction	\checkmark	only planar
(quasi-) finite basis	\checkmark	only planar
\#Master integrals including crossings	458	327
\#Master integrals neglecting crossings	120	215
\#Integrals after sector decomposition and expansion in ε	22675	11244
Code size coefficients	$\sim 340 \mathrm{MB}$	$\sim 80 \mathrm{MB}$
Code size integrals	$\sim 330 \mathrm{MB}$	$\sim 580 \mathrm{MB}$
Compile time coefficients	~ 2 weeks	few days
Compile time integrals	~ 4 hours	$\sim 1-2$ days
Time for linking the program	~3-4 days	few hours

Challenges (far) ahead

future plans to extend the calculation

- effects of top width
- bottom quark mass effects
\rightarrow large mass ratios
\rightarrow numerical integration might be challenging
- combine with parton shower
requires reduction with full m_{h} and m_{t} dependence
\rightarrow more complicated coefficients

HJ production at NLO

- top quark mass effects expected to be large at high p_{T}
- implementation of NLO correction with full m_{t} dependence
- 2-loop amplitude calculated numerically
- code generation finished
- some more testing required

Thank you for your attention!

Backup

HH Amplitude Evaluation - Example

contributing integrals:

$$
\sqrt{s}=327.25 \mathrm{GeV}, \sqrt{-t}=170.05 \mathrm{GeV}, M^{2}=s / 4
$$

HH Amplitude Evaluation - Example

contributing integrals:

$$
\sqrt{s}=327.25 \mathrm{GeV}, \sqrt{-t}=170.05 \mathrm{GeV}, M^{2}=s / 4
$$

